Responsive image
博碩士論文 etd-1116106-112014 詳細資訊
Title page for etd-1116106-112014
論文名稱
Title
摩擦攪拌製程製作細晶粒鎂基合金與複材之研發與性能分析
Development and analysis of fine-grained Mg base alloys and composites fabricated by friction stir processing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
236
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-11-10
繳交日期
Date of Submission
2006-11-16
關鍵字
Keywords
複材、鎂、摩擦攪拌製程、高速超塑性
composite, HSRSP, magnesium alloy, friction stir processing
統計
Statistics
本論文已被瀏覽 5697 次,被下載 522
The thesis/dissertation has been browsed 5697 times, has been downloaded 522 times.
中文摘要
在本研究論文中,使用固態製程法-摩擦攪拌製程,來改質AZ61鎂合金半連續鑄錠。此ㄧ製程能促使材料發生沿著凸梢工具頭外圍的塑性流動特徵,達到攪拌材料功能。運用此ㄧ塑性流動特徵,也可在AZ61鎂合金半連續鑄錠中,加入體積分率5%-10%的奈米級SiO2顆粒,以達到分散顆粒效果,來製作成塊狀鎂基複材。並且對改質合金與複合材料作微結構與機械性質鑑定與比較。

經過摩擦攪拌製程改質的鎂合金,藉由變形過程所誘發的動態再結晶,可以將晶粒尺寸細化至3-8um。ㄧ道製程改質合金有著不均質的晶粒結構,此ㄧ微結構特徵將會影響到沿著銲道拉伸行為的高溫機械性質,並出現一種洋蔥圈剝離現象。相對地,運用多道數的製程,可以有效改善此ㄧ不均質的晶粒結構,以達到改善此種在高溫變形過程所誘發的洋蔥圈剝離現象。改質合金表現出較低的降伏強度,是受到摩擦攪拌製程所誘發的晶粒擇優取向的影響,亦即(0002)平面作面向排列於洋蔥圈圓弧上。此外,本研究發現在摩擦攪拌改質合金後,緊接著施以二次加工的壓縮變形,此一壓縮變形沿著垂直方向,可以藉由變形雙晶來達到轉變摩擦攪拌所誘發之特有的晶粒擇優取向,以達到改善摩擦攪拌改質合金較低的降伏強度。

藉由摩擦攪拌製程可以成功地製作出塊狀鎂基複合材料,並且在四道的摩擦攪拌製程後,可以有效地分散所加入SiO2顆粒進入鎂合金基材中。所製作出的鎂基複合材料,其晶粒可以細化到0.5-2um,相對於初始的AZ61鎂合金半連續鑄錠,此複合材料的硬度可以被提升至將近兩倍。此ㄧ複合材料在高溫300oC,在應變速率1x10-2 s-1與3x10-1 s-1,以及高溫400oC,下,分別有470%與454%的高速超塑性伸長量,且晶粒尺寸依然可以維持在2um以下。
Abstract
In this research, one solid state processing technique, friction stir processing, is applied to modify the AZ61 magnesium alloy billet and to incorporate 5-10 vol% nano-sized ceramic particles SiO2 into the AZ61 magnesium alloy matrix to form bulk composites, using the characteristic rotating downward and circular material flow around the stir pin. The microstructure and mechanical properties of the modified alloy and composite samples are examined and compared.

The FSP modified AZ61 alloy could be refined to 3-8um via the dynamic recrystallization during processing. However, the one-pass FSP modified alloy appeared the inhomogeneous grain structures to influence the tensile ductility along the welding direction at elevated temperatures due to the onion splitting. In contrast, the multi-pass FSP could improve the inhomogeneous grain structures to reduce the influence of the onion-splitting to the deformation at elevated temperatures. The FSP modified alloys show the lower yielding stress due to the unique texture of (0002) basal planes, with roughly surround the pin column surface of the pin tool in the stirred zone. In addition, it is suggested that the second processing of the subsequent compression along the normal direction might be necessary to alter the texture and to improve the lower yielding stress after modifying the grain size by FSP.

Friction stir processing could successfully fabricate bulk AZ61 Mg based composites with 5 to 10 vol% of nano-sized SiO2 particles. The nano-sized SiO2 particles added into magnesium matrix could be uniformly dispersed after four FSP passes. The average grain sizes of the composites varied within 0.5-2um, and the composites nearly double the hardness as compared with the as-received AZ61 cast billet. This composite exhibited high strain rate superplasticity, with a maximum ductility of 470% at 1x10-2 s-1 and 300oC or 454% at 3x10-1 s-1 and 400oC while maintaining fine grains less than 2um in size.
目次 Table of Contents
Table of Content………………………………………………………………………………..i
List of Tables…….…………………………………………………………………………...vi
List of Figures….…………………………………………………………………………..viii
Abstract……………………………………………………………………………………xvi
中文摘要...............................................................................................................................xviii
謝誌…………………………………………..……………………………………………xix
Chapter 1 Introduction…………………………………………………………………… 1
1.1 Characteristics of magnesium alloys……………………………………………………3
1.2 Properties of magnesium alloys………………………………………………………...4
1.2.1 The classification of magnesium alloys……………………………...…………...4
1.2.2 Influence of grain refinement on magnesium alloys…………………...…………4
1.2.3 Various refinement techniques…………………………………………...……….6
1.2.3.1 Through severe plastic deformation…………………………………….6
1.2.3.2 Through rapid solidification…………………………………………….8
1.2.4 Anisotropy of magnesium alloys…..…………………………………………….9
1.3 Metal matrix composites………………………………………………………………10
1.3.1 Processing of metal matrix composites and magnesium matrix composites…….12
1.3.1.1 Liquid-state methods…………………………………………………..12
1.3.1.2 Solid-state methods……………………………………………………15
1.3.2.3 Other processing methods……………………………………………..15
1.4 Basic characters of superplastic materials……………………………………………..17
1.5 Superplasticity of magnesium alloys and magnesium matrix composites…………….19
1.5.1 HSRSP and LTSP of magnesium alloys…..………………………..……………20
1.5.2 HSRSP and LTSP of magnesium matrix composites……………………………21
1.6 Friction stir welding and friction stir processing………………………………………22
1.6.1 Introduction of friction stir welding (FSW)……………………………………..22
1.6.2 Process parameters……………………………………………...…………………24
1.6.2.1 Tool geometry………………………………………………………….24
1.6.2.2 Welding parameters……………………………………………………25
1.6.3 Process modeling……………………………….………………………………...26
1.6.3.1 Material flow behavior in the stirred zone…………………………….27
1.6.3.2 Material flow modeling………………………………………………..28
1.6.3.3 Input energy and temperature prediction………………………………30
1.6.4 Microstructure evolutions……………………………………………………….31
1.6.4.1 Nugget zone (or stirred zone)………………………………………….32
1.6.5 Texture……………………………………………………….…………………...35
1.6.6 Friction stir processing (FSP)……………………………………………………36
1.6.7 Applications of friction stir processing………………………………………….37
1.7 Motives of this research……………………………………………………………….39
Chapter 2 Experimental methods………………………………………………………….41
2.1 Materials……………………………………………………………………………….41
2.2 The setup of friction stir processing…………………………………………………...41
2.2.1 The designs of tool and fixture…………………………………………………..42
2.2.2 The methods of adding nano-sized powders into AZ61 alloys………………….42
2.2.3 The methods of adding nano-sized powders into AZ61 alloys………………….42
2.3 Microhardness measurements…………………………………………………………43
2.4 Mechanical testing……………………………………………………………………..44
2.5 The analysis of X-ray diffraction……………………………………………………...44
2.6 X-ray photoelectron spectroscopy (XPS)……………………………………………...44
2.7 Microstructure Characterizations……………………………………………………...45
2.7.1 Optical microscopy (OM)……………………………………………………….45
2.7.2 Scanning electron microscopy (SEM)…………………………………………...46
2.7.3 Transmission electron microscopy (TEM)………………………………………46
Chapter 3 Experimental results……………………………………………………………48
3.1 The temperature of the stirred zone of modified alloys…………………………….…48
3.2 The macrostructure and microstructure of the stirred zone of modified alloys……….48
3.2.1 The macrostructure of the stirred zone of modified alloy after 1P and 4P FSP…...48
3.2.2 The microstructure of the stirred zone of modified alloy after 1P and 4P FSP…....49
3.2.3 The grain size of modified AZ61 alloy………………………………………….50
3.2.4 Microstructure of the modified AZ61 alloy after subsequent compressive loading50
3.3 The macrostructure and microstructure of Mg based composites made by FSP……...51
3.3.1 The appearance of the nugget zone of composites………………………………51
3.3.2 SEM characterizations of Mg matrix composites made by FSP………………...51
3.3.3 TEM phase identification………………………………………………………..53
3.3.4 Grain stabilization of Mg based composites made by FSP……………………...54
3.4 XPS analysis…………………………………………………………………………...54
3.5 XRD analysis…………………………………………………………………………..55
3.5.1 XRD analysis for the modified alloys…………………………………………...56
3.5.1.1 XRD analysis for the modified alloys after subsequent compression…...57
3.5.2 XRD analysis for Mg based composites made by FSP…………………………....57
3.6 Hardness measurements……………………………………………………………….58
3.7 Mechanical tests……………………………………………………………………….59
3.7.1 Mechanical properties at room temperature……………………………………..60
3.7.1.1 Mechanical properties of the modified alloys made by FSP…………..60
3.7.1.2 Mechanical properties of Mg based composites fabricated by FSP…….61
3.7.2 Tensile behavior of the FSP Mg alloy at elevated temperatures………………...62
3.7.2.1 Tensile behavior of the WD specimens of the modified alloy at elevated temperatures………..………………………………….………………...62
3.7.2.2 Topography of deformed specimens…………………………………..63
3.7.2.3 Tensile behavior of the TD specimens of the modified alloy at elevated temperatures…………………………………………………………...63
3.7.3 Tensile behavior at elevated temperatures for the FSP Mg based composites…….64
3.7.3.1 Tensile behavior at elevated temperatures for the 1D Mg based composites……………………………………………………………..64
3.7.3.2 Tensile behavior at elevated temperatures for the 2D Mg based composites……………………………………………………………..65
3.7.3.3 Topography of deformed specimens…………………………….……..66
3.8 Fractography of deformed specimens…………………………………………………68
Chapter 4 Discussion and Analysis on Deformation Mechanisms……..……………....68
4.1 Influence of FSP pass number on the modified alloy………………………………….68
4.1.1 Influence of FSP pass number on microstructure………………………………..68
4.1.2 Texture analysis of the modified alloy by FSP…………………………………..69
4.1.3 Influence of FSP pass number on mechanical properties………………………..71
4.1.3.1 Influence of FSP pass number on mechanical properties at room temperature…………………………………………………………….71
4.1.3.2 Influence of FSP pass number on mechanical properties at elevated temperatures…………………………………………………………...73
4.2 Influence of subsequent-compression along ND on the modified alloy………………74
4.2.1 Influence of subsequent compression on microstructure………………………..74
4.2.2 Influence of subsequent compression on texture………………………………..75
4.2.3 Influence of subsequent compression on mechanical properties at room temperature…………………………………….………………………………….76
4.3 Influence of FSP pass number to Mg based composites………………………………78
4.3.1 Influence of FSP pass number on microstructure and interfacial reaction………...78
4.3.2 Texture analysis of the magnesium composites made by FSP…………………..79
4.4 Comparison of mechanical properties at room temperature of the modified alloy and composites……………..………………………………………………………………..79
4.5 Analysis on deformation mechanism at elevated temperatures of magnesium based composites…………………………………………………………………..…………..81
Chapter 5 Conclusions………..…………………………………………………………….84
5.1 Conclusions on the FSP modified magnesium alloys……………………….…………84
5.2 Conclusions on the FSP magnesium based composites…………………………………85
Chapter 6 Major achievements…………………………………………………………...87
References………………………………………………..…………………………………..88
Tables………………………………………………………………………………………....99
Figures………………………………………………………………………………………121











List of Tables


Table 1-1 Comparison among the Mg alloys, Al alloys, Ti alloys, steels and plastics…….99
Table 1-2 The standard four-part ASTM designation system of alloy and temper for the magnesium system…………………………………………………………….100
Table 1-3 The effect of separate solute addition on the mechanical properties……….…101
Table 1-4 Mechanical properties of magnesium matrix composites by various liquid-state processing methods………………………………………………….………..102
Table 1-5 Mechanical properties of magnesium matrix composites by various solid-state processing methods………………………………………………….………..103
Table 1-6 Microstructure-Mechanical property-facture correlations for metal matrix composites……………………………………………………………………..104
Table 1-7 HSRSP and LTSP in the magnesium alloys…………………………….……..105
Table 1-8 HSRSP and LTSP of magnesium matrix composites………………………..106
Table 1-9 Superplasticity application of Al alloys modified by friction stir processing…107
Table 2-1 Chemical compositions of the AZ61 Mg alloy (in wt%)……………………108
Table 2-2 The sample designation for the FSP modified Mg alloys…………………...109
Table 2-3 The sample designation for the FSP Mg based composites…………………109
Table 3-1 The recrystallized grain size of the modified AZ61 Mg alloy made by FSP….110
Table 3-2 Summary of the average SiO2 cluster size and the average AZ61 matrix grain size in the 1D (with Vf~5%) and 2D (with Vf~10%) FSP specimens………...110
Table 3-3 XRD results for the 1P45, 4P45, and 4P45-cp modified alloy samples……….111
Table 3-4 XRD results for the Mg based composites of the 1D samples……………112
Table 3-5 XRD results for the Mg based composites of the 2D samples………………113
Table 3-6 The average hardness of the FSP modified AZ61 alloys………………………114
Table 3-7 The average hardness of the Mg based composites made by FSP…………..114
Table 3-8 The summary of mechanical properties for the AZ61 billet, the modified AZ61 alloy and composite made by FSP……………………………………………..115
Table 3-9 The summary of the tensile properties of the WD and TD specimens for the 1P45 and 4P45 modified alloys at room temperature, tested on the Fig. 2-11 specimen size……………………………………………………………………...115
Table 3-10 The ductility of the FSP modified AZ61 alloy tested at elevated temperatures.116
Table 3-11 The ductility of the FSP 1D4P and 2D4P Mg based composites at elevated temperatures…………………………………………………………………...118
Table 4-1 The measured apparent strain rate sensitivity (ma) value for the modified alloys and composites………………………………………………………………120
Table 4-2 The whole comparison, considering
參考文獻 References
1. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Church, P. Templesmith and C. J. Dawes: The Welding Institute, TWI, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, 1991.
2. R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara and A. K. Mukherjee, Scripta Materialia, 42 (2000), pp. 163-168.
3. R. S. Mishra, Z. Y. Ma and I. Charit, Materials Science and Engineering, A341 (2003), pp. 307-310.
4. H. Friedrich and S. Schumann, Journal of Materials Processing Technology, 117 (2001), pp. 276-281.
5. 葉圳轍,工業材料,186期 (2002),pp. 82-85.
6. 范元昌、蘇健忠、翁震灼、陳俊沐,工業材料,186期 (2002),pp.131-138.
7. T. Lyman, H. E. Boyer, P. M. Unterwesier, J. E. Foster, J. P. Hontans and H. Lawton, in Metals Handbook (ASM International, Metals Park, Ohio, 1975), p. 8•1
8. R. W. Cahn, P. Hassen and E. J. Kramer, Materials Science and Technology Structure and Properties of Nonferrous Alloys, VCH, New York, 1996.
9. R. E. Reed-Hill and R. Abbaschian, in Physical Metallurgy Principles, 3rd (PWS Publishing Company, 20 Park Plaza, Boston, 1994), pp. 192-194.
10. T. Narutani and J. Takamura, Acta Materialia, 39 (1991), pp. 2037-2049.
11. 吳信輝,“電子束或電弧銲接鎂合金之微織構與機性分析”國立中山大學碩士論文 (2003).
12. H. K. Lin and J. C. Huang, Materials Transactions JIM, 43 (2002), p.2424-2434.
13. G. Nussbaum, P. Sainfort and G. Regazzoni, Scripta Materialia, 23(1989), pp. 1079-1084.
14. A. Bussiba, A. Ben Artzy, A Shtechman, S. Ifergan and M. Kupiec, Materials Science and Engineering A, 302 (2001), pp. 56-62.
15. 林鉉凱,“析出型AZ91鎂合金低溫超塑性之研究”,國立中山大學碩士論文(2001).
16. G. E. Eieter, in Mechanical Metallurgy (McGraw-Hill Book Company, Singapore, 1988), pp. 616-634.
17. T. C. Chang, J. Y. Wang, C. M. O and Shyong Lee, Journal of Materials Processing Technology, 140 (2003), p. 588-591.
18. W. J. Kim, S. W. Chung, C. S. Chung and D. Kum, Acta Materialia, 49 (2001), pp. 3337-3345.
19. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Materialia, 45 (1997), pp. 4733-4741.
20. 瘐忠義,“超細晶鋁之機械性質”,國立中山大學博士論文 (2003).
21. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Materialia, 36 (1997), p. 681-686.
22. 林鉉凱,“經高比率擠型AZ31鎂合金之低溫高速超塑性研發與變形機構之分析”,國立中山大學博士論文(2005).
23. S. Spangel, E. M. Schulz, A. Schulz, H. Vetters and P. Mayr, Materials Science and Engineering, A326 (2002), pp. 26-39.
24. C. Y. Chen and C. Y. A. Tsao, Materials Science and Engineering, A383 (2004), pp.21-29.
25. M. T. Perez-Prado, J. A. del Valle and O. A. Ruano, Scripta Materialia, 51 (2004), pp. 1093-1097.
26. 張榮桂,“利用往復式擠型法製作超塑性AZ91鎂合金之研究”,國立清華大學材料科學研究所碩士論文 (2000).
27. U. Andrade, M. A. Meyers, K. S. Vecchio and A. H. Chokshi, Acta Materialia, 42 (1994), pp. 3183-3195.
28. G. Garces, P. Perez and P. Adeva, Journal of Alloys and Compounds, 333 (2002), p.219-224.
29. Y. N. Wang and J. C. Huang, Materials Transactions JIM, 44 (2003), pp. 2276-2281.
30. W. J. Kim, S. I. Hong, Y. S. Kim, S. H. Min, H. J. Jeong and J. D. Lee, Acta Materialia, 51 (2003), pp. 3293-3307.
31. D. Hull and T. W. Clyne, in An Introduction to Composite Materials (Cambridge University Press, Second edition, 1996)
32. A. J. Ardell, Metallurgical and Materials Transactions, 16A (1985), pp. 2131-2165.
33. T. D. Wang and J. C. Huang, Materials Transactions JIM, 42 (2001), pp. 1781-1789.
34. R. A. Saravanan and M. K. Surappa, Materials Science and Engineering, A276 (2000), pp. 108-116.
35. A. Bochenek and K. N. Braszczynska, Materials Science and Engineering, A290 (2000), pp. 122-127.
36. M. Manoharan, S. C. V. Lim and M. Gupta, Materials Science and Engineering, A333 (2002), pp. 243-249.
37. Q. C. Jiang, X. L. Li and H. Y. Wang, Scripta Materialia, 48 (2003), pp.713-717.
38. L. Hu and E. Wang, Materials Science and Engineering, A278 (2000), pp. 267-271.
39. M. Y. Zheng, K. Wu, M. Liang, S. Kamado and Y. Kojima, Materials Science and Engineering, A372 (2004), pp. 66-74.
40. M. Zheng, K. Wu and C. Yao, Materials Science and Engineering, A318 (2001), pp. 50-56.
41. B. Q Han and D. C. Dunand, Materials Science and Engineering, A277 (2000), pp. 297-304.
42. J. Lan, Y. Yang and X. Li, Materials Science and Engineering, A386 (2004), pp. 284-290.
43. H. Z. Ye and X. Y. Liu, Journal of Materials Science, 39 (2004), pp. 6153-6171.
44. D. M. Lee, B. K. Suh, B. G. Kim, J. S. Lee and C. H. Lee, Materials Science and Technology, 13 (1997), pp. 590-595.
45. H. Y. Wang, Q. C. Jiang, Y. Wang, B. X. Ma and F. Zhao, Materials letters, 58 (2004), pp. 3509-3513.
46. Q. C. Jiang, H. Y. Wang, B. X. Ma, Y. Wang and F. Zhao, Journal of Alloys and Compounds, 386 (2005), pp. 177-181.
47. S. F. Hassan, M. Gupta, Materials Science and Engineering, A392 (2005), pp. 163-168.
48. P. L. Ratnaparkhi and J. M. Howe, Scripta Metallurgical., 27 (1992), pp. 133-137.
49. Guobin Li, Jibing Sun, Quanmei Guo and Yuhui Wu, Journal of Materials Processing Technology, 161 (2005), pp. 445-448.
50. S. M. Lee editor, in Handbook of Composite Reinforcements (VSH publisher, 1993)
51. M. Mabuchi, K. Kubota and K. Higashi, Scripta Metallurgica et Materialia, 33 (1995), pp. 331-335.
52. Y. P. Hung, K. J. Wu, Chi. Y. A. Tsao, J. C. Hung, P . J. Hsieh and J. S. C. Jang, Key Engineering Materials, 313 (2006), pp. 77-82.
53. Y. P. Hung, J. C. Huang, K. J. Wu and Chi Y. A. Tsao, Materials Transactions JIM, 47 (2006), pp. 1985-1993.
54. T. D. Wang and J. C. Huang, Materials Science Forum, 357-359 (2001), pp. 515-520.
55. P. M. Ajayan, O. Stephan, C. Colliex and D. Tranth, Science, 265 (1994), pp. 1212-1214.
56. M. Narkis, A. Ram and F. Flashner, Journal of Applied Polymer Science, 22 (1978), pp.1163-1166.
57. B. Poulaert and J. P. Issi, Polymer, 24 (1983), pp. 841-845.
58. S. Balabanov and Krezhov, Journal of Physics. D: Applied Physics, 32 (1999) p. 2573.
59. M. T. Connor, S. Roy, T. A. Ezquerra and F. J. B. Calleja, Physical Review B, 57 (1998), pp. 2286-2294.
60. T. G. Nieh, J. Wadsworth and O. D. Sherby, in Superplasticity in metals and ceramics (Cambridge University Press, 1997)
61. M. F. Ashby and R. A. Verrall, Acta Metallurgica, 21 (1973), pp.149-163.
62. A. K. Mukherjee, Materials Science and Engineering, 8A (1971), p. 83.
63. R. C. Gifkins, Metallurgical and Materials Transactions, 7A (1976), pp. 1225-1232.
64. J. R. Spingarn and W. D. Nix, Acta Metallurgica, 26 (1978), pp. 1389-1398.
65. A. K. Ghosh and R. Raj, Acta Metallurgica, 29 (1981), pp. 607-616.
66. M. Mabuchi, K. Higashi and T. G. Langdon, Acta Metallurigca Materialia, 42 (1994), pp. 1739-1745.
67. K. Higashi, T. G. Nieh and J. Wadsworth, Acta Metallurgica Materialia, 43 (1995). pp. 3275-3282.
68. M. Mabuchi and K. Higashi, Acta Materialia, 47 (1999), pp. 1915-1922.
69. T. G. Nieh and J. Wadsworth, Scripta Metallurgica Materialia, 32 (1995), pp. 1133-1137.
70. M. Mabuchi, K. Kubota and K. Higashi, Scripta Metallurgica Materialia, 33 (1995), pp. 331-335.
71. M. Mabuchi and K. Higashi, Philosophical Magazine A, 74 (1996), pp. 887-905.
72. T. G. Nieh, A. J. Schwartz and J. Wadsworth, Materials Science and Engineering A, A208 (1996), pp. 30-36.
73. S. W. Lim, T. Imai and Y. Nishida, Scripta Metallurgica et Materialia 32 (1995), pp. 1713-1717.
74. T. Imai, S.- W. Lim, D. Jiang and Y. Nishida, Scripta Materialia 36 (1997), pp. 611-615.
75. M. Mabuchi, K. Shimojima, Y. Yamada, C. E. Wen, M. Nadkamura, T. Asahina, H. Iwaski, T. Aizawa and K. Higashi, Materials Science Forum, 357-359 (2001), p. 327.
76. 李敬仁,“鎂合金超塑變形之裂孔成核成長研究”,國立中山大學碩士論文(2003).
77. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Materialia, 36 (1997), pp. 681-686.
78. M. Mabuchi, K. Ametama, H. Iwasaki and K. Higashi, Acta Materialia, 47 (1999), pp. 2047-2057.
79. H. K. Lin, J. C. Huang and T. G. Langdon, Materials Science and Engineering A, 402 (2005), pp. 250-257.
80. H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi and K. Higashi, Materials Science and Engineering, A307 (2001), pp. 119-128.
81. H. J. Frost and M. F. Ashby, in Deformation-Mechanism Maps (Pergamon, Oxford, 1982), pp. 44-45.
82. H. Watanabe, T. Mukai, T. G. Nieh and K. Higashi, Scripta Materialia, 42 (2000), pp. 249-255.
83. M. Mabuchi, T. Asahina, H. Iwasaki and K. Higashi, Materials Science and Technology, 13 (1997), pp. 825-831.
84. H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi, Materials Transactions JIM, 43 (2002), p. 78
85. H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, Scripta Materialia, 41 (1999), pp. 209-213.
86. H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi, Scripta Materialia, 46 (2002), pp. 851-856.
87. 王振欽,“銲接學”,登文書局,1985.
88. A. Sanderson, C. S. Punshon and J. D. Russell, Fusion Engineering and Design, 49-50 (2000), pp. 77-87.
89. R. S. Mishra and Z. Y. Ma, Materials Science and Engineering R, 50 (2005), pp. 1-78.
90. W. M. Thomas, E. D. Nicholas, S. D. Smith, in S. K. Das, J. G. Kaufman, T. J. Lienert (Eds.), Aluminum 2001-Proceedings of the TMS 2001 Aluminum Automotive and Joining Sessions, TMS, 2001, p. 213.
91. Y. J. Kwon, I. Shigematsu and N. Saito, Scripta Materialia, 49 (2003), pp. 785-789.
92. Y. M. Thomas, K. I. Johnson and C. S. Wiesner, Advanced Engineering Materials, 7 (2003), pp. 485-490.
93. 張志溢,“摩擦旋轉攪拌製程對AZ31鎂合金晶粒細化之研究”,國立中山大學碩士論文 (2004).
94. Y. S. Sato, M. Urata and H. Kokawa, Metallurgical and Materials Transactions, 33A (2002), pp. 624-635.
95. A. A. Hassan, P. B. Prangnell, A. F. Norman, D. A. Price and S. W. Willams, Science and Technology of Welding and Joining, 8 (2003), pp. 257-267.
96. Y. G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata, Materials Science and Engineering A, 415 (2006), pp. 250-254.
97. K. Cooigan, Welding Research, 65 (1999), pp. 229-237.
98. B. London, M. Mahoney, W. Bingel, M. Calabrese, R. H. Bossi and D. Waldron, in: K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin and T. Lienert (Eds.), Friction Stir Welding and Processing Ⅱ, TMS, 2003, pp. 3-12.
99. T. U. Seidel and A. P. Reynolds, Metallurgical and Materials Transactions, 32A (2001), pp. 2879-2884.
100. M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, A. C. Nunes, Materials Characterization, 49 (2003), pp. 95-101.
101. J. H. Quyang and R. Kovacevic, Journal of Materials Engineering and Performance, 11 (2002), pp.51-63.
102. Y. Li, L. E. Murr and J. C. McClure, Scripta Materialia, 40 (1999), pp. 1041-1046.
103. Y. Li, L. E. Murr and J. C. McClure, Materials Science and Engineering, A271 (1999), pp. 213-223.
104. P. Colegrove and H. Shercliff, in: K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin and T. Lienert (Eds.), Friction Stir Welding and Processing Ⅱ, TMS, 2003, pp. 13-22.
105. R. L. Goetz, K. V. Jata, in: K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin and D. P. Filed (Eds.), Friction Stir Welding and Processing, TMS, 2001, pp. 35-46.
106. W. J. Arbegast, in: Z. Jin, A. Beaudoin, T. A. Bieler and B. Radhakrishnan (Eds.), Hot Deformation of Aluminum Alloys Ⅲ, TMS, 2003, pp. 313-328.
107. H. Schmidt, J. Hattel and J. Wert, Modelling and Simulation in Materials Science and Engineering, 12 (2004), pp. 143-157.
108. O. Frigaard, O. Grong and O. T. Midling, Metallurgical and Materials Transactions A, 32A (2001), pp. 1189-1200.
109. K. N. Krishnan, Materials Science and Engineering, A 327 (2002), pp. 246-251.
110. K. V. Jata and S. L. Semiatin, Scripta Materialia, 43 (2000), pp. 743-749.
111. J. Q. Su, T. W. Nelson, R. Mishra and M. Mahoney, Acta Materialia, 51 (2003), pp. 713-729.
112. C. G. Rhodes, M. W. Mahoney, W. H. Bingel and M. Calabrese, Scripta Materialia, 48 (2003), pp. 1451-1455.
113. D. P. Field, T. W. Nelson, Y. Hovanski and K. V. Jata, Metallurgical and Materials Transactions, 32A (2001), pp. 2869-2877.
114. H. G. Salem, Scripta Materialia, 49 (2003), pp. 1103-1110.
115. P. B. Prangnell and C. P. Heason, Acta Materialia, 53 (2005), pp. 3179-3192.
116. R. W. Fonda, J. F. Bingert and K. J. Colligan, Scripta Materialia, 51 (2004), pp. 243-248.
117. M. A. Sutton, B. Yang, A. P. Reynolds and R. Taylor, Materials Science and Engineering A, A323 (2002), pp. 160-166.
118. B. C. Yang, J. H. Yan, M. A. Sutton and A. P. Reynolds, Materials Science and Engineering, A364 (2004), pp. 55-65.
119. M. A. Sutton, B. C. Yang, A. P. Reynolds and J. H. Yan, Materials Science and Engineering, A364 (2004), pp. 66-74.
120. M. A. Sutton, A. P. Reynolds, B. C. Yang and R. Taylor, Materials Science and Engineering, A354 (2003), pp. 6-16.
121. M. A. Sutton, A. P. Reynolds, B. C. Yang and R. Taylor, Engineering Fracture Mechanics, 70 (2003), pp. 2215-2234.
122. Y. S. Sato, H. Kokawa, M. Enomoto and S. Jogan, Metallurgical and Materials Transactions A, 30A (1999), pp. 2429-2437.
123. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling and W. H. Bingel, Metallurgical and Materials Transactions A, 29A (1999), pp. 1955-1964.
124. C. Genevois, A. Deschamps, A. Denquin and B. Doisneau-cottignies, Acta Materialia, 53 (2005), pp. 2447-2458.
125. D. P. Field, T. W. Nelson, Y. Hovanski and K. V. Jata, Metallurgical and Materials Transactions A, 32A (2001), pp. 2869-2877.
126. S. H. C. Park, Y. S. Sato and H. Kokawa, Metallurgical and Materials Transactions A, 34A (2003), pp. 987-994.
127. W. Woo, H. Choo, D. W. Brown, P. K. Liaw, Z. Feng, Scripta Materialia, 54 (2006), pp. 1859-1864.
128. R. S. Mishra, Advanced Materials and Process, 161 (2003), pp. 43-46.
129. Z. Y. Ma, R. S. Mishra and M. W. Mahoney, Acta Materialia, 50 (2002), pp.4419-4430.
130. I. Charit and R. S. Mishra, Materials Science and Engineering A, A359 (2003), pp. 290-296.
131. Z. Y. Ma, R. S. Mishra, M. W. Mahoney and R. Grimes, Materials Science and Engineering A, A351 (2003), pp. 148-153.
132. Z. Y. Ma, R. S. Mishra and M. W. Mahoney, Scripta Materialia, 50 (2004), pp. 931-935.
133. Z. Y. Ma and R. S. Mishra, Scripta Materialia, 53 (2005), pp. 75-80.
134. I. Charit and R. S. Mishra, Acta Materialia, 53 (2005), pp. 4211-4223.
135. A. Dutta, I. Charit, L. B. Johannes and R. S. Mishra, Materials Science and Engineering, A 395 (2005), pp. 173-179.
136. J. Q. Su, T. W. Nelson and C. J. Sterling, Journal of Materials Research, 18 (2003), pp. 1757-1760.
137. J. Q. Su, T. W. Nelson and C. J. Sterling, Scripta Materialia, 52 (2005), pp. 135-140.
138. 胡哲明,“摩擦攪拌製程之應變率對奈米氧化鋁粉均勻分佈與機械性質的影響”,國立中山大學碩士論文 (2004).
139. S. M. Howard, B. K. Jasthi, W. J. Arbegast, G. J. Grant and D. R. Herling, in: K. V. Jata, M. W. Mahoney, R. S. Mishra and T. Lienert (Eds.), Friction Stir Welding and Processing Ⅲ TMS, 2005, pp. 139-146.
140. C. J. Hsu, P. W. Kao and N. J. Ho, Scripta Materialia, 53 (2005), pp. 341-345.
141. C. J. Lee and J. C. Huang, “Fabrication of Mg base nanocomposites fabricated by friction stir processing” patent application to R.O.C.
142. http://www.lasurface.com/database/element.php
143. C. I. Chang, C. J. Lee and J. C. Huang, Scripta Materialia, 51 (2004), pp. 509-514.
144. M. S. Sahota, E. L. Short and J. Beynon, Journal of Non-Crystalline Solids, 195 (1996), pp. 83-88.
145. M. Brause, B. Braun, D. Ochs, W. Maus-Friedrichs and V. Kempter, Surface Science, 398 (1998), pp. 184-194.
146. T. R. Chen and J. C. Huang, Metallurgical and Materials Transactions A, 30A (1999), pp. 53-64.
147. A. Couret and D. Caillard, Acta Metallurgica, 33 (1985), pp. 1447-1454.
148. Y. N. Wang, C. I. Chang, C. J. Lee, H. K. Lin and J. C. Huang, Scripta Materialia, 55 (2006), pp. 637-640.
149. George E. Dieter, in Mechanical Metallurgy (McGraw-Hill Book Company, Singapore, 1988).
150. H. J. Frost and M. F. Ashby: Deformation Mechansim Maps (Pergamon Press, Oxford, 1982), p. 44.
151. H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi: Acta Mater. 49 (2001), pp.2027-2037.
152. H. K. Kim and W. J. Kim, Materials Science and Engineering, A385 (2004), pp. 300-308.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code