Responsive image
博碩士論文 etd-1114116-202422 詳細資訊
Title page for etd-1114116-202422
論文名稱
Title
合併使用具保護效果的褪黑素及艾塞那肽-4治療心腎症候群
Protective Effect of Combined Melatonin and Exendin-4 Treatment against Cardiorenal Syndrome
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-05
繳交日期
Date of Submission
2017-01-07
關鍵字
Keywords
慢性腎臟疾病、腎臟功能、心腎症候群、擴張型心肌病、褪黑激素、艾塞那肽-4、心臟功能、左心室重塑
melatonin, dilated cardiomyopathy, cardiorenal syndrome, chronic kidney disease, renal function, LV remodeling, exendin-4, heart function
統計
Statistics
本論文已被瀏覽 5690 次,被下載 42
The thesis/dissertation has been browsed 5690 times, has been downloaded 42 times.
中文摘要
摘要
背景:
臨床觀察研究發現,台灣慢性腎臟疾病的盛行率和發生率與其他國家相比顯著高出許多,而且台灣的末期腎衰竭發生率為世界最高。此外,越來越多的數據顯示,與僅有心血管疾病或慢性腎臟疾病的患者相比,心腎症候群患者在心血管事件發作後,具有不利的短期和長期臨床結果之發生率有顯著較高。重要的是,儘管現有的治療方式和藥物治療策略的進步,心腎症候群患者的預後仍然不好。因此,為心腎症候群尋找新的、有效的和安全的治療策略不僅對於患者及醫生至關重要,而且對於降低我國的醫療成本也是重要的。

目的:
通常認為心腎症候群惡化的潛在機制包括氧化壓力增加、活性氧化物質增加、發炎反應增加和細胞凋亡/死亡的增加。有趣的是,褪黑激素和艾塞那肽-4可能具有對抗心腎症候群惡化機制的性質。因此,本研究目的是要驗證,於保護心臟和腎臟功能免於心腎症候群的惡化的大鼠模型以及體外研究中,合併使用褪黑激素和艾塞那肽-4治療是優於個別單獨使用的假說。

材料與方法:
實驗包括體外和活體研究。
體外研究包括四組:(1) 對照組:在DMEM培養基中培養24小時的 H9C2 細胞 (編號:CRL-1446TM) (4.0 × 105 個細胞),(2) 心腎症候群組 (CRS):H9C2 細胞 + 阿黴素 (50 nM) + 對甲酚 (50 μM) 培養24小時,(3) 心腎症候群-褪黑激素治療組 (CRS-Mel;H9C2 細胞 + 阿黴素 (50 nM) + 對甲酚 (50 μM) + 褪黑激素 (50 μM/mL) 培養24小時,(4)心腎症候群-艾塞那肽-4治療組 (CRS-Ex4;H9C2 細胞 + 阿黴素 (50 nM) + 對甲酚 (50 μM) + 艾塞那肽-4 (200 nM/mL) 培養24小時。然後收集所有細胞用於個別測定。
活體研究則將成年雄性 Sprague Dawley大鼠隨機分組為:(1) 假手術對照組 (SC),(2) 慢性腎臟疾病組 (CKD;以5/6腎臟切除術來誘導) 或擴張型心肌病組 (DCM) (以阿黴素 7 mg/kg,每5天/ 4次劑量來誘導),(3) 心腎症候群組 (CRS) (慢性腎臟疾病 + 擴張型心肌病),(4) 心腎症候群-褪黑激素治療組 (CRS-Mel;20 mg/kg/天),(5) 心腎症候群-艾塞那肽-4治療組 (CRS-Ex4;10 μg/kg/天) 和 (6) 心腎症候群-褪黑激素-艾塞那肽-4治療組 (CRS-Mel-Ex4)。它們在心腎症候群誘導後第60天安樂死。

結果:
體外結果顯示,在阿黴素及對甲酚處理過的 H9C2細胞中,細胞氧化壓力 (NOX-1/NOX-2/氧化蛋白)、細胞DNA /線粒體損傷 (γ-H2AX/胞質細胞色素-C)、細胞凋亡 (裂解的caspase-3 /裂解的PARP) 和細胞衰老 (β-半乳糖苷酶細胞) 的生物標記蛋白表現量是增加的,且線粒體 ATP 總量是降低的,但在經過褪黑激素和艾塞那肽-4治療後則呈現改善(p <0.001)。到第60天,左心室射出分率方面,SC組最高,CRS組最低,且DCM組顯著低於其他治療組。此外, CRS-Mel治療組和CRS-Ex4治療組之左心室射出分率則低於在CRS-Mel-Ex4治療組,而CRS-Mel治療組則低於CRS-Ex4治療組。但每組別在左心室大小和組織病理學評分結果卻顯示與上述左心室射出分率分析呈相反的模式 (p <0.001)。血漿肌酸酐的總量在CRS組中最高,在SC組中最低,且總量從CRS-Mel治療組,CRS-Ex4治療組,CRS-Mel-Ex4治療組至DCM組是呈現逐漸降低的趨勢 (p <0.0001)。源於左心室心肌之生物標記,包括:心肌發炎 (TNF-α/NF-κB/MMP-2/MMP-9/IL-1β),心肌凋亡/ DNA損傷 (Bax/c-半胱天冬酶-3/c-PARP/γ-H2AX),心肌氧化壓力 (NOX-1/NOX-2/NOX-4/氧化蛋白),心臟肥大/壓力過載 (BNP /β-MHC) 和心臟完整性 (Cx43/α –MHC) 等蛋白的表現量,在每個組別的總量則與上述左心室射出分率分析的結果呈相反的模式 (p <0.001)。
此外,血漿肌酸酐總量,尿蛋白/肌酸酐比值和腎損傷組織病理學評分中,CRS組最高,SC組最低,且上述實驗數值從CKD組,CRS-Mel治療組,CRS-Ex4治療組至CRS-Mel-Ex4治療組是呈現逐漸降低的趨勢 (p <0.0001)。源於腎臟之生物標記,包括:腎臟發炎 (TNF-α/NF-κB/MMP-9/iNOS/RANTES),腎臟氧化壓力 (NOX-1/NOX-2/NOX-4/氧化蛋白),腎臟凋亡 (裂解的caspase-3/裂解的PARP / Bax),腎臟DNA損傷 (γ-H2AX)和腎臟纖維化 (p-mad3/TFG-β) 等蛋白的總量則與上述血漿肌酸酐總量分析的結果呈類似的模式 (p <0.0001)。而腎臟GLP-1R蛋白表現從SC組至CRS-Mel-Ex4治療組皆呈現增加的趨勢 (p <0.0001)。源於腎組織中之生物標記,包括:發炎細胞 (CD14/CD68),DNA損傷/腎損傷 (γ-H2AX/KIM-1) 和足細胞/腎小管功能障礙信號傳導 (β-連環蛋白/ Wnt1/Wnt4) 等蛋白的表現量,在每個組別的總量則與上述血漿肌酸酐總量分析的結果呈類似的模式 (p <0.0001)。足細胞成分(podocin/dystroglycan/p-cadherin/synatopodin) 總量在SC組中最高,CRS組最低,且從CKD組至CRS-Mel-Ex4治療組呈現顯著增加的趨勢 (p <0.0001)。

結論:
為了有效抑制因心腎症候群所造成的左心室功能和重塑的惡化,以及維持腎功能和腎結構之完整性,合併褪黑激素和艾塞那肽-4治療優於個別單獨使用。
Abstract
Abstract
Background:
Clinical observational studies have reported that the incidence and prevalence of chronic kidney disease (CKD) in Taiwan are more significantly higher as compared with the other countries, and have further identified that the incidence of end-stage renal disease (ESRD) in Taiwan is the highest in the world. Furthermore, growing data showed that as compared with patients with only cardiovascular disease (CVD) or CKD, those of patients with cardiorenal syndrome (CRS) have significantly higher incidence of unfavorable short-term and long-term clinical outcome after cardiovascular event attack. Of important is that although the state-of-the-art therapeutic modality and advancement of drug-therapeutic strategy, the prognosis for patients with CRS remains unfavorable. Accordingly, to find a new, effective and safe strategic management for CRS is not only of the utmost importance for patients, physicians but also important to decrease the medical cost in our country.

Objective:
Commonly considered underlying mechanisms for CRS deterioration include increased oxidative stress, up-regulation of reactive oxygen species (ROS), increased inflammation, and increased cellular apoptosis/death. Interestingly, melatonin (Mel) and exendin-4 (Ex4) might have properties against the proposed mechanisms of CRS. Accordingly, this study tested the hypothesis that combined Mel-Ex4 therapy would be superior to either one alone for protecting the heart and kidney from CRS in a rat model as well as in vitro study.

Materials and Methods:
Experiments consisted in in vitro and in vivo studies.
The in vitro study comprised four groups: (1) Control group: H9C2 cell (ATCC® Number: CRL-1446™) (4.0 x 105 cells) cultured in DMEM culture medium for 24h, (2) CRS group: H9C2 cells + doxorubicine (50 nM) + p-Cresol (50 µM) for culturing 24h, (3) CRS + Mel group: H9C2 cells + doxorubicine (50 nM) + p-Cresol (50 µM) + Mel (50 μM/mL) co-cultured for 24h, (4) CRS + Ex4 group: H9C2 cells + doxorubicine (50 nM) + p-Cresol (50 µM) + Ex-4 (200 nM/mL) co-cultured for 24h. All the cells were then collected for individual assays.
The in vivo study consisted of Male adult Sprague Dawley rats which were randomly and equally divided into (1) sham-control (SC), (2) chronic kidney disease (CKD; induced by 5/6 nephrectomy) or dilated cardiomyopathy (DCM) (doxorubicin 7 mg/kg i.p. every five days/ 4 doses), (3) CRS (CKD + DCM), (4) CRS-Mel (20 mg/kg/day), (5) CRS-Ex4 (10 µg/kg/day) and (6) CRS-Mel-Ex4. They were euthanized by day 60 after CRS induction.

Results:
In-vitro results showed protein expressions of oxidative-stress (NOX-1/NOX-2/oxidized protein), DNA/mitochondrial-damaged (γ-H2AX/cytosolic cytochrome-C) and apoptotic (cleaved caspase-3/PARP) biomarkers, and senescence (β-galactosidase cells) were upregulated, whereas mitochondrial ATP level was decreased in doxorubicin/ p-Cresol-treated H9C2 cells that were revised by Mel and Ex4 treatments (all p<0.001). By day 60, LVEF was highest in SC and lowest in CRS, significantly lower in DCM than in other treatment groups, lower in CRS-Mel and CRS-Ex4 than in CRS-Mel-Ex4, and lower in CRS-Mel than in CRS-Ex4, whereas LV chamber size and histopathology score showed a pattern opposite to that of LVEF among all groups (all p<0.001). Plasma creatinine level was highest in CRS and lowest in SC, and progressively decreased from CRS-Mel, CRS-Ex4, CRS-Mel-Ex4 to DCM (p<0.0001). Protein expressions of inflammation (TNF-α/NF-κB/MMP-2/MMP-9/IL-1β), apoptosis/DNA-damage (Bax/c-caspase-3/c-PARP/γ-H2AX), fibrosis (Samd3/TGF-β), oxidative-stress (NOX-1/NOX-2/NOX-4/oxidized protein), cardiac-hypertrophy/pressure-overload (BNP/β-MHC), and cardiac integrity (Cx43/α-MHC) biomarkers in LV myocardium showed an opposite pattern compared to that of LVEF among all groups (all p<0.001). Fibrotic area, DNA-damage (γ-H2AX+/53BP1+CD90+/XRCC1+CD90+), and inflammation (CD14+/CD68+) biomarkers in LV myocardium displayed a pattern opposite to that of LVEF among all groups (all p<0.001).
Furthermore, plasma creatinine level, urine protein/creatinine ratio and kidney injury histopathology score were highest in CRS, lowest in SC, and progressively decreased from CKD, CRS-Mel, CRS-Ex4 to CRS-Mel-Ex4 (all p<0.0001). The kidney protein expressions of inflammation (TNF-α/NF-κ/MMP-9/iNOS/RANTES), oxidative stress (NOX-1/NOX-2/NOX-4/oxidized protein), apoptosis (cleaved caspase-3/cleaved PARP/Bax), NDA-damaged marker (γ-H2AX) and fibrosis (p-mad3/TFG-β) showed identical patterns of creatinine level, whereas kidney protein expressions of GLP-1R showed a progressive increase from SC to CRS-Mel-Ex4 (all p<0.0001). Cellular expressions of inflammatory (CD14/CD68), DNA/kidney-damaged (γ-H2AX/KIM-1) and podocyte/renal tubule dysfunction signaling (β-catenin/Wnt1/Wnt4) biomarkers in kidney tissue exhibited an identical pattern of creatinine level (all p<0.0001). Podocyte components (podocin/dystroglycan/p-cadherin/synatopodin) were highest in SC, lowest in CRS, and significantly progressively increased from CKD to CRS-Mel-Ex4 (all p<0.0001).

Conclusions:
Combined Mel-Ex4 therapy was superior to either one alone in suppressing deterioration of LV function and LV remodeling as well as preserving renal function and kidney architectural integrity in the setting of CRS.
目次 Table of Contents
目錄
論文審定書………………………………………………………………………………i
致謝……………………………………………………………………………..….……ii
中文摘要…………………………………………………………………………..……iii
Abstract…………………………………………………………………………....…...vi
目錄……………………………………………………………………………….…….xi
INTRODUCTION………………………..…………...…………………………………1
Cardiorenal Syndrome (CRS)……………….…………..……………….……...……2
Classification of CRS………………………….………….…….………………….…..3
Oxidative Stress and Inflammation in CRS……….………….….…………………..4
Biological Role of Melatonin…………………….…………….….…………..…….…8
Biological Role of Exendin-4…………………….…………….….…………...….….11
RATIONALE………………………………...…………………………………….……14
STUDY DESIGN…………………………………...…………………….…………….18
Experiment 1: In Vitro Study………………….……………………..…….…….……19
Experiment 2: In Vivo Study…………………….………………………….…...…….21
MATERIALS AND METHODS………………………......…………..…………....….24
RESULTS……………………………………………...………...………………....…..36
DISCUSSION…………………………………...………………...……………………52
Study Limitations……………………………….…………………..…..…………...…60
CONCLUSIONS AND FUTURE WORKS…………...………………….....…..……61
FIGURES AND LEGENDS…………………………………………....………...……64
TABLE……………………………………………………………………………....…114
REFERENCES…………………………………………....……...………..……...….116
參考文獻 References
References
1. Schrier RW. Cardiorenal versus renocardiac syndrome: is there a difference? Nat Clin Pract Nephrol. 2007;3:637.
2. Ronco C, Haapio M, House AA, Anavekar N and Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527-39.
3. Ronco C. Cardiorenal and renocardiac syndromes: clinical disorders in search of a systematic definition. Int J Artif Organs. 2008;31:1-2.
4. Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010;31:703-11.
5. Bock JS and Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121:2592-600.
6. Adams KF, Jr., Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209-16.
7. McAlister FA, Ezekowitz J, Tonelli M and Armstrong PW. Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation. 2004;109:1004-9.
8. Hsu CC, Hwang SJ, Wen CP, Chang HY, Chen T, Shiu RS, et al. High prevalence and low awareness of CKD in Taiwan: a study on the relationship between serum creatinine and awareness from a nationally representative survey. Am J Kidney Dis. 2006;48:727-38.
9. Kuo HW, Tsai SS, Tiao MM and Yang CY. Epidemiological features of CKD in Taiwan. Am J Kidney Dis. 2007;49:46-55.
10. Viberti G, Wheeldon NM and MicroAlbuminuria Reduction With VSI. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation. 2002;106:672-8.
11. Mogensen CE, Neldam S, Tikkanen I, Oren S, Viskoper R, Watts RW, et al. Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ. 2000;321:1440-4.
12. Lewis EJ, Hunsicker LG, Bain RP and Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456-62.
13. Go AS, Chertow GM, Fan D, McCulloch CE and Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296-305.
14. El Nahas M. The global challenge of chronic kidney disease. Kidney Int. 2005;68:2918-29.
15. Yang CS, Lin CH, Chang SH and Hsu HC. Rapidly progressive fibrosing interstitial nephritis associated with Chinese herbal drugs. Am J Kidney Dis. 2000;35:313-8.
16. Perneger TV, Whelton PK and Klag MJ. Risk of kidney failure associated with the use of acetaminophen, aspirin, and nonsteroidal antiinflammatory drugs. N Engl J Med. 1994;331:1675-9.
17. Tucker PS, Scanlan AT and Dalbo VJ. Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid Med Cell Longev. 2015;2015:806358.
18. Kao MP, Ang DS, Pall A and Struthers AD. Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options. J Hum Hypertens. 2010;24:1-8.
19. Avery SV. Molecular targets of oxidative stress. Biochem J. 2011;434:201-10.
20. Cooke MS, Evans MD, Dizdaroglu M and Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195-214.
21. Closa D and Folch-Puy E. Oxygen free radicals and the systemic inflammatory response. IUBMB Life. 2004;56:185-91.
22. Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V and Luno J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. 2008;S4-9.
23. Dounousi E, Papavasiliou E, Makedou A, Ioannou K, Katopodis KP, Tselepis A, et al. Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis. 2006;48:752-60.
24. Grossman W, Jones D and McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56-64.
25. Molkentin JD and Dorn GW, 2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol. 2001;63:391-426.
26. Whelan RS, Kaplinskiy V and Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19-44.
27. Forman DE, Butler J, Wang Y, Abraham WT, O'Connor CM, Gottlieb SS, et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004;43:61-7.
28. Byrne JA, Grieve DJ, Cave AC and Shah AM. Oxidative stress and heart failure. Arch Mal Coeur Vaiss. 2003;96:214-21.
29. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115:500-8.
30. Sam F, Kerstetter DL, Pimental DR, Mulukutla S, Tabaee A, Bristow MR, et al. Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail. 2005;11:473-80.
31. Yucel D, Aydogdu S, Cehreli S, Saydam G, Canatan H, Senes M, et al. Increased oxidative stress in dilated cardiomyopathic heart failure. Clin Chem. 1998;44:148-54.
32. Wilson DW, Oslund KL, Lyons B, Foreman O, Burzenski L, Svenson KL, et al. Inflammatory dilated cardiomyopathy in Abcg5-deficient mice. Toxicol Pathol. 2013;41:880-92.
33. Dhalla AK, Hill MF and Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol. 1996;28:506-14.
34. Portig I, Wilke A, Freyland M, Wolf MJ, Richter A, Ruppert V, et al. Familial inflammatory dilated cardiomyopathy. Eur J Heart Fail. 2006;8:816-25.
35. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 2001;88:529-35.
36. Li YY, Chen D, Watkins SC and Feldman AM. Mitochondrial abnormalities in tumor necrosis factor-alpha-induced heart failure are associated with impaired DNA repair activity. Circulation. 2001;104:2492-7.
37. Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, et al. Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation. 2003;107:1418-23.
38. Sutton MG and Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981-8.
39. Fu Q, Cao L, Li H, Wang B and Li Z. Cardiorenal syndrome: pathophysiological mechanism, preclinical models, novel contributors and potential therapies. Chin Med J (Engl). 2014;127:3011-8.
40. Nian M, Lee P, Khaper N and Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 2004;94:1543-53.
41. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002;91:988-98.
42. Poeggeler B, Thuermann S, Dose A, Schoenke M, Burkhardt S and Hardeland R. Melatonin's unique radical scavenging properties - roles of its functional substituents as revealed by a comparison with its structural analogs. J Pineal Res. 2002;33:20-30.
43. Hardeland R. Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors. 2009;35:183-92.
44. Tan D, Manchester LC, Reiter RJ, Qi W, Hanes MA and Farley NJ. High physiological levels of melatonin in the bile of mammals. Life Sci. 1999;65:2523-9.
45. Acuna-Castroviejo D, Escames G, Rodriguez MI and Lopez LC. Melatonin role in the mitochondrial function. Front Biosci. 2007;12:947-63.
46. Hardeland R, Pandi-Perumal SR and Cardinali DP. Melatonin. Int J Biochem Cell Biol. 2006;38:313-6.
47. Mauriz JL, Collado PS, Veneroso C, Reiter RJ and Gonzalez-Gallego J. A review of the molecular aspects of melatonin's anti-inflammatory actions: recent insights and new perspectives. J Pineal Res. 2013;54:1-14.
48. Dubocovich ML and Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27:101-10.
49. Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, et al. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem. 2000;275:31311-7.
50. Pozo D, Garcia-Maurino S, Guerrero JM and Calvo JR. mRNA expression of nuclear receptor RZR/RORalpha, melatonin membrane receptor MT, and hydroxindole-O-methyltransferase in different populations of human immune cells. J Pineal Res. 2004;37:48-54.
51. Galano A, Tan DX and Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51:1-16.
52. Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF and Rezzani R. Cardiovascular diseases: protective effects of melatonin. J Pineal Res. 2008;44:16-25.
53. Nielsen LL, Young AA and Parkes DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul Pept. 2004;117:77-88.
54. Hinnen D, Nielsen LL, Waninger A and Kushner P. Incretin mimetics and DPP-IV inhibitors: new paradigms for the treatment of type 2 diabetes. J Am Board Fam Med. 2006;19:612-20.
55. Drucker DJ. Glucagon-like peptides. Diabetes. 1998;47:159-69.
56. Brubaker PL and Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels. 2002;8:179-88.
57. Chen YT, Tsai TH, Yang CC, Sun CK, Chang LT, Chen HH, et al. Exendin-4 and sitagliptin protect kidney from ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 2013;11:270.
58. Lu HI, Chung SY, Chen YL, Huang TH, Zhen YY, Liu CF, et al. Exendin-4 therapy still offered an additional benefit on reducing transverse aortic constriction-induced cardiac hypertrophy-caused myocardial damage in DPP-4 deficient rats. Am J Transl Res. 2016;8:778-98.
59. Chang YC, Hsu SY, Yang CC, Sung PH, Chen YL, Huang TH, et al. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood). 2016;241:1588-602.
60. Sheu JJ, Chang MW, Wallace CG, Chiang HJ, Sung PH, Tsai TH, et al. Exendin-4 protected against critical limb ischemia in obese mice. Am J Transl Res. 2015;7:445-59.
61. Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia. 2012;55:2456-68.
62. Sinclair EM, Yusta B, Streutker C, Baggio LL, Koehler J, Charron MJ, et al. Glucagon receptor signaling is essential for control of murine hepatocyte survival. Gastroenterology. 2008;135:2096-106.
63. Muntner P, He J, Hamm L, Loria C and Whelton PK. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002;13:745-53.
64. Herzog CA, Ma JZ and Collins AJ. Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N Engl J Med. 1998;339:799-805.
65. Virzi GM, Clementi A, de Cal M, Brocca A, Day S, Pastori S, et al. Oxidative stress: dual pathway induction in cardiorenal syndrome type 1 pathogenesis. Oxid Med Cell Longev. 2015;2015:391790.
66. Virzi GM, Clementi A, Brocca A, de Cal M, Vescovo G, Granata A, et al. The hemodynamic and nonhemodynamic crosstalk in cardiorenal syndrome type 1. Cardiorenal Med. 2014;4:103-12.
67. Yang HC, Zuo Y and Fogo AB. Models of chronic kidney disease. Drug Discov Today Dis Models. 2010;7:13-9.
68. Yip HK, Yang CC, Chen KH, Huang TH, Chen YL, Zhen YY, et al. Combined melatonin and exendin-4 therapy preserves renal ultrastructural integrity after ischemia-reperfusion injury in the male rat. J Pineal Res. 2015;59:434-47.
69. Chen HH, Lin KC, Wallace CG, Chen YT, Yang CC, Leu S, et al. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. J Pineal Res. 2014;57:16-32.
70. Sun CK, Lee FY, Kao YH, Chiang HJ, Sung PH, Tsai TH, et al. Systemic combined melatonin-mitochondria treatment improves acute respiratory distress syndrome in the rat. J Pineal Res. 2015;58:137-50.
71. Chang CL, Sung PH, Sun CK, Chen CH, Chiang HJ, Huang TH, et al. Protective effect of melatonin-supported adipose-derived mesenchymal stem cells against small bowel ischemia-reperfusion injury in rat. J Pineal Res. 2015;59:206-20.
72. Huang TH, Chen YT, Sung PH, Chiang HJ, Chen YL, Chai HT, et al. Peripheral blood-derived endothelial progenitor cell therapy prevented deterioration of chronic kidney disease in rats. Am J Transl Res. 2015;7:804-24.
73. Chen YL, Chung SY, Chai HT, Chen CH, Liu CF, Chen YL, et al. Early Administration of Carvedilol Protected against Doxorubicin-Induced Cardiomyopathy. J Pharmacol Exp Ther. 2015;355:516-27.
74. Cowie MR, Komajda M, Murray-Thomas T, Underwood J, Ticho B and Investigators P. Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH). Eur Heart J. 2006;27:1216-22.
75. Logeart D, Tabet JY, Hittinger L, Thabut G, Jourdain P, Maison P, et al. Transient worsening of renal function during hospitalization for acute heart failure alters outcome. Int J Cardiol. 2008;127:228-32.
76. Metra M, Nodari S, Parrinello G, Bordonali T, Bugatti S, Danesi R, et al. Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance. Eur J Heart Fail. 2008;10:188-95.
77. Ronco C. Cardiorenal syndromes: definition and classification. Contrib Nephrol. 2010;164:33-8.
78. Zhang W, Wen D, Zou YF, Shen PY, Xu YW, Shi H, et al. One-year survival and renal function recovery of acute kidney injury patients with chronic heart failure. Cardiorenal Med. 2015;5:40-7.
79. Yen CH, Lin KC, Leu S, Sun CK, Chang LT, Chai HT, et al. Chronic exposure to environmental contaminant nonylphenol exacerbates adenine-induced chronic renal insufficiency: role of signaling pathways and therapeutic impact of rosuvastatin. Eur J Pharm Sci. 2012;46:455-67.
80. Yen CH, Sun CK, Leu S, Wallace CG, Lin YC, Chang LT, et al. Continuing exposure to low-dose nonylphenol aggravates adenine-induced chronic renal dysfunction and role of rosuvastatin therapy. J Transl Med. 2012;10:147.
81. Doroshow JH. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res. 1983;43:460-72.
82. Kalyanaraman B, Perez-Reyes E and Mason RP. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochim Biophys Acta. 1980;630:119-30.
83. Singal PK, Deally CM and Weinberg LE. Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol. 1987;19:817-28.
84. Takemura G and Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis. 2007;49:330-52.
85. Chatterjee K, Zhang J, Honbo N and Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115:155-62.
86. Doroshow JH, Locker GY, Baldinger J and Myers CE. The effect of doxorubicin on hepatic and cardiac glutathione. Res Commun Chem Pathol Pharmacol. 1979;26:285-95.
87. Odom AL, Hatwig CA, Stanley JS and Benson AM. Biochemical determinants of Adriamycin toxicity in mouse liver, heart and intestine. Biochem Pharmacol. 1992;43:831-6.
88. Olson RD, MacDonald JS, vanBoxtel CJ, Boerth RC, Harbison RD, Slonim AE, et al. Regulatory role of glutathione and soluble sulfhydryl groups in the toxicity of adriamycin. J Pharmacol Exp Ther. 1980;215:450-4.
89. Singal PK, Segstro RJ, Singh RP and Kutryk MJ. Changes in lysosomal morphology and enzyme activities during the development of adriamycin-induced cardiomyopathy. Can J Cardiol. 1985;1:139-47.
90. Severs NJ, Rothery S, Dupont E, Coppen SR, Yeh HI, Ko YS, et al. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech. 2001;52:301-22.
91. Sheu JJ, Chang LT, Chiang CH, Sun CK, Chang NK, Youssef AA, et al. Impact of diabetes on cardiomyocyte apoptosis and connexin43 gap junction integrity: role of pharmacological modulation. Int Heart J. 2007;48:233-45.
92. Hu W, Ma Z, Jiang S, Fan C, Deng C, Yan X, et al. Melatonin: the dawning of a treatment for fibrosis? J Pineal Res. 2016;60:121-31.
93. Ando G, Morabito G, de Gregorio C, Trio O, Saporito F and Oreto G. Age, glomerular filtration rate, ejection fraction, and the AGEF score predict contrast-induced nephropathy in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Catheter Cardiovasc Interv. 2013;82:878-85.
94. Shlipak MG and Massie BM. The clinical challenge of cardiorenal syndrome. Circulation. 2004;110:1514-7.
95. Tsai TH, Yeh KH, Sun CK, Yang CH, Chen SM, Hang CL, et al. Estimated glomerular filtration rate as a useful predictor of mortality in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Am J Med Sci. 2013;345:104-11.
96. Giam B, Kaye DM and Rajapakse NW. Role of Renal Oxidative Stress in the Pathogenesis of the Cardiorenal Syndrome. Heart Lung Circ. 2016;25:874-80.
97. Sarraf M, Masoumi A and Schrier RW. Cardiorenal syndrome in acute decompensated heart failure. Clin J Am Soc Nephrol. 2009;4:2013-26.
98. Matsushita K. Pathogenetic Pathways of Cardiorenal Syndrome and Their Possible Therapeutic Implications. Curr Pharm Des. 2016;
99. Obi Y, Kim T, Kovesdy CP, Amin AN and Kalantar-Zadeh K. Current and Potential Therapeutic Strategies for Hemodynamic Cardiorenal Syndrome. Cardiorenal Med. 2016;6:83-98.
100. Prins KW, Thenappan T, Markowitz JS and Pritzker MR. Cardiorenal Syndrome Type 1: Renal Dysfunction in Acute Decompensated Heart Failure. J Clin Outcomes Manag. 2015;22:443-54.
101. Rubattu S, Mennuni S, Testa M, Mennuni M, Pierelli G, Pagliaro B, et al. Pathogenesis of chronic cardiorenal syndrome: is there a role for oxidative stress? Int J Mol Sci. 2013;14:23011-32.
102. Kim S, Moon M and Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson's disease. J Endocrinol. 2009;202:431-9.
103. Pateinakis P and Papagianni A. Cardiorenal syndrome type 4-cardiovascular disease in patients with chronic kidney disease: epidemiology, pathogenesis, and management. Int J Nephrol. 2011;2011:938651.
104. Yang CC, Yip HK, Chen KH, Sun CK, Chen YT, Chai HT, et al. Impact of impaired cardiac function on the progression of chronic kidney disease---role of pharmacomodulation of valsartan. Am J Transl Res. 2016;8:(In Press).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code