Responsive image
博碩士論文 etd-1114115-143956 詳細資訊
Title page for etd-1114115-143956
論文名稱
Title
下鏈大型多天線多輸出多輸入正交分頻多工系統下低領航汙染之領航序列設計
Pilot Sequence Selection with Low Pilot Contamination in Downlink Massive MIMO-OFDM Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-11-27
繳交日期
Date of Submission
2015-12-14
關鍵字
Keywords
通道估測、互熵演算法、巨量天線多輸出多輸入正交分頻多工系統、峰均功率比、領航汙染
Channel estimation, pilot contamination, cross entropy (CE) algorithm, peak-to-average power ratio (PAPR), massive multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM)
統計
Statistics
本論文已被瀏覽 5679 次,被下載 94
The thesis/dissertation has been browsed 5679 times, has been downloaded 94 times.
中文摘要
本論文旨在探討,通道估測研究於多細胞下鏈(Downlink, DL)傳輸頻分雙工(Frequency Duplex Division, FDD)巨量(Massive)天線多輸出多輸入(Multi-Input Multi-Output, MIMO)正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)系統。
傳統領航序列擺放在不同的正交分頻多工符元上,利用時間做領航序列的正交。傳送端給定資料傳輸能量下,為了達成最佳化的通道估測效能,會加大擺放領航序列正交分頻多工符元的傳輸能量。當傳輸能量越大時,傳統領航序列擺放方法,能量集中於擺放領航序列的符元上,產生高峰均功率比(Peak to Average Power Ratio, PAPR)問題;本論文使用札德奧夫-朱(Zadoff and Chu, ZC)序列為領航序列,將領航序列利用不同頻帶與時間擺放,在同調時間與同調頻寬內傳輸領航序列,能量會平均分配在不同的OFDM符元上,OFDM符元彼此能量差異不大,相較傳統擺放方式,有較小的PAPR。
接下來推導該系統下LS估測器與估測效能,發現估測效能受領航汙染主導,其受到領航序列交相關值加總影響。我們利用互熵(Cross Entropy, CE)演算法選出最佳領航序列組合分配給基地的天線傳輸,使得接收端接收到的最大交相關值加總最小,降低領航汙染,提升通道估測的效能。
由模擬的結果觀察到,由CE演算法挑選出來的最佳領航序列組合,相較隨機挑選的領航序列組合,具有較小的最大交相關加總值。將最佳領航序列組合代入最小平方估測器中,領航汙染降低,具有較佳的通道估測效能。在巨量天線數的情況下,為了達到相同的效能,本論文提出的方法相較傳統擺放方式,更適用於巨量天線系統。
Abstract
In this paper, we consider a channel estimation problem which based on a multi-
cell with downlink (DL) training framework for frequency duplex division (FDD) massive multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems.
In traditional MIMO-OFDM systems, transmitter transmits pilot sequences with different OFDM symbols which utilize time to satisfy orthogonality. In order to improve the performance of channel estimation, transmitter distributes larger power to OFDM symbol with pilot sequences in frequency domain. This procedure could cause the high peak-to-average power ratio (PAPR) effect in time domain. Using Zadoff and Chu (ZC) sequences as our pilot sequences which arrange them to both coherence bandwidth and coherence time interval to prevent high PAPR effect. According to the deviation of estimation performance, the MSE of LS estimator is dominated by pilot contamination which is proportional to the sum of cross-correlation of pilot sequences from inter-cell. We appropriately select pilot sequences with Cross Entropy (CE) algorithm could mitigate pilot contamination. According to the simulations, our scheme can mitigate the pilot contamination that further improve the estimation performance.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
Chapter 1 介紹 1
1.1 論文架構 3
Chapter 2 系統介紹 5
2.1 正交分頻多工系統 5
2.1.1 正交分頻多工背景 5
2.1.2 OFDM架構 6
2.1.3 同調時間與同調頻寬 9
2.1.4 領航序列排列與設計 12
2.2 多輸入多輸出系統 14
2.2.1 空間多樣技術 14
2.2.2 空間多工技術 15
2.3 MIMO-OFDM傳接收架構 18
2.3.1 MIMO-OFDM系統 18
2.3.2 領航序列擺放 19
2.3.3 系統架構 19
2.3.4 傳統MIMO-OFDM傳接收架構 20
Chapter 3 提出的MIMO-OFDM系統領航序列設計 23
3.1 單細胞巨量天線MIMO-OFDM架構 23
3.1.1 提出的領航序列擺放方式 23
3.1.2 系統架構 24
3.1.3 提出的MIMO-OFDM傳接收架構 25
3.2 單細胞巨量天線MIMO-OFDM系統通道估測 28
3.3 多細胞巨量天線MIMO-OFDM架構 29
3.3.1 系統架構 29
3.3.2 提出的MIMO-OFDM傳接收架構 29
3.4 多細胞巨量天線MIMO-OFDM系統通道估測 33
3.5 最佳化問題 35
Chapter 4 Cross Entropy演算法 38
Chapter 5 模擬分析與討論 43
Chapter 6 結論 54
參考文獻 55
中英對照表 61
縮寫對照表 66
參考文獻 References
[1] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO benefits and challenges,” IEEE J. Sel. Top. Sign. Proces., vol. 8, no. 5, pp. 742–758 , Oct. 2014.
[2] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up MIMO: opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 2, pp. 40–60, Jan. 2013.
[3] M. Matthaiou, M. R. MacKay, P. J. Smith, and J. A. Nossek, “On the condition number distribution of complex Wishart matrices,” IEEE Trans. Commun., vol. 58, no. 6, pp. 1705–1717, June 2010.
[4] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.
[5] T. L. Marzetta, “Non-cooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.
[6] T. L. Marzetta, “How much training is required for multiuser MIMO?,” in Proc. 40th Asilomar Conf. Signals, Syst., Comput. (ACSSC), Pacific Grove, CA, USA, Oct. 2006, pp. 359–363.
[7] T. L. Marzetta, “BLAST training: estimating channel characteristics for high capacity space-time wireless,” in Proc. 37th Annual Allerton Conf. Communications, Control, and Computing, Sep. 1999.
[8] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
[9] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next generation wireless broadband technology,” IEEE Wireless Commun., vol. 17, no. 3, pp. 10–22, June 2010.
[10] J. Gozalvez, “South Korea launches LTE-advanced,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 10–27, Mar. 2014.
[11] E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G Evolution: HSPA and LTE For Mobile Broadband, 2nd edition. Elsevier, 2008.
[12] D. Molteni, M. Nicoli, and U. Spagnolini, “Performance of MIMO-OFDMA systems in correlated fading channels and non-stationary interference,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp. 1480–1494, May 2011.
[13] H. Yang, “A road to future broadband wireless access: MIMO-OFDM-based air interface,” IEEE Commun. Mag., vol. 43, no. 1, pp. 53–60, Jan. 2005.
[14] J. Hoydis, S. T. Brink, and M. Debbah, “Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.
[15] F. Fernandes, A. Ashikhmin, and T. Marzetta, “Inter-cell interference in non-cooperative TDD large scale antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 192–201, Jan. 2013.
[16] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 264–273, Feb. 2013.
[17] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell TDD systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640–2651, Aug. 2011.
[18] H. Q. Ngo and E. Larsson, “EVD-based channel estimation in multi-cell multi-user MIMO systems with very large antenna arrays,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2012, pp. 3249–3252.
[19] A. Liu and V. K. N. Lau, “Hierarchical interference mitigation for massive MIMO cellular networks,” IEEE Trans. Signal Process., vol. 62, no. 18, pp. 4786–4797, Sep. 2014.
[20] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 531–532, June 1972.
[21] I. Kim, Y. Han, and H. K. Chung, “An efficient synchronization signal structure for OFDM-based cellular systems,” IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 99–105, Jan. 2010.
[22] P. M. Shanker, Introduction to wireless system, 1st ed. John Wiley & Sons, 2001.
[23] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, ”V-BLAST: an architecture for realizing very high data rates over the rich-Scattering wireless channel,” International Symposium on Signals, Systems, and Electronics, pp. 295–300, Sep. 1998.
[24] A. Wittneben, “Base station modulation diversity for digital simulcast,” in Proc. IEEE VTC’91, St. Louis, MO, 1991, vol. 1, pp. 848–853.
[25] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criteria and code construction,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998.
[26] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp.1456–1467, July 1999.
[27] S. M. Alamouti, “A simple transmit diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[28] J. W. Kang, Y. Whang, H. Y. Lee, and K. S. Kim, “Optimal pilot sequence design for multi-cell MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol. 10, no. 10, pp. 3354–3367, Oct. 2011.
[29] J. W. Kang, Y. Whang, B. H. Ko, and K. S. Kim, “Generalized cross-correlation properties of Chu sequences,” IEEE Trans. Inf. Theory, vol. 58, no. 1, pp. 438–444 , Jan. 2012.
[30] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy method. Berlin, Germany: Springer-Verlag, 2004.
[31] R. Rubinstein and D. Kroese, The Cross-Entropy method: A unified approach to combinatorial optimization, Monte Carlo simulation, and machine learning. New York: Springer-Verlag, 2004.
[32] X. Rao and V. K. N. Lau, “Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3261–3271, June 15, 2014.
[33] Y. C. Hung, S. Y. Peng, and S. H. Tsai, “Sequence designs for interference mitigation in multi-cell networks,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 394–406, Jan. 2014.
[34] Y. R. Tsai, H. Y. Huang, Y. C. Chen, and K. J. Yang, “Simultaneous multiple carrier frequency offsets estimation for coordinated multi-point transmission in OFDM systems,” IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4558–4568, Sep. 2013.
[35] J. Hoydis, K. Hosseini, S. T. Brink, and M Debbah, “Making smart use of excess antennas: massive MIMO, small cells, and TDD,” ATT Tech. J., vol. 18, no. 2, pp. 5–21, Sep. 2013.
[36] J. Ma and L. Ping, “Data-aided channel estimation in large antenna systems,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3111–3124, June 2014.
[37] J. Choi, D. J. Love, and P. Bidigare, “Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory,” IEEE J. Sel. Top. Sign. Process., vol. 8, no. 5, pp. 802–814, Oct. 2014.
[38] R. Zhang, X. Cheng, M. Ma, and B. Jiao, “Interference-avoidance pilot design using ZCZ sequences for multi-cell MIMO-OFDM systems,” in Proc. IEEE GLOBECOM'12, Anaheim, California, Dec. 2012, pp. 5056–5061.
[39] W. W. Hu, S. H. Wang, and C. P. Li, “Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 6074–6079, Nov. 2012.
[40] L. Wang and C. Tellambura, “Cross entropy based sign selection algorithms for peak-to-average power ratio reduction of OFDM systems,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4990–4994, Oct. 2008.
[41] J. C. Chen, “Design of zero reference codes using cross-entropy method,” Opt. Express, vol. 17, no. 24, pp. 22163–22170, Nov. 2009.
[42] J. Proakis, Digital communications, 3rd ed. New York: McGraw-Hill, 1995.
[43] T. K. Moon. and W. C. Stirling, Mathematical methods and algorithms for signal processing, 1st ed. New Jersey: Prentice-Hall, 2000.
[44] D. M. Burton, Elementary number theory, 5th ed. New York: McGraw-Hill, 2002.
[45] S. Ross, A first course in probability, 8th ed. New Jersey: Prentice-Hall, 2010.
[46] R. E. Ziemer and W. H. Tranter, Principles of communication systems, modulation, and noise, 6th ed. John Wiley & Sons, 2010.
[47] S. M. Kay, Fundamentals of statistical signal processing estimation theory, 1st ed. New Jersey: Prentice-Hall, 1993.
[48] S. M. Kay, Fundamentals of statistical signal processing detection theory, 1st ed. New Jersey: Prentice-Hall, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code