Responsive image
博碩士論文 etd-1115102-135102 詳細資訊
Title page for etd-1115102-135102
論文名稱
Title
鈦酸鉛系酸鹼離子場效電晶體感測特性之研究
Study on the pH-sensing characteristics of the hydrogen ion-sensitive field-effect transistors with sol-gel-derived lead titanate series gate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-11-07
繳交日期
Date of Submission
2002-11-15
關鍵字
Keywords
離子場效電晶體、pH響應、鈦酸鉛、遲滯、溶膠凝膠法、時漂、響應時間、生命期、溫度效應
pH response, lead titanate, stable response time, hysteresis, drift, ISFET, sol-gel, lifetime, temperature effect
統計
Statistics
本論文已被瀏覽 5835 次,被下載 5145
The thesis/dissertation has been browsed 5835 times, has been downloaded 5145 times.
中文摘要
本論文係利用溶膠-凝膠(Sol-gel)法備製鈦酸鉛(PbTiO3)系列離子感測薄膜於參考電極(Reference electrode)/電解質(Electrolyte)/摻雜與無摻雜PbTiO3系列薄膜/二氧化矽(SiO2)/矽晶片(p-type)/鋁(Al)結構中,利用其具有類似MOS電容之特性,置於不同的pH緩衝溶液中,進行電容-電壓(C-V) 量測以探討摻雜與無摻雜PbTiO3薄膜之感測膜表面電位(Surface potential)之特性。同時亦將完成摻雜與無摻雜之PbTiO3系列薄膜作為感測膜之ISFET元件,並進行元件之電氣特性之量測與探討,以求出元件在待測溶液中起始電位(Threshold voltage)的變化情形與感測靈敏度,進而評估其摻雜之效益與最佳化參數。此外,對於元件存在之非理想特性,諸如:響應時間(Response time)、時漂(Drift)、遲滯(Hysteresis)、溫度效應(Temperature effect)及生命期(Lifetime)等參數,亦將一併進行量測、分析與比較。
實驗結果顯示,於PbTiO3 EIS結構中,若燒結溫度400℃且厚度0.5 mm之條件下,可得pH 2-12範圍內之較佳感測度55-58 mV/pH,並得知Electrolyte/PbTiO3介面具有優良之離子吸附機構及抗強酸、鹼腐蝕之要素。再者,關於PbTiO3 gate ISFET元件作用於線性區時,可獲得pH響應度55-58 mV/pH、穩態響應時間2-4 min、時漂0.5-1 mV/h、遲滯3-5 mV及衰減率 –10 mV/pH-day;另外,當PbTiO3 gate ISFET元件作用於飽和區時,pH響應度與線性度將可藉由不同閘極電壓(VGS)進行調變(Adjustment),例如:VGS為 1、3、5 V時,pH響應度4.2、24.8、31.3 uA/pH及相關性係數(Correlation coefficient) 0.9491、0.9995、0.9996可分別被獲得。此外,Mg2+及La3+分別被摻雜於PbTiO3感測膜中,以修飾(Modification)相關感測特性,其結果得知受體(Acceptor) Mg2+將利於pH響應度(58-59 mV/pH)、時漂(0.4 mV/h)、遲滯(1-3) mV及衰減率(–0.2 mV/pH-day)之改善。最後,一數位型pH量測儀已被設計與實現。

Abstract
The sol-gel-derived lead titanate (PbTiO3) membrane has been successfully applied as a novel pH-sensing layer to form the PbTiO3 gate ISFET (ion-sensitive field-effect transistor). There exhibit the excellent quasi-Nernstian response of 55-58 mV/pH, good surface adsorption and anticorrosion characteristics via the capacitance- voltage measurement of the electrolyte-insulator-semiconductor structure. At a specific pH concentration, the output and transfer characteristics of the PbTiO3 gate ISFET are very similar to the behaviours of MOSFETs (metal-oxide-semiconductor field-effect transistors), and the pH-ISFET model can be derived by the modified MOSFET model. As it operated in the nonsaturation region, there exhibits a linear pH response of about 55-58 mV/pH. Simultaneously, there exhibit the stable response time of 2-4 minutes, the drift of 0.5-1 mV/h, the hysteresis of 3-5 mV and the reduction rate of about –10 mV/pH-day. On the other hand, as it operated in the saturation region, the pH responses and linearity can be controlled by adjusting the VGS values, e.g. the absolute pH response of 4.2, 24.8 and 31.3 uA/pH and the correlation coefficients of 0.9491, 0.9995 and 0.9996 at VGS= 1, 3 and 5 V can be obtained, respectively. Besides, the PbTiO3 gate ISFET has been modified by doping the Mg2+ and La3+ impurities into the PbTiO3 membrane. As a result, the former is a great benefit to improve the pH-sensing characteristics, which exhibits the pH response of 58-59 mV/pH, the drift of below 0.4 mV/h, the hysteresis of 1-3 mV and the reduction rate of -0.2 mV/pH-day. Finally, a digital pH meter has been successfully developed.
目次 Table of Contents
Chapter 1 Introduction 1
Chapter 2 Theory 5
2.1 Sol-gel method 5
2.2 Site-binding model 6
2.3 EIS structure 9
2.4 pH-ISFET model 11
Chapter 3 Experimental 14
3.1 PT-series solution 14
3.2 Preparation of MIS and EIS structures 14
3.3 ISFET fabrication process 15
3.4 Packaging 15
3.5 Material analyses 16
3.5.1 Inductively coupled plasma mass spectrometry 16
3.5.2 Differential thermal and thermogravimetric analysis 16
3.5.3 X-ray diffraction 17
3.5.4 Scanning electron microscope 17
3.6 Measurement setup 17
3.6.1 Capacitance-voltage measurement 17
3.6.2 Current-voltage measurement 17
3.6.3 Drift, hysteresis and lifetime measurement 19
Chapter 4 Results and Discussion 21
4.1 Material characterization 21
4.1.1 TGA and DTA analyses 21
4.1.2 Membrane thickness 21
4.1.3 Microstructure 22
4.1.4 Permittivity 22
4.2 EIS structure 23
4.2.1 pH response 23
4.2.2 Optimum thickness 24
4.2.3 Optimum firing temperature 26
4.2.4 Point of zero charge 26
4.3 PT gate ISFET 27
4.3.1 Output and transfer characteristics 27
4.3.2 pH response 28
4.3.3 Annealing temperature 30
4.4 Nonideal factors 31
4.4.1 Exposure time 31
4.4.2 Drift 32
4.4.3 Hysteresis 33
4.4.4 Temperature effect 34
4.4.5 Lifetime 38
4.5 Modified PT membrane 39
4.5.1 Doping content 39
4.5.2 pH response 40
4.5.3 Drift 41
4.5.4 Hysteresis 42
4.5.5 Lifetime 43
4.6 Comparison 44
4.7 pH meter 46
4.7.1 Framework 46
4.7.2 Software and system layout 47
4.7.3 Achieving and testing system 48
Chapter 5 Conclusion 50
References 53
Appendix A Source code 99
Appendix B Paper list 107
Appendix C Autobiography 110
參考文獻 References
[1] P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Transactions on Bio-Medical Engineering 17 (1970) 70.
[2] P. Bergveld, Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology, IEEE Transactions on Bio-Medical Engineering 19 (1972) 342.
[3] T. Matsuo and K. D. Wise, An integrated field-effect electrode for biopotential recording, IEEE Transactions on Bio-Medical Engineering 21 (1974) 485.
[4] K. K. Ng, Complete guide to semiconductor devices (McGraw-Hill, New York, 1995) 1st ed., Chap. 67, 517.
[5] A. Merlos, E. Cabruja, New technology for easy and fully IC-compatible fabrication of backside-contacted ISFETs, Sensors and Actuators B 24-25 (1995) 228.
[6] T. Matsuo and M. Esashi, Method of ISFET fabrication, Sensors and Actuators 1 (1981) 77.
[7] J. Bausells, J. Carrabina, A. Errachid and A. Merlos, Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology, Sensors and Actuators B 57 (1999) 56.
[8] J. R. Sandifer and J. J. Voycheck, A review of biosensor and industrial application of pH-ISFETs and an evaluation of Honeywell’s “DuraFET”, Mikrochimica Acta 131 (1999) 91.
[9] T. C. Yeow, M. R. Haskard, D. E. Mulcahy, H. I. Seo, D. H. Kwon, A very large integrated pH-ISFET sensor array chip compatible with standard CMOS processes, Sensors and Actuators B 44 (1997) 434.
[10] B. D. Liu, Y. K. Su and S. C. Chen, Ion sensitive field effect transistor with silicon nitride gate for pH sensing, INT. J. Electronics, Vol. 67, No. 1 (1989) 59.
[11] K. Chen, G. Li, H. Lu and L. Chen, Effect of total hydrogen content in silicon nitride sensitive film on performance of ISFET, Sensors and Actuators B 12 (1993) 23.
[12] H. Abe, M. Esashi and T. Matsuo, ISFETs using inorganic gate thin-films, IEEE Transactions Electron Devices 26 (1979) 1939.
[13] M. J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordoŝ, H. Lüth, A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique, Sensors and Actuators B 35 (1996) 228.
[14] S. Poghossian, The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs, Sensors and Actuators B 7 (1992) 367.
[15] H. Hara and T. Ohta, Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor, Sensors and Actuators B 32 (1996) 115.
[16] J. C. Chou and J. L Chiang, Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing, Sensors and Actuators B 62 (2000) 81.
[17] J. L. Chiang, S. S. Jan, J. C. Chou and Y. C. Chen, Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide, Sensor and Actuators B 76 (2001) 624.
[18] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, Study on extended gate field effect transistor with tin oxide sensing membrane, Material Chemistry and Physics 63 (2000) 19.
[19] H. K. Liao, Study of tin oxide as a sensing film for ISFET applications, Dissertation of Ph.D., Chung Yuan Christian University, September, 1998.
[20] A. J. Moulson and J. M. Herbert, Electroceramics.(Chapman and Hall, New York, 1990) 1st ed., Chaps. 1 and 6, pp.1 and 263.
[21] C. C. Chang, Effect of annealing on PbTiO3 thin-film quality improvement, Thin Solid Films 311 (1997) 304.
[22] S. Y. Kweon, S. H. Yi and S. K. Choi, Intrinsic stress dependence of c-axis orientation ratio in PbTiO3 thin films deposited by reactive sputtering, Journal of vacuum science and technology A 15 (1997) 57.
[23] N. Chaoui, E. Millon, J. F. Muller, P. Ecker, W. Bieck and H. N. Migeon, On the role of ambient oxygen in the formation of lead titanate pulsed laser deposition thin films, Applied Surface Science 138-139 (1999) 256.
[24] V. Bornand, S. Trolier-Mckinstry, Phase development in pulsed laser deposited Pb[Yb1/2Nb1/2]O3-PbTiO3 thin films, Thin Solid Films 370 (2000) 70.
[25] C. Byun, J. W. Jang, Y. J. Cho, K. J. Lee and B. W. Lee, Low temperature synthesis of PbTiO3 thin films by MOCVD without carrier gas, Thin Solid Films 324 (1998) 94.
[26] A. C. Jones, T. J. Leedham, P. J. Wright, D. J. Williams, M. J. Crosbie, H. O. Davies, K. A. Fleeting and P. O’Brien, Metalorganic chemical vapour deposition (MOCVD) of zirconia and lead zirconate titanate using a novel zirconium precursor, Journal of the European Ceramic Society 19 (1999) 1431.
[27] C. J. Lu, S. B. Ren, H. M. Shen, J. S. Liu and Y. N. Wang, Microstructure, composition, and optical properties of PbTiO3 thin films prepared by the sol-gel method, J. Vac. Sci. Technol. A 15 (1997) 2167.
[28] D. Bao, L. Zhang and X. Yao, Preparation and structure of PbTi3/Pt/PbTiO3 multilayer thin films on Pt/Ti/SiO2/Si substrates, Journal of Material Science Letter 18 (1999) 21.
[29] J. L. Chiang, S. S. Jan, J. C. Chou and Y. C. Chen, Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide, Sensors and Actuator B 76 (2001) 624.
[30] A. Topkar, R. Lal, Ionic penetration into reoxidized nitrided oxides in electrolyte-oxide-semiconductor structures, Thin Solid Films 259 (1995) 259.
[31] A. Topkar, R. Lal, Effect of electrolyte on silicon dioxide in electrolyte-oxide-semiconductor structures, Thin Solid Films 232 (1993) 265.
[32] J. C. Chou and C. N. Hsiao, Drift behavior of ISFETs with a-Si:H-SiO2 gate insulator, Materials Chemistry and Physics 63 (2000) 270.
[33] J. C. Chou, K. Y. Huang and J. S. Lin, Simulation of time-dependent effects of pH-ISFETs, Sensors and Actuators B 62 2000 88.
[34] L. Bousse, H. H. V. D. Vlekkert and N. F. D. Rooij, Hysteresis in Al2O3-Gate ISFETs, Sensors and Actuators B 2 (1990) 103.
[35] D. H. Kwon, B. W. Cho, C. S. Kim and B. K. Sohn, Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET, Sensor and Actuators B 34 (1996) 441.
[36] M. A. Aegerter, M. Jafelicci Jr, D. F. Souza and E. D. Zanotto, Sol-gel science and technology (World Scientific, Singapore, 1989) 1st ed..
[37] B. Jirgensons and M. E. Straumains, Colid chemistry (MvMillan, NewYork, 1962) 1st ed.
[38] D. E. Yates, S. Levine and T. W. Healy, Site-binding model of the electrical double layer at the oxide/wafer interface, J. Chem. Soc. Faraday Trans. I, (1974) 1807.
[39] C. D. Fung, P. W. Cheung and W. H. Ko, A generalized theory of an electrolyte-insulator-semiconductor field effect transistor, IEEE Transactions on Electron Devices 33 (1986) 8.
[40] W. M. Siu and R. S. C. Cobbold, Basic properties of the electrolyte-SiO2- Si system: physical and theoretical aspects, IEEE Transactions Electron Devices 26 (1979) 1805.
[41] P. Bergveld and A. Sibbald, Analytical and biomedical applications of ion-sensitive field-effect transistors, Elsevier Science Publishing Company Inc., New York, 1988.
[42] R. E. G. V. Hal, P. Bergveld, J. F. J. Engbersen, D. N. Reinhoudt, Characterization and testing of polymer-oxide adhesion to improve the packaging reliability of ISFETs, Sensors and Actuators B 23 (1995) 17.
[43] L. Bousse, The chemical sensitivity of electrolyte/interface/silicon structures, Dissertation of Ph.D., Twente University of Technology, Enschede, 1982.
[44] P. Bergveld, The impact of MOSFET-based Sensors, Sensors and Actuators 8 (1985) 109.
[45] S. D. Moss, C. C. Johnson and J. Janata, Hydrogen, calcium and potassium ion-sensitive FET transducers: a preliminary report, IEEE Transactions on Biomedical Engineering 25 (1978) 49.
[46] C. D. Fung, P. W. Cheung and W. H. Ko, A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor, IEEE Transactions on Electron Devices 33 (1986) 8.
[47] Y. Zhong, S. Ohao and T. Lin, Drift characteristics of pH-ISFET output, Chinese Journal of Semiconductors 12 (1994) 838.
[48] F. C. Chiu, J. J. Wang, J. Y. Lee and S. C. Wu, Leakage currents in amorphous Ta2O5 thin films, J. Appl. Phys. 81 (1997) 6911.
[49] S. M. Sze, Physics of semiconductor devices (John Wiley & Sons, New York, 1981) 2nd ed., Chap.5.
[50] C. M. Wang, Y. C. Chen, M. S. Lee, J. W. Wu and C. C. Chiou, The properties of lead titanate thin films derived from a dio-based sol-gel process, Jpn. J. Appl. Phys. 37 (1998) 951.
[51] R. E. G. van Hal, P. Bergveld, J. F. J. Engbersen and D. N. Reinhoudt, Characterization and testing of polymer-oxide adhesion to improve the packaging reliability of ISFETs, Sensors and Actuators B 23 (1995) 17.
[52] W. M. Siu and R. S. C. Cobbold, Basic properties of the electrolyte-SiO2-Si system: physical and theoretical aspects, IEEE Transactions on Electron Devices 26 (1979) 1805.
[53] R. Kühnhold and H. Ryssel, Modeling the pH response of silicon nitride ISFET devices, Sensors and Actuators B 68 (2000) 307.
[54] S. Jamasb, S. D. Collins and R. L. Smith, A physical model for drift in pH ISFETs, Sensors and Actuators B 49 (1998) 146.
[55] S. Jamasb, S. D. Collins and R. L. Smith, A physical model for threshold voltage instability in Si3N4-gate H+-sensitive FET’s (pH ISFET’s), IEEE Transactions on Electron Devices 45 (1998) 1239.
[56] R. F. Pierret: Semiconductor device fundamentals (Addison-Wesley, New York, 1996), 1st ed., Chap.18, 654.
[57] H. V. D. Vlekkert, L. Bousse and N. D. Rooij, The temperature dependence of the surface potential at the Al2O3/electrolyte interface, Journal of Colloid and Interface Science 122 (1988) 336.
[58] A. A. Poghossian, Determination of the pHPZC of insulators surface from capacitance-voltage characteristics of MIS and EIS structures, Sensors and Actuators B 44 (1997) 551.
[59] H. K. Liao, L. L. Chi, J. C. Chou, W. Y. Chung, T. P Sun and S. K. Hsiung, Study on pHPZC and surface potential of tin oxide gate ISFET, Material Chemistry and Physics 59 (1999) 6.
[60] P. Bergveld, The impact of MOSFET-based sensors, Sensors and Actuators 8 (1985) 109.
[61] S. D. Moss, C. C. Johnson and J. Janata, Hydrogen, calcium and potassium ion-sensitive FET transducers: a preliminary report, IEEE Transactions on Biomedical Engineering 25 (1978) 49.
[62] M. Grattarola, G. Massobrio and S. Martinoia, Modeling pH-sensitive FET’s with SPICE, IEEE Transactions on Electron Devices 39 (1992) 1700.
[63] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, Study of amorphous tin oxide thin films for ISFET applications, Sensors and Actuators B 50 (1998) 104.
[64] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, Study on extended gate field effect transistor with tin oxide sensing membrane, Materials Chemistry and Physics 63 (2000) 19.
[65] D. Yu, Y. D. Wei and G. H. Wang, Time-dependent response characteristics of pH-sensitive ISFET, Sensors and Actuator B 3 (1991) 279.
[66] P. Hein and P. Egger, Drift behaviour of ISFETs with Si3N4-SiO2 gate insulator, Sensors Actuators B 13-14 (1993) 655.
[67] L. Bousse and S. Mostarshed, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulator, Sensors and Actuator B 17 (1994) 157.
[68] P. R. Barabash, R. S. C. Cobbold and W. B. Wlodarski, Analysis of the threshold and its temperature dependence in electrolyte-insulator-semicon- ductor field-effect transistor (EISFET’s), IEEE Transactions on Electron Device ED-34(6) (1987) 1271.
[69] S. Martinoia, L. Lorenzelli, G. Massobrio, P. Conci and A. Lui, Temperature effects on the ISFET behaviour: simulations and measurements, Sensors and Actuators B 50 (1998) 60-68.
[70] S. Cheng and P. Manos, Effects of operating temperature on electrical parameters in an analog, IEEE circuits and devices magazine (1989) 31.
[71] William D. Callister, Jr., Material science and engineering: an introduction (John Wiley & Sons, New York, 1991) 2nd ed., Chap. 13, p. 409.
[72] D. A. Neamen, Semiconductor physics and devices: basic principles (Richard D. Irwin Inc., Boston, 1992) 1st edt., Chap. 12, p. 519.
[73] T. Matso and M. Esashi, Method of ISFET fabrication, Sensors and Actuators 1 (1981) 77.
[74] P. Woias, L. Meixner and P. Frostl, Slow pH response effects of silicon nitride ISFET sensors, Sensors and Actuator B 48 (1998) 501.
[75] L. Bousse, D. Hafeman and N. Tran, Time-dependence of the chemical response of silicon nitride surface, Sensors and Actuator B 1 (1990) 361.
[76] K. I. Tang, Study on temperature effect of ISFET devices, Master Thesis, Institute of Electrical Engineering, Hua Fan University, July, 1997.
[77] J. C. Chou and Y. N. Tseng, Study on the hysteresis effect of pH-ISFET based on Beckman ΦTM 110 (Si3N4 gate pH-ISFET), Proc. of SPIE Vol. 4078 –The International Symposium on Optoelectronic Materials and Devices II, Taipei, Taiwan (2000) 793.
[78] L. Bousse, H. H. V. D. Vlekkert and N. F. D. Rooij, Hysteresis in Al2O3 gate ISFETs, Sensors and Actuator B 2 (1990) 103.
[79] A. S. H. Wong, Theoretical and experimental studies of CVD aluminum oxide as a pH sensitive dielectric for the back contacts ISFET sensor, Ph.D. Dissertation, Department of Biomedical Engineering, Case Western Reserve University, May, 1985.
[80] J. C. Chou and C. Y. Weng, Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET, Material Chemistry and Physics 71 (2001) 120.
[81] J. C. Chou, Y. S. Li and J. L. Chiang, Simulation of Ta2O5-gate ISFET temperature characteristics, Sensors and Actuator B 71 (2000) 73-76.
[82] J. C. Chou and K. Y. Huang, Study on the drift and hysteresis of pH-ISFETs with amorphous tantalum pentoxide gate insulator, Conference on Chinese Medicine and Pharamacy, Engineering Technology and Applications to Chinese and Western Medicine, China Medical College, Taichung, Taiwan (1999) 101.
[83] H. K. Liao, E. S. Yang, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, Temperature and optical characteristics of tin oxide membrane gate ISFET, IEEE Transactions on Electron Devices 46 (1999) 2278.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code