Responsive image
博碩士論文 etd-1111115-130705 詳細資訊
Title page for etd-1111115-130705
論文名稱
Title
磺胺類藥物分析方法及磺胺一甲氧嘧啶在吳郭魚藥物動力學之研究
Development of analytical methodologies for sulfa drugs and pharmacokinetics studies of sulfamonomethoxine in tilapia
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-11-23
繳交日期
Date of Submission
2015-12-11
關鍵字
Keywords
乙醯化反應、水產藥物動力學、液相層析串聯式質譜儀、QuEChERS、磺胺類藥物
Sulfonamides, QuEChERS, LC–ESI–MS/MS, Pharmacokinetics, Acetylation
統計
Statistics
本論文已被瀏覽 5671 次,被下載 24
The thesis/dissertation has been browsed 5671 times, has been downloaded 24 times.
中文摘要
以改良式QuEChERS法開發具快速、簡單與低污染之樣品前處理技術,並結合液相層析電噴灑串聯式質譜儀進行魚肉組織14種磺胺類藥物殘留分析,建立具綠色化學、高選擇性與高靈敏度之微量分析方法。磺胺類藥物典型分子離子碎片分別為156 m/z、108 m/z 與92 m/z。層析條件為逆相HC-C18管柱,移動相A為5 mM醋酸銨水溶液(以甲酸調製pH值為3.5)、移動相B為甲醇。分析方法回收率為80.2–93.5%,變異係數為3.82–8.71%,最低偵測極限為0.43–1.22 μg kg-1,定量極限為1.27–3.71 μg kg-1,基質干擾效應為-18.2–18.4%。本研究方法應用於藥物動力學之分析,以吳郭魚口服單一劑量每公斤體重100 mg磺胺一甲氧嘧啶,其觀察藥物在體內之吸收、分布與排除,藥物濃度與時間之曲線關係以非房室模式進行分析。研究顯示磺胺一甲氧嘧啶在肝臟與膽囊有較高含量,肌肉含量相對較低。磺胺一甲氧嘧啶於吳郭魚體體內主要代謝物為乙醯化磺胺一甲氧嘧啶,其中體內乙醯化轉化率高達45%。乙醯化磺胺一甲氧嘧啶代謝物在血液中半衰期為46.2小時,較磺胺一甲氧嘧啶的21.7小時長。磺胺一甲氧嘧啶在96-120小時及乙醯化磺胺一甲氧嘧啶代謝物在48-72小時均出現再吸收情況,此為典型腸肝循環之現象。最後,將藥物動力學數據結合抑菌藥效學分析,磺胺一甲氧嘧啶血液中最高濃度為 9.6 mg kg-1,高於Aeromonas salmonicida subsp. Salmonicida 之MIC (3.12 mg kg-1), Vibrio anguillarum MIC (3.12 mg kg -1) 與 Vibrio harveyi MIC (6.25 mg kg -1),實驗顯示磺胺一甲氧嘧啶對此三種水產細菌病原體有抑菌效果,然而Pseudomonas fluorescens 和 Yersinia ruckeri在高劑量時(>100 μg kg-1)乃無抑菌成效。
Abstract
A rapid and efficient multiresidue method that involves using improved QuEChERS method and LC–ESI–MS/MS was developed to measure trace levels of sulfonamides in fish tissues. This proposed method was proven to be a powerful, highly sensitive, and environmentally friendly analytical tool that requires minimal sample preparation. The typical MS/MS fragmentation patterns of the [M+H]+ were 156 m/z, 108 m/z, and 92 m/z. Separation was performed on HC-C18 columns with a gradient elution by using methanol and 5 mM ammonium acetate aqueous solution (adjusted to pH 3.5 with formic acid). This method was validated and exhibited favorable performance as well as acceptable accuracy (80.2–93.5%), precision (3.82–8.71%), sensitivity (limits of detection (LODs) 0.43–1.22 μg kg-1 and limits of quantification (LOQs) 1.27–3.71 μg kg-1), and an acceptable matrix effect (-18.2–18.4%). This methodology has been successfully applied in analyzing various fish tissue from local markets.
The pharmacokinetics of sulfamonomethoxine (SMM) were estimated after single oral administration (100 mg/kg body weight) to the tilapia at 25.0 °C and drug concentration–time profiles for blood and tissues were described by the non–compartmental model. In the pharmacokinetics studies, the results indicated high levels of SMM appeared usually in the well perfused tissues, such as liver and bile, whereas low levels of SMM were generally found in the poorly perfused tissues, such as muscle. Acetylation of SMM in tilapia following oral administration was 45% and N4-acetyl sulfamonomethoxine (AC-SMM) was the major acetylated metabolite observed. T1/2 of AC-SMM (46.2 h) was longer than of SMM (21.7 h) in blood. Redistribution occurred in blood SMM from 96 h to 120 h and in blood AC-SMM from 48 h to 72 h. With regard to the drug excretion pathway, it was concluded that SMM and AC-SMM were excreted mainly by the biliary in the tilapia. Moreover, bile excretion may result in enterohepatic cycling and to some extent retard drug elimination.
In the PK–PD modeling of SMM study, the Cmax (9.6 mg kg-1) was above MIC value of Aeromonas salmonicida subsp. Salmonicida (3.12 mg kg-1), Vibrio anguillarum (3.12 mg kg -1) and Vibrio harveyi (6.25 mg kg -1). These results illustrated that SMM can inhibit the growth of certain aquatic bacterial pathogens.
目次 Table of Contents
Abstract (Chinese) ii
Abstract iii
Chapter 1 Introduction 1
1.1 Background of sulfonamides 1
1.1.1 Physicochemical properties of sulfonamides 1
1.1.2 Chemotherapy and mechanism of antimicrobial activity of SAs 3
1.1.3 Side effect, toxicity and risks of sulfonamide residues 6
1.1.4 Legislation 8
1.2 Analytical strategies of SAs in biological samples 10
1.2.1 Introduction of the concept of green analytical chemistry 10
1.2.2 Reviews on the instrumental analysis in SAs 14
1.2.3 Reviews on the sample pretreatment technique in SAs 19
1.3 The properties of pharmacokinetics in SAs 23
1.3.1 Absorption and distribution 24
1.3.2 Metabolism 28
1.3.3 Excretion 31
1.3.4 Non-compartmental analysis 33
1.3.5 Review on pharmacokinetics properties in aquatic animals 35
1.4 Pharmacokinetics–pharmacodynamics (PK–PD) modeling of antimicrobial drugs in MIC study 38
1.4.1 Bacterial pathogens in fish and antimicrobial activity of drugs 38
1.4.2 PK–PD parameter relationships for antibiotics 41
1.5 Motivation and specific aims 47
Chapter 2 Establishment and validation of green analytical method for determining SAs in fish sample 49
2.1 Introduction 49
2.2 Materials and methods 51
2.2.1 Chemicals and reagents 51
2.2.2 HPLC–ESI–MS/MS instrumentation and conditions 53
2.2.3 Sample collection 54
2.2.4 Improved QuEChERS method 55
2.2.5 Validation of the analytical procedure 57
2.2.6 Matrix effects test 59
2.3 Results and discussion 60
2.3.1 Optimizing the HPLC–ESI–MS/MS condition 60
2.3.2 Sample preparation protocol based on modified QuEChERS 68
2.3.3 Validation 72
2.3.4 Matrix effect 77
2.3.5 Comparison of analytical methods of SAs in biological matrices 79
2.3.6 Application of the improved QuEChERS to real samples 82
2.4 Conclusions 84
Chapter 3 Pharmacokinetics of sulfamonomethoxine and its N4-acetyl metabolite in tilapia after oral administration 85
3.1 Introduction 85
3.2 Materials and methods 87
3.2.1 Chemicals and reagents 87
3.2.2 HPLC–ESI–MS/MS conditions 88
3.2.3 Experimental fishes 88
3.2.4 Drug administration and sampling 88
3.2.5 Sample preparation 90
3.2.6 Pharmacokinetics analysis 91
3.3 Results and discussion 92
3.3.1 AC-SMM method validation 92
3.3.2 The mean concentrations of SMM versus time in blood and other tissues 97
3.3.3 Pharmacokinetics parameters of SMM after administration to tilapia 102
3.3.4 Absorption and distribution of SMM in tilapia 104
3.3.5 Excretion of SMM in tilapia after oral administration 108
3.3.6 Metabolism of SMM in tilapia after oral administration 111
3.4 Conclusions 117
Chapter 4 Evaluation of the antibacterial activities of sulfamonomethoxine and
PK–PD modeling analysis 118
4.1 Introduction 118
4.2 Materials and methods 121
4.2.1 Bacterial strains and growth conditions 121
4.2.2 MIC determinations 122
4.2.3 PK–PD modeling analysis 123
4.3 Results and discussion 124
4.4 Conclusions 126
Chapter 5 Comprehensive comments 127
References 129
Appendix 143
參考文獻 References
Abdallah, H., Arnaudguilhem, C., Jaber, F., & Lobinski, R. (2014). Multiresidue analysis of 22 sulfonamides and their metabolites in animal tissues using quick, easy, cheap, effective, rugged, and safe extraction and high resolution mass spectrometry (hybrid linear ion trap-Orbitrap). J. Chromatogr. A, 1355, 61-72.
Abdel-Rahman, S. M., & Kauffman, R. E. (2004). The integration of pharmacokinetics and pharmacodynamics: understanding dose–response. Annu. Rev. Pharmacol. Toxicol., 44, 111-136.
Aguilera-Luiz, M. M., Martínez Vidal, J. L., Romero-González, R., & Garrido Frenich, A. (2012). Multiclass method for fast determination of veterinary drug residues in baby food by ultra-high-performance liquid chromatography–tandem mass spectrometry. Food Chem., 132 (4), 2171-2180.
Alfonsi, K., Colberg, J., Dunn, P. J., Fevig, T., Sandra, J., Johnson, T. A., Kleine, H. P., Knight, C., Nagy, M. A., Perry, D. A., & Stefaniak, M. (2008). Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem., 10 (1), 31-36.
Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ‘‘dispersive solid-phase extraction’’ for the determination of pesticide residues in produce. J. AOAC Int., 86, 412-431.
Anderson, P. O., Knoben, J. E., & Troutman, W. G. (2002). Handbook of Clinical Drug Data, 10th ed., McGraw-Hill, Medical Publishing Division, pp.124-129.
Andreu,V., & Pico,Y. (2005). Liquid Chromatography-Ion Trap-Mass Spectrometry and its Application to Determine Organic Contaminants in the Environment and Food. Curr. Anal. Chem., 1, 241-265.
Arnesen, K. R., Mikkelsen, H., Schrøder, M. B., & Lund, V. (2010). Impact of reattaching various Aeromonas salmonicida A-layer proteins on vaccine efficacy in Atlantic cod (Gadus morhua). Vaccine, 28, 4703-4708.
Arroyo-Manzanares, N., Gamiz-Gracia, L., & Garcia-Campana, A. M. (2014). Alternative sample treatments for the determination of sulfonamides in milk by HPLC with fluorescence detection. Food Chem., 143, 459-464.
Baran, W., Adamek, E., Ziemianska, J., & Sobczak, A. (2011). Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater., 196, 1-15.
Barron, M. G., Gedutis, C., & James, O. M. (1988). Pharmacokinetics of sulphadimethoxine in the lobster, homarus americanus following intrapericardial administration. Xenobiotica, 18, 269-276.
Bastardo, A., Sierralta, V., León, J., Ravelo, C., & Romalde, J. L. (2011). Phenotypical and genetic characterization of Yersinia ruckeri strains isolated from recent outbreaks in farmed rainbow trout Oncorhynchus mykiss (Walbaum) in Peru. Aquaculture, 317 (4), 229-232.
Beale Jr, J. M. (2004). Anti-infective agents, in: Wilson & Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th ed., Lippincott Williams & Wilkins, Baltimore, pp. 271-274.
Berna Kilinc, C. M. V. H. (2007). Evaluation of the EEC four-plate test and Premi test for screening antibiotic residues in trout (Salmo trutta). Int. J. Food Sci. Technol., 42, 625-628.
Bialk-Bielinska, A., Kumirska, J., Palavinskas, R., & Stepnowski, P. (2009). Optimization of multiple reaction monitoring mode for the trace analysis of veterinary sulfonamides by LC-MS/MS. Talanta, 80 (2), 947-953.
Björklund, H., & Bylund, G. (1990). Temperature related absorption and excretion of oxytetracycline in rainbow trout. Aquaculture, 84, 363-372.
Bousova, K., Senyuva, H., & Mittendorf, K. (2013). Quantitative multi-residue method for determination antibiotics in chicken meat using turbulent flow chromatography coupled to liquid chromatography-tandem mass spectrometry. J. Chromatogr A, 1274, 19-27.
Braganca, I., Placido, A., Paiga, P., Domingues, V. F., & Delerue-Matos, C. (2012). QuEChERS: a new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci. Total Environ., 433, 281-289.
Brown, S. A. (2001). Pharmacokinetics. In H. R. Adams, editor, Veterinary Pharmacology and Therapeutics. 8th ed., Iowa State Press, pp.101-107.
Byers, J. P. & Sarver, J. G. (2009). Pharmacokinetic Modeling. Elsevier, pp.201-277.
Capriotti, A. L., Cavaliere, C., Piovesana, S., Samperi, R., & Lagana, A. (2012). Multiclass screening method based on solvent extraction and liquid chromatography-tandem mass spectrometry for the determination of antimicrobials and mycotoxins in egg. J. Chromatogr A, 1268, 84-90.
Cardinaud, M., Dheilly, N. M., Huchette, S., Moraga, D., & Paillard, C. (2015). The early stages of the immune response of the European abalone Haliotis tuberculata to a Vibrio harveyi infection. Dev. Comp. Immunol., 51, 287-297.
Carretero, V., Blasco, C., & Picó, Y. (2008). Multi-class determination of antimicrobials in meat by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A, 1209 (2), 162-173.
Cháfer-Pericás, C., Maquieira, Á., Puchades, R., Miralles, J., & Moreno, A. (2011). Multiresidue determination of antibiotics in feed and fish samples for food safety evaluation. Comparison of immunoassay vs LC-MS-MS. Food Control, 22 (6), 993-999.
Chang, C. S. (2008). Simultaneous Determination of Quinolones in Marine and Livestock Products and Pharmacokinetics of Enrofloxacin in Tilapia. National Sun Yat-Sen University Doctorate Dissertation.
Clinical and Laboratory Standards Institute (CLSI). (2009). Methods for Diluition Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard 8th ed. CLSI document M07–A8 (ISBN1-56238- 689-1).
Codex Alimentarius Commission. (2009). Directrices para el diseno y La implementacion de programas nacionales de aseguramiento de inocuidad alimentaria relacionados con el uso de medicamentos veterinarios en los animales destinados a produccion de alimentos. CAC/GL 71.
Coscelli, G. A., Bermúdez, R., Losada, A. P., Faílde, L. D., Santos, Y., & Quiroga, M. I. (2014). Acute Aeromonas salmonicida infection in turbot (Scophthalmus maximus L.). Histopathological and immunohistochemical studies. Aquaculture, 430, 79-85.
Craig, W. A. (1998). Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clini. Infect. Dis., 26, 1–12.
Dasenaki, M. E., & Thomaidis, N. S. (2010). Multi-residue determination of seventeen sulfonamides and five tetracyclines in fish tissue using a multi-stage LC-ESI-MS/MS approach based on advanced mass spectrometric techniques. Anal. Chim. Acta, 672 (2), 93-102.
De Brabander, H. F., Noppe, H., Verheyden, K., Vanden Bussche, J., Wille, K., Okerman, L., Vanhaecke, L., Reybroeck, W., Ooghe, S., & Croubels, S. (2009). Residue analysis: Future trends from a historical perspective. J. Chromatogr. A, 1216 (46), 7964-7976.
Ding, F., Cao, J., Ma, L., Pan, Q., Fang, Z., & Lu, X. (2006). Pharmacokinetics and tissue residues of difloxacin in crucian carp (Carassius auratus) after oral administration. Aquaculture, 256 (4), 121-128.
Dmitrienko, S. G., Kochuk, E. V., Apyari, V. V., Tolmacheva, V. V., & Zolotov, Y. A. (2014). Recent advances in sample preparation techniques and methods of sulfonamides detection – A review. Anal. Chim. Acta, 850, 6-25.
Downes, K. J., Hahn, A., Wiles, J., Courter, J. D., & Vinks, A. A. (2014). Dose optimisation of antibiotics in children: application of pharmacokinetics/pharmacodynamics in paediatrics. Int. J. Antimicrob. Agents, 43 (3), 223-230.
Drusano, G. L. (2004). Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat. Rev. Microbiol., 2, 289-300.
Dybing, E., Doe, J., Groten, J., Kleiner, J., O’Brien, J., Renwick, A. G., Schlatter, J., Steinberg, P., Tritscher, A., Walker, R., & Younesk, M. (2002). Hazard characterisation of chemicals in food and diet: dose response, mechanisms and extrapolation issues. Food Chem. Toxicol., 40, 237-282.
Ellis, A. E., Roberts, R. J., & Brett, J. R. (1978). The anatomy and physiology of teleosts. In: Roberts, R.J. (Ed.), Fish Physiology. Baillière Tindall, London, pp.13-54.
Ellingsen, O. F., Midttun, B., Rogstad, A., Syvertsen, C., & Samuelsen, O. B. (2002). Dosage regime experiments with oxolinic acid and flumequine in Atlantic salmon (Salmo salar) held in seawater. Aquaculture, 209, 19-34.
Ellingsen, O. F., Norby, K. E., & Rasmussen, K. E. (1989). Pharmaceutical dosage form for the medication of fish. International Patent Application no. PCT/NO89/00059.
European Union. (2002). Commission Decision 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results, pp. 66-98.
Fan, N. Q. (2010). A Study of Pharmacokinetics Property of Sulfadimidine in Crucian Carp. Journal of Chongqing Normal University, 27 (3), 23-26.
Fan, J., & de Lannoy, I. A. (2014). Pharmacokinetics. Biochem. Pharmacol., 87 (1), 93-120.
FAO. (2014). The State of World Fisheries and Aquaculture (Rome, Italy).
Farto, R., Milton, D., Bermúdez, M., & Nieto, T. (2011). Colonization of turbot tissues by virulent and avirulent Aeromonas salmonicida subsp salmonicida strains during infection. Dis. Aquat. Org., 95, 167-173.
Ferrer, I., & Thurman, E. M. (2003). Liquid chromatography/ time-of-flight/mass spectrometry (LC/TOF/MS) for the analysis of emerging contaminants. Trac-Trends Anal. Chem., 22 (10), 750-756.
Ferguson, P., & Harding, M. (2011). Green Chemistry Considerations for Sample Preparation. Elsevier, pp.333-354.
Feng, J. B., & Jia, X. P. (2009). Single dose pharmacokinetic study of flofenicol in tilapia (Oreochromis niloticus×O. aureus) held in freshwater at 22 °C. Aquaculture, 289 (2), 129-133.
Feng, J. B., Jia, X. P., & Li, L. D. (2008). Tissue distribution and elimination of florfenicol in tilapia (Oreochromis niloticus×O. caureus) after a single oral administration in freshwater and seawater at 28 °C. Aquaculture, 276 (4), 29-35.
Feng, J. B., & Jia, X. P. (2009). Single dose pharmacokinetic study of flofenicol in tilapia (Oreochromis niloticus×O. aureus) held in freshwater at 22 °C. Aquaculture, 289, 129-133.
Fuh, M. R. S., & Chu, S. Y. (2003). Quantitative determination of sulfonamide in meat by solid-phase extraction and capillary electrophoresis. Anal. Chim. Acta, 499 (2), 215-221.
Galarini, R., Diana, F., Moretti, S., Puppini, B., Saluti, G., & Persic, L. (2014). Development and validation of a new qualitative ELISA screening for multiresidue detection of sulfonamides in food and feed. Food Control, 35 (1), 300-310.
Garcia-Galan, M. J., Diaz-Cruz, S., & Barcelo, D. (2013). Multiresidue trace analysis of sulfonamide antibiotics and their metabolites in soils and sewage sludge by pressurized liquid extraction followed by liquid chromatography-electrospray-quadrupole linear ion trap mass spectrometry. J. Chromatogr. A, 1275, 32-40.
García-Galán, M. J., Silvia Díaz-Cruz, M., Barceló, D., & Barceló, D. (2009). Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. Trac-Trends Anal. Chem., 28 (6), 804-819.
Garrigues, S., Armenta, S., & Guardia, M. D. L. (2010). Green strategies for decontamination of analytical wastes. Trac-Trends Anal. Chem., 29 (7), 592-601.
Giguere, S., Prescott, J. F., & Dowling, P. M. (2013). Antimicrobial Therapy in Veterinary Medicine. 5th ed, John Wiley & Sons, Inc, pp.645-658.
Grondel, J. L., Noyws, J. F. M., & haenen, O. L. M. (1986). Fish and antibiotics: Pharmacokinetics of sulphadimidine in carp (cyprinus carpio). Vet. Immunol. Immunopathol., 12, 281-286.
Grøntvedt, R. N., & Espelid, S. (2004). Vaccination and immune responses against atypical Aeromonas salmonicida in spotted wolffish (Anarhichas minor Olafsen) juveniles. Fish Shellfish Immunol., 16, 271–285.
Herrera-Herrera, A. V., Hernandez-Borges, J., Borges-Miquel, T. M., & Rodriguez-Delgado, M. A. (2013). Dispersive liquid-liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples. J. Pharm. Biomed. Anal., 75, 130-137.
Higuera, G., Bastías, R., Tsertsvadze, G., Romero, J., & Espejo, R. T. (2013). Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar. Aquaculture, 395, 128-133.
Horsberg, T. E., Hoff, K. A., & Nordmo, R. (1996). Pharmacokinetics of florfenicol and its metabolite florfenicol amine in Atlantic salmon. J. Aquat. Anim. Health, 8, 292-301.
Huang, C., Guo, B., Wang, X., Li, J., Zhu, W., Chen, B., Ouyang, S., & Yao, S. (2012). A generic approach for expanding homolog-targeted residue screening of sulfonamides using a fast matrix separation and class-specific fragmentation-dependent acquisition with a hybrid quadrupole-linear ion trap mass spectrometer. Anal. Chim. Acta, 737, 83-98.
Huang, J., Liu, J., Zhang, C., Wei, J., Mei, L., Yu, S., Li, G., & Xu, L. (2012). Determination of sulfonamides in food samples by membrane-protected micro-solid phase extraction coupled with high performance liquid chromatography. J. Chromatogr. A, 1219, 66-74.
Hurtado-Sánchez, M. d. C., Lozano, V. A., Rodríguez-Cáceres, M. I., Durán-Merás, I., & Escandar, G. M. (2015). Green analytical determination of emerging pollutants in environmental waters using excitation–emission photoinduced fluorescence data and multivariate calibration. Talanta, 134, 215-223.
Imbeault, S., Parent, S., Lagacé, M., Uhland, C. F., & Blais, J. F. (2006). Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout. J. Aquat. Anim. Health, 18, 203-214.
Ishida, N. (1992). Tissue levels of oxolincic acid after oral or intravascular administration to freshwater and seawater rainbow trout. Aquaculture, 102, 9-15.
Keith, L. H., Gron, L. U., & Young, J. L. (2010). Green analytical methodologies, Chem. Rev., 107, 2695-2708.
Kim, D. H., Choi, S. Y., Kim, C. S., Oh, M. J., & Jeong, H. D. (2013). Low-value fish used as feed in aquaculture were a source of furunculosis caused by atypical Aeromonas salmonicida. Aquaculture, 409, 113-117.
Kishida, K. (2007). Restricted-access media liquid chromatography for determination of sulfamonomethoxine, sulfadimethoxine, and their N4-acetyl metabolites in eggs. Food Chem., 101 (1), 281-285.
Kishida, K., & Furusawa, N. (2005). Simultaneous determination of sulfamonomethoxine, sulfadimethoxine, and their hydroxy/N(4)-acetyl metabolites with gradient liquid chromatography in chicken plasma, tissues, and eggs. Talanta, 67 (1), 54-58.
Kleinow, K. M., Beilfuss, w. L., Jorboe, H. H., Droy, B. E., & Lech, J. J. (1992). Pharmacokinetics, bioavailability, distribution, and metabolism of sulfadimethoxine in the rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci., 49, 1070-1077.
Kosoff, R. E., Chen, C. Y., Wooster, G. A., Getchell, R. G., Clifford, A., Craigmill, A. L., & Bowser, P. R. (2007). Sulfadimethoxine and ormetoprim residues in three species of fish after oral dosing in feed. J. Aquat. Anim. Health, 19 (2), 109-115.
Kowalski, P., Plenis, A., Oledzka, I., & Konieczna, L. (2011). Optimization and validation of the micellar electrokinetic capillary chromatographic method for simultaneous determination of sulfonamide and amphenicol-type drugs in poultry tissue. J. Pharm. Biomed. Anal., 54 (1), 160-167.
Kwon, Y. (2001). Handbook of essential pharmacokinetics, pharmacodynamics, and
drug metabolism for industrial scientists. New York: Kluwer Academic/ Plenum Publishers.
Lago, E. P., Nieto, T. P., Farto, R. (2012). Virulence factors of Aeromonas salmonicida subsp. salmonicida strains associated with infections in turbot
Psetta maxima. Dis. Aquat, Org., 99, 145-151.
Leeson, P. (2012). Drug discovery: chemical beauty contest. Nature, 6, 455-481.
Levison, M. E. (2004). Pharmacodynamics of antimicrobial drugs. Infect Dis. Clin. North Am., 18 (3), 451-465.
Li, J. Y., Li, J., Wang, Q., & Zhan, W. B. (2006). Pharmacokinetics studies on sulphamonomethoxine in Fennerop enaeus chinensis. Mar. Fish. Res., 27 (4), 6-11.
Li, H., Smith, M. L., Chiesa, O. A., & Kijak, P. J. (2009). Determination of sulfadimethoxine and N4-acetylsulfadimethoxine in bovine plasma, urine, oral fluid, and kidney and liver biopsy samples obtained surgically from standing animals by LC/MS/MS. J. Chromatogr. B, 877 (3), 237-246.
Li, Z., Chen, C., Ai, D., Wang, C., Li, J., Qi, Y., Yi, W., Shen, H., & Cao, J. (2012). Pharmacokinetics and tissue residues of hydrochloric acid albendazole sulfoxide and its metabolites in crucian carp (Carassius auratus) after oral administration. Environ. Toxicol. Pharmacol., 33 (2), 197-204.
Liao, B. C., Fan, H. P., Lin, L. C., & Yu, P. J. (2011). Pharmacokinetics and residues of neomycin sulfate in hybrid tilapia (Oreochromisaureus×O. niloticus). Journal of Fujian Agriculture and Forestry University, 40, 64-68.
Lim, J. H., Kim, M. S., Hwang, Y. H., Song, I. B., Park, B. K., & Yun, H. I. (2010). Plasma and tissue depletion of florfenicol in olive flounder (Paralichthys olivaceus) after oral administration. Aquaculture, 307 (2), 71-74.
Lin, L. I., Fan, H. P., Liao, B. I., Yu, P. J., & Zhong, Q. F. (2010). Pharmacokinetics of Sulfadiazine in European eels (Anguilla anguilla). J. Inspect. Qua., 20 (4), 14-17.
Lin, Y. N. (2010). Determination and metabolism of ampicillin in tilapia by liquid chromatography-tandem mass spectrometry. National Sun Yat-Sen University Master Thesis.
Liu, X., Sun, H., Wang, Y., Ma, M., & Zhang, Y. (2014). Gender-specific metabolic responses in hepatopancreas of mussel Mytilus galloprovincialis challenged by Vibrio harveyi. Fish Shellfish Immunol., 40 (2), 407-413.
Lopes, R. P., de Freitas Passos, É. E., de Alkimim Filho, J. F., Vargas, E. A., Augusti, D. V., & Augusti, R. (2012). Development and validation of a method for the determination of sulfonamides in animal feed by modified QuEChERS and LC–MS/MS analysis. Food Control, 28 (1), 192-198.
Lopes, R. P., Reyes, R. C., Romero-Gonzalez, R., Frenich, A. G., & Vidal, J. L. (2012). Development and validation of a multiclass method for the determination of veterinary drug residues in chicken by ultra high performance liquid chromatography-tandem mass spectrometry. Talanta, 89, 201-208.
Lopes, R. P., Reyes, R. C., Romero-Gonzalez, R., Vidal, J. L., & Frenich, A. G. (2012). Multiresidue determination of veterinary drugs in aquaculture fish samples by ultra high performance liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B, 896, 39-47.
López-Romalde, S. (2003). Existence of two O-serotypes in the fish pathogen Pseudomonas anguilliseptica. Vet. Microbiol., 94 (4), 325-333.
Lu, Y., Shen, Q., Dai, Z., Zhang, H., & Wang, H. (2011). Development of an on-line matrix solid-phase dispersion/fast liquid chromatography/tandem mass spectrometry system for the rapid and simultaneous determination of 13 sulfonamides in grass carp tissues. J. Chromatogr. A, 1218 (7), 929-937.
Malik, A. K., Blasco, C., & Pico, Y. (2010). Liquid chromatography-mass spectrometry in food safety. J. Chromatogr. A, 1217 (25), 4018-4040.
Manjusha, S., Sarita, G. B., Elyas, K. K., & Chandrasekaran, M. (2005). Multiple antibiotic resistances of Vibrio isolates from coastal and brackish water areas. J. Biochem. Biotechnol., 1, 201-206.
Matamoros, V., Calderón-Preciado, D., Domínguez, C., & Bayona, J. M. (2012). Analytical procedures for the determination of emerging organic contaminants in plant material: A review. Anal. Chim. Acta, 722, 8-20.
Matthies, M. (2006). Pharmacokinetics of sulfadiazine in pigs. Beiträge des Instituts für Umweltsystemforschung, 45, 1-73.
Meng, Z., Shi, Z., Liang, S., Dong, X., Li, H., & Sun, H. (2015). Residues investigation of fluoroquinolones and sulphonamides and their metabolites in bovine milk by quantification and confirmation using ultra-performance liquid chromatography-tandem mass spectrometry. Food Chem., 174, 597-605.
Michel, C. M. F., Squibb, K. S., & O’Connor, J. M. (1990). Pharmacokinetics of sulphadimethoxine in channel catfish (Ictalurus punctatus). Xenobiotica, 20, 1299-1309.
Mohamed, H. M. (2015). Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis. Trac-Trends Anal. Chem., 66, 176-192.
Mohamed, R., Hammel, Y. A., LeBreton, M. H., Tabet, J. C., Jullien, L., & Guy, P. A. (2007). Evaluation of atmospheric pressure ionization interfaces for quantitative measurement of sulfonamides in honey using isotope dilution liquid chromatography coupled with tandem mass spectrometry techniques. J. Chromatogr. A, 1160 (2), 194-205.
Molina-Díaz, A., García-Reyes, J. F., & Gilbert-López, B. (2010). Solid-phase spectroscopy from the point of view of green analytical chemistry. Trac-Trends Anal. Chem., 29 (7), 654-666.
Msagati, T. A. M., & Nindi, M. M. (2004). Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection. Talanta, 64, 87–100.
Nebot, C., Regal, P., Miranda, J. M., Fente, C., & Cepeda, A. (2013). Rapid method for quantification of nine sulfonamides in bovine milk using HPLC/MS/MS and without using SPE. Food Chem., 141 (3), 2294-2299.
Nikoskelainen, S., Ouwehand, A., Salminen, S., & Bylund, G. (2001). Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 198, 229-236.
Nunez, O., Gallart-Ayala, H., Martins, C. P., & Lucci, P. (2012). New trends in fast liquid chromatography for food and environmental analysis. J. Chromatogr. A, 1228, 298-323.
Pamreddy, A., Hidalgo, M., Havel, J., & Salvado, V. (2013). Determination of antibiotics (tetracyclines and sulfonamides) in biosolids by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 1298, 68-75.
Park, E. D., Lightner. D. V., Milner, N., Mayersohn, M., Park, D. L., Gifford, J. M., & Bell, T. A. (1995). Exploratory bioavailability and pharmacokinetic studies of sulphadimethoxine and ormetoprim in the penaeid shrimp, Penaeus vannamei. Aquaculture, 130, 113-128.
Perez-Burgos, R., Grzelak, E. M., Gokce, G., Saurina, J., Barbosa, J., & Barron, D. (2012). Quechers methodologies as an alternative to solid phase extraction (SPE) for the determination and characterization of residues of cephalosporins in beef muscle using LC-MS/MS. J. Chromatogr. B, 899, 57-65.
Pikkemaat, M. G., Rapallini, M. L., Dijk, S. O., & Elferink, J. W. (2009). Comparison of three microbial screening methods for antibiotics using routine monitoring samples. Anal. Chim. Acta, 637 (2), 298-304.
Posyniak, A., Zmudzki, J., & Mitrowska, K. (2005). Dispersive solid-phase extraction for the determination of sulfonamides in chicken muscle by liquid chromatography. J. Chromatogr. A, 1087 (2), 259-264.
Reboucas, R. H., de Sousa, O. V., Lima, A. S., Vasconcelos, F. R., de Carvalho, P. B., & Vieira, R. H. (2011). Antimicrobial resistance profile of Vibrio species isolated from marine shrimp farming environments (Litopenaeus vannamei) at Ceara, Brazil. Environ. Res., 111 (1), 21-24.
Reeves, V. B. (1999). Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography–positive chemical ionization mass spectrometry. J. Chromatogr. B, 723, 127-137.
Ringø, E., Jutfelt, F., Kanapathippillai, P., Bakken, Y., Sundell, K., Glette, J., Mayhew, T. M., Myklebust, R., & Olsen, R. E. (2004). Damaging effect of the fish pathogen Aeromonas salmonicida ssp. salmonicida on intestinal enterocytes of Atlantic salmon (Salmo salar L.). Cell Tissue Res., 318, 305-311.
Sajid, M., Na, N., Safdar, M., Lu, X., Ma, L., He, L., & Ouyang, J. (2013). Rapid trace level determination of sulfonamide residues in honey with online extraction using short C-18 column by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A, 1314C, 173-179.
Samanidou, V. F., Tolika, E. P., & Papadoyannis, I. N. (2008). Chromatographic residue analysis of sulfonamides in foodstuffs of animal origin. Sep. Purif. Rev., 37 (4), 325-371.
Samuelsen, O. B. (2006). Pharmacokinetics of quinolones in fish: A review. Aquaculture, 255 (4), 55-75.
Samuelsen, O. B., Pursell, L., Smith, P., & Ervik, A. (1997). Multiple-dose pharmacokinetic study of Remet”’ in Atlantic salmon (Salmo salar) and in vitro antibacterial activity against Aeromonas salmonicida. Aquaculture, 152, 13-24.
Schenck, F. J., & Hobbs, J. E. (2004). Evaluation of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach to pesticide residue analysis. Bull. Environ. Contam. Toxicol., 73 (1), 24-30.
Schrag, M., & Regal, K. (2013). Pharmacokinetics and Toxicokinetics. Elsevier, pp. 31-68.
Seifrtova, M., Novakova, L., Lino, C., Pena, A., & Solich, P. (2009). An overview of analytical methodologies for the determination of antibiotics in environmental waters. Anal. Chim. Acta, 649 (2), 158-179.
Shah, S. Q. A., Karatas, S., Nilsen, H., Steinum, T. M., Colquhoun, D. J., & Sørum, H. (2012). Characterization and expression of the gyrA gene from quinolone resistant Yersinia ruckeri strains isolated from Atlantic salmon (Salmo salar L.) in Norway. Aquaculture, 353, 37-41.
Shan, Q., Zhu, X., Liu, S., Bai, Y., Ma, L., Yin, Y., & Zheng, G. (2015). Pharmacokinetics of cefquinome in tilapia (Oreochromis niloticus) after a single intramuscular or intraperitoneal administration. J. Vet. Pharmacol. Therap. 38, 601-605.
Shargel, L., & Yu, A. (2005). Applied Biopharmaceutics & Pharmacokinetics. 5th ed, McGraw-Hill, pp.324.
Shi, X., Meng, Y., Liu, J., Sun, A., Li, D., Yao, C., Lu, Y., & Chen, J. (2011). Group-selective molecularly imprinted polymer solid-phase extraction for the simultaneous determination of six sulfonamides in aquaculture products. J. Chromatogr. B, 879 (16), 1071-1076.
Silva, C. L., Haesen, N., & Camara, J. S. (2012). A new and improved strategy combining a dispersive-solid phase extraction-based multiclass method with ultra high pressure liquid chromatography for analysis of low molecular weight polyphenols in vegetables. J. Chromatogr. A, 1260, 154-163.
Silva, Y. J., Moreirinha, C., Pereira, C., Costa, L., Rocha, R. J. M., Cunha, Â., Gomes, N. C. M., Calado, R., & Almeida, A. (2015). Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with Phage AS-A. Aquaculture, 450, 225-233.
Sun, A. R., Li, J., Chang, Z. Q., & Liu, D. Y. (2012). Pharmacokinetics of ciprofloxacin and sulfamethazine in turbot (Scophthalmus maximus) after a Single oral and intravenous administration. J. Chin. Vet. Med., 46 (4), 14-19.
Sun, Y. Z., Liu, H. H., Qin, H. W., Zhang, S. J., Xing, H. Y., Xu, Y. J., & Gao, J. Q. (2009). Pharmacokinetics of sulfamethoxazole in turbot after oral administration. Progr. Fish. Sci., 30, 43-47.
Taiwan FDA. Web site: http://www.fda.gov.tw/tc/index.aspx.
Teles, J. A., Castello Branco, L. C., Del Bianchi, M., Pilarski, F., & Reyes, F. G. R. (2015). Pharmacokinetic study of enrofloxacin in Nile tilapia (Oreochromis niloticus) after a single oral administration in medicated feed. J. Vet. Pharmacol. Therap. doi: 10.1111 /jvp.12257.
Toutain, P. L., del Castillo, J. R. E., & Bousquet-Mélou, A. (2002). The pharmacokinetic–pharmacodynamic approach to a rational dosage regimen for antibiotics. Res.Vet. Sci., 73 (2), 105-114.
Uno, K., Aoki, T., Uno, R., & Maeda, I. (1997). Pharmacokinetics and metabolism of sulphamonomethoxine in rainbow trout (Oncorhynchus mykiss) and yellowtail (Seriola quinqueradiata) following bolus intravascular administration. Aquaculture, 153, 1-8.
Ueno, R. (1999). Metabolism and pharmacokinetics of sulfamonomethoxine in edible fish species. Xenobiotics in fish, 15, 201-212.
Valente, I. M., Santos, C. M., Moreira, M. M., & Rodrigues, J. A. (2013). New application of the QuEChERS methodology for the determination of volatile phenols in beverages by liquid chromatography. J. Chromatogr. A, 1271 (1), 27-32.
Verner-Jeffreys, D. W., Algoet, M., Pond, M. J., Virdee, H. K., Bagwell, N. J., Roberts, E. G., (2007). Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy, Aquaculture, 270, 475-484.
Villa, R., Cagnardi, P., Acocella, F., Massi, P., Anfossi, P., Asta, F., & Carli, S. (2005). Pharmacodynamics and pharmacokinetics of flumequine in pigs after single intravenous and intramuscular administration. Vet. J., 170 (1), 101-107.
Villar-Pulido, M., Gilbert-Lopez, B., Garcia-Reyes, J. F., Martos, N. R., & Molina-Diaz, A. (2011). Multiclass detection and quantitation of antibiotics and veterinary drugs in shrimps by fast liquid chromatography time-of-flight mass spectrometry. Talanta, 85 (3), 1419-1427.
Wakabayashi, H., Egusa, S., (1972). Characteristics of a Pseudomonas sp. from an
epizootic of pond-cultured eels (Anguilla japonica). Bull. Jpn. Soc. Sci. Fish,
38, 577–587.
Wang, S., Zhang, H. Y., Wang, L., Duan, Z. J., & Kennedy, I. (2006). Analysis of sulphonamide residues in edible animal products: a review. Food Addit. Contam., 23 (4), 362-384.
Welch, C. J., Wu, N., Biba, M., Hartman, R., Brkovic, T., Gong, X., Helmy, R., Schafer, W., Cuff, J., & Pirzada, Z. (2010). Greening analytical chromatography. Trac -Trends in Anal. Chem., 29 (7), 667-680.
Won, S. Y., Lee, C. H., Chang, H. S., Kim, S. O., Lee, S. H., & Kim, D. S. (2011). Monitoring of 14 sulfonamide antibiotic residues in marine products using HPLC-PDA and LC-MS/MS. Food Control, 22 (7), 1101-1107.
Wozniak, B., Zuchowska, I. M., & Zmudzki, J. (2013). Determination of stilbenes and resorcylic acid lactones in bovine, porcine and poultry muscle tissue by liquid chromatography-negative ion electrospray mass spectrometry and QuEChERS for sample preparation. J. Chromatogr. B, 940, 15-23.
Xiao, C., Chen, F., Liu, Z., Zhang, Y., Chen, C., Chen, H., Zhou, H., & Gao, Z. (2012). Ultrasound-assisted extraction combined with hplc-uv for fast determination of sulfamethazine and its N4-acetyl metabolite in plasma and phosphate buffer. Anal. Lett., 45 (13), 1836-1848.
Xu, Y., Ding, J., Chen, H., Zhao, Q., Hou, J., Yan, J., Wang, H., Ding, L., & Ren, N. (2013). Fast determination of sulfonamides from egg samples using magnetic multiwalled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry. Food Chem., 140 (2), 83-90.
Yogendrarajah, P., Van Poucke, C., De Meulenaer, B., & De Saeger, S. (2013). Development and validation of a QuEChERS based liquid chromatography tandem mass spectrometry method for the determination of multiple mycotoxins in spices. J. Chromatogr. A, 1297, 1-11.
Yu, H., Tao, Y., Chen, D., Wang, Y., Huang, L., Peng, D., Dai, M., Liu, Z., Wang, X., & Yuan, Z. (2011). Development of a high performance liquid chromatography method and a liquid chromatography-tandem mass spectrometry method with the pressurized liquid extraction for the quantification and confirmation of sulfonamides in the foods of animal origin. J. Chromatogr. B, 879 (25), 2653-2662.
Yu, L. P., Hu, Y. H., Sun, B. G., & Sun, L. (2013). Immunological study of the outer membrane proteins of Vibrio harveyi: insights that link immunoprotectivity to interference with bacterial infection. Fish Shellfish Immunol., 35 (4), 1293-1300.
Zhang, C. k., Wang, M. J., Gong, X. h. Sun, Y., & Ren, L. (2010). Studies on pharmacokinetics of sulfamethazine residues in Scophthalmus maximus. Trans. Ocean. Limnol., 2, 86-90.
Zhang, J., Chen J. P., Luo, J. J., Li, F. C., & Xiong, S. B. (2010). Residue and elimination of sulphadimethoxine-sodium in tissues of Ictalurus punctatus. Journal of Shanghai Ocean University, 19 (6), 810-813.
Zhang, H., & Wang, S. (2009). Review on enzyme-linked immunosorbent assays for sulfonamide residues in edible animal products. J. Immunol. Methods, 350 (2), 1-13.
Zorrilla, I., Chabrillón, M., Arijo, S., Dı́az-Rosales, P., Martı́nez-Manzanares, E., Balebona, M., & Moriñigo, M. (2003). Bacteria recovered from diseased cultured gilthead sea bream (Sparus aurata L.) in southwestern Spain. Aquaculture, 218, 11-20.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code