Responsive image
博碩士論文 etd-1116109-201234 詳細資訊
Title page for etd-1116109-201234
論文名稱
Title
塊狀金屬玻璃與複材之塑性分析及剪帶變形機構
Analysis of Plasticity and Shear Band Deformation Mechanism in Bulk Metallic Glasses and Composites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
225
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-29
繳交日期
Date of Submission
2009-11-16
關鍵字
Keywords
剪切帶傳播、鋸齒狀現象、塑性、塊狀金屬玻璃
shear band propagation, plastic strain, bulk metallic glasses, flow serration
統計
Statistics
本論文已被瀏覽 5751 次,被下載 358
The thesis/dissertation has been browsed 5751 times, has been downloaded 358 times.
中文摘要
近幾年來,如何改善塊狀金屬玻璃(bulk metallic glass)的脆性是一個很重要的議題。本研究中,藉由熱力學的計算,我們成功地製備出具有液態相分離結構的鋯鎳銅鋁(Zr63.8Ni16.2Cu15Al5)塊狀金屬玻璃。基於在均質的非晶結構中分佈著液態相分離,相分離鋯基塊狀金屬玻璃的壓縮塑性可以被改善至高達15%。透過研究不同壓縮應變量的相分離鋯基塊狀金屬玻璃,其結果顯示塊狀金屬玻璃變形方式為,先約2%的彈性變形,接著混亂眾多的剪切帶(shear band)會在變形初期形成,然後逐漸地發展成一個主要的剪切帶,並且此剪切帶幾乎支配整個塑性變形直到破壞之前。同時,沿著剪切平面上之主要剪切帶的局部應變會隨著越遠離剪切帶起始形成位置越遠而降低。為了更進一步地去分析此主要的剪切帶,影像紀錄器被應用來紀錄完整的試片變形的過程,根據影像結果發現,應力應變圖塑性區間中的鋸齒狀現象(Serration phenomenon)與影像中每次的剪切滑移有著一對一相符合的結果,說明這些鋸齒狀現象是由在變形的過程中試片間歇性的滑移所引起。

隨後,高取樣速度的應變量測計被使用來研究鈀基塊狀金屬玻璃(Pd40Ni40P20)之應力應變圖中的鋸齒狀現象與剪切帶傳播(shear band propagation)。由於兩片應變量測計是直接地黏貼在測試試片的兩側,故一旦剪切帶形成開始傳播時,兩側的應變量測計會立即補抓到一突然性的位移變化量。基於位移時間曲線,剪切帶傳播速度可以被量測並且發現此速度對外加應變速率並不敏感。在高應變速率下,鋸齒狀現象消失的原因並非是缺乏剪切帶的形成也並非是剪切帶速度改變,而只是因為突然性的位移變化量之訊號被運行中的外加應變速率所淹蓋過去。同時,利用此剪切帶傳播的速度可以計算出剪切帶傳播期間的剪切帶黏度,而此黏度值與一般在高溫過冷液體區間均勻變形下所得到的黏度值相似。比較五種不同的塊狀金屬玻璃,如脆性的鎂基、金基、銅基、延性的鈀基以及具有相分離的鋯基塊狀金屬玻璃,我們發現金屬玻璃的塑性與剪切帶傳播間的動態有著密切的關係,在本質上延展性越好的金屬玻璃其剪切帶傳播的速度會比較慢。

藉由添加二十五體積百分比的具孔隙性鉬顆粒來強化鎂基塊狀金屬玻璃,此鎂基塊狀金屬玻璃複材的塑性可以被改善至高達約10%,與一般文獻上沒有塑性能力的鎂基塊狀金屬玻璃有著很大的區別。然而,在應力應變圖的塑性區間中卻缺乏鋸齒狀的現象。使用應變量測計來研究此鎂基塊狀金屬玻璃複材的剪切帶傳播,結果亦顯示沒有補抓到任何突然性的位移變化量。基於此塊狀金屬玻璃複材微結構的形貌,鋸齒狀現象的消失與缺乏長程的剪切帶傳播有關。透過將一均質玻璃基地區分成許多的分隔區塊,在目前的鎂基塊狀金屬玻璃複材中,只有短程的剪切帶傳播在運行著。考慮強化相顆粒之間的間距以及強化相顆粒的尺寸大小,我們提出一個模型可以成功地解釋塊狀金屬玻璃複材裡剪切帶傳播的發展,同時,此模型對於在設計具延展性的金屬玻璃複材來說將會是個有助益的指標。
Abstract
On the toughening of bulk metallic glasses (BMGs), successful results in the phase-separated Zr63.8Ni16.2Cu15Al5 BMG have achieved compressive ductility over 15% through the computational-thermodynamic approach. In this study, the phase-separated Zr63.8Ni16.2Cu15Al5 BMG was compressed to nominal strains of 3%, 7%, and 10% at low strain rates (~10-4 s-1) and the results demonstrated that the BMG exhibited apparent uniform deformation initially, followed by visible local shear bands development. Afterwards, a single shear along the principal shear plane was soon developed and mainly dominated the whole deformation process. The principal shear contributed more than 2/3 of the overall plastic strain until failure. It was also found that the local shear strain varied along the principal shear plane and decreased monotonically from the shear band initiation site. Subsequently, in-situ compression experiments were conducted to monitor the change of sample shape during deformation in order to properly correlate with the stress-strain curve. The observed images showed that there was a one-to-one correspondence between the intermittent sample sliding and flow serration in the plastic region of stress-strain curve.

Further investigations on flow serration were conducted on the Pd40Ni40P20 BMG through the compression experiments equipped with high-sensitivity strain gauges directly attached to two opposite sides of the test sample. There was an accompanied displacement burst when a shear band starts to propagate during deformation and this displacement burst would be accurately captured by the high-sensitivity strain gauges. Based on the displacement-time profile for one serration, shear-band propagating speed can be estimated and found to be insensitive to the applied strain rates (or the applied crosshead speeds). The disappearance of flow serration at high strain rates should be a result that the signal of displacement burst was overwhelmed by the applied strain rate. Using the shear strain rate data, the measured viscosity within a propagating shear band was found to be relatively low, which is in similar to the viscosity values reported in the supercooled liquid region during homogeneous deformation. In comparison with shear band propagation in the brittle Mg58Cu31Y6Nd5 and Au49Ag5.5Pd2.3Cu26.9Si16.3, moderately ductile Cu50Zr43Al7 and Pd40Ni40P20, and highly ductile phased-separated Zr63.8Ni16.2Cu15Al5 systems, the ductility of BMGs appears to be closely related to the dynamics during shear band propagation. The more ductile in nature the metallic glass is, the slower the shear band propagating speed would become.

We also made attempts to investigate the shear band propagation in the porous Mo particles reinforced Mg58Cu28.5Gd11Ag2.5 bulk metallic glass composites (BMGCs) with up to 10% compressive failure strain. It was found that flow serration was absent in the stress-strain curve. Using high-sensitivity strain gauges, no distinct displacement burst was detected in the displacement-time profile. The diappearance of flow serration for the current porous Mo particles reinforced Mg58Cu28.5Gd11Ag2.5 BMGC is apparently associated with the lack of long-range shear band propagagtion. By employing the approach of separating the homogeneous amorphous matrix into many individual compartments, only short-range shear band propgagation is possible in the current Mg-based BMGC. An effective free spacing considering the spacing between two porous Mo particles and porous Mo particle size was applied to interpret the development of shear band propagation and is a useful indicator for the design of BMGC with high ductility.
目次 Table of Contents
Content i
List of Tables iv
List of Figures vi
中文摘要 xvi
Abstract xviii
Chapter 1 Introduction 1
1.1 Amorphous alloys 1
1.2 Early developments of metallic glasses 2
1.3 Birth of bulk metallic glasses 3
1.4 Status of bulk metallic glasses 4
1.5 Motivation 6
Chapter 2 Background 9
2.1 Evolution of fabrication methods 9
2.2 Systems of bulk metallic glasses 11
2.3 Indexes of glass forming ability 12
2.4 Empirical rules for the formation of amorphous alloys 16
2.5 Characterization of amorphous alloys 19
2.5.1 Mechanical properties 19
2.5.2 Magnetic properties 21
2.5.3 Chemical properties 22
2.5.4 Other properties 22
2.6 Mechanical behaviors of metallic glasses 23
2.6.1 Stress-strain curves and fracture morphologies 23
2.6.2 Temperature effect 25
2.6.3 Strain rate effect 27
2.6.4 Sample size effect 28
2.6.5 Geometric constraint effect 30
2.6.6 Reinforcement effect on BMG composites 31
2.7 Deformation mechanisms of metallic glasses 33
2.8 Fracture mechanisms of metallic glasses 36
Chapter 3 Experimental procedures 42
3.1 Raw materials 42
3.2 Computational thermodynamic approach 43
3.3 Sample preparations 44
3.3.1 Arc melting 45
3.3.2 Suction and injection casting 46
3.4 Identifications of amorphous nature 47
3.4.1 X-ray diffraction analyses 47
3.4.2 Qualitative and quantitative analyses 47
3.4.3 Thermal analyses 48
3.5 Mechanical tests 48
3.5.1 Micro-indentation tests 48
3.5.2 Compression tests 49
3.5.3 Compression tests using high-sensitivity strain gauges 50
3.6 Microstructure observations 51
Chapter 4 Results 53
4.1 Sample observations 53
4.2 Amorphous nature 53
4.2.1 SEM/EDS observations 53
4.2.2 XRD analyses 54
4.2.3 Thermal analyses 55
4.2.4 TEM microstructure observations 56
4.3 Mechanical tests in phase-separated Zr-based BMGs 57
4.3.1 Mechanical properties 57
4.3.2 Fracture characteristics 58
4.3.3 Compressed samples with various strains 60
4.3.4 Continuously strained sample 63
4.4 Mechanical tests in Pd-based BMGs 63
4.4.1 In-situ compression tests 63
4.4.2 Compression tests equipped with high-sensitivity strain gauges 65
4.5 Mechanical tests in the Mg-based BMGC 69
Chapter 5 Discussion 72
5.1 Plastic strain and deformation mode of BMGs 72
5.2 Local shear strain 76
5.3 Intermittent sample sliding 78
5.4 Local heating 81
5.6 Flow serration and shear band viscosity 86
5.7 Flow serration and shear band propagation 90
5.8 Flow serration in porous Mo particles reinforced Mg-based BMGC 94
Chapter 6 Conclusions 100
References 104
Tables 119
Figures 134
參考文獻 References
[1] C. A. Pampillo, Journal of Materials Science 10 (1975) 1194-1227.
[2] H. S. Chen, Reports on Progress in Physics 43 (1980) 353-432.
[3] A. L. Greer, Science 267 (1995) 1947-1953.
[4] W. L. Johnson, MRS Bulletin 24 (1999) 42-56.
[5] A. Inoue, Acta Materialia 48 (2000) 279-306.
[6] W. H. Wang, C. Dong and C. H. Shek, Materials Science & Engineering R-Reports 44 (2004) 45-89.
[7] M. W. Chen, Annual Review of Materials Research 38 (2008) 445-469.
[8] W. Klement, R. H. Willens and P. Duwez, Nature 187 (1960) 869-870.
[9] S. Kavesh, Metallic Glasses, ed. J. J. Gillman and H. L. Leamy. 1978, Mark Park, OH: ASM International. Chapter 2.
[10] H. S. Chen and D. Turnbull, Acta Metallurgica 17 (1969) 1021-1031.
[11] H. S. Chen, J. T. Krause and E. A. Sigety, Journal of Non-Crystalline Solids 13 (1974) 321-327.
[12] H. S. Chen, Acta Metallurgica 22 (1974) 1505-1511.
[13] A. J. Drehman, A. L. Greer and D. Turnbull, Applied Physics Letters 41 (1982) 716-717.
[14] H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters 45 (1984) 615-616.
[15] A. Inoue, T. Zhang and T. Masumoto, Materials Transactions, JIM 30 (1989) 965-972.
[16] A. Inoue, H. Yamaguchi, T. Zhang and T. Masumoto, Materials Transactions, JIM 31 (1990) 104-109.
[17] A. Inoue, K. Kita, T. Zhang and T. Masumoto, Materials Transactions, JIM 30 (1989) 722-725.
[18] A. Inoue, T. Zhang and T. Masumoto, Materials Transactions, JIM 31 (1990) 425-428.
[19] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Materials Transactions, JIM 32 (1991) 609-616.
[20] T. Zhang, A. Inoue and T. Masumoto, Materials Transactions, JIM 32 (1991) 1005-1010.
[21] A. Inoue, N. Nishiyama and H. Kimura, Materials Transactions, JIM 38 (1997) 179-183.
[22] M. Telford, The case for bulk metallic glass. Materials Today. 2004. 36-43.
[23] A. Inoue, Bulk Amorphous Alloys. 1998-1999, Zurich: Trans. Tech.
[24] C. Fan, A. Takeuchi and A. Inoue, Materials Transactions, JIM 40 (1999) 42-51.
[25] C. Fan and A. Inoue, Applied Physics Letters 77 (2000) 46-48.
[26] C. T. Liu, L. Heatherly, D. S. Easton, C. A. Carmichael, J. H. Schneibel, C. H. Chen, J. L. Wright, M. H. Yoo, J. A. Horton and A. Inoue, Metallurgical and Materials Transactions A 29 (1998) 1811-1820.
[27] C. A. Schuh, T. C. Hufnagel and U. Ramamurty, Acta Materialia 55 (2007) 4067-4109.
[28] Z. F. Zhang, F. F. Wu, G. He and J. Eckert, Journal of Materials Science and Technology 23 (2007) 747-767.
[29] J. Schroers and W. L. Johnson, Physical Review Letters 93 (2004) 255506.
[30] Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan and W. H. Wang, Science 315 (2007) 1385-1388.
[31] C. C. Hays, C. P. Kim and W. L. Johnson, Physical Review Letters 84 (2000) 2901-2904.
[32] L. Q. Xing, Y. Li, K. T. Ramesh, J. Li and T. C. Hufnagel, Physical Review B 64 (2001) 180201.
[33] J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang and J. Eckert, Physical Review Letters 94 (2005) 205501.
[34] K. F. Yao, F. Ruan, Y. Q. Yang and N. Chen, Applied Physics Letters 88 (2006) 122106.
[35] X. H. Du, J. C. Huang, K. C. Hsieh, Y. H. Lai, H. M. Chen, J. S. C. Jang and P. K. Liaw, Applied Physics Letters 91 (2007) 131901.
[36] J. S. C. Jang, J. Y. Ciou, T. H. Hung, J. C. Huang and X. H. Du, Applied Physics Letters 92 (2008) 011930.
[37] Y. Zhang, W. H. Wang and A. L. Greer, Nature Materials 5 (2006) 857-860.
[38] P. Yu, H. Y. Bai, J. G. Zhao, C. Q. Jin and W. H. Wang, Applied Physics Letters 90 (2007) 051906.
[39] Z. F. Zhang, H. Zhang, X. F. Pan, J. Das and J. Eckert, Philosophical Magazine Letters 85 (2005) 513-521.
[40] F. X. Liu, P. K. Liaw, G. Y. Wang, C. L. Chiang, D. A. Smith, P. D. Rack, J. P. Chu and R. A. Buchanan, Intermetallics 14 (2006) 1014-1018.
[41] W. H. Jiang, G. J. Fan, H. Choo and P. K. Liaw, Materials Letters 60 (2006) 3537-3540.
[42] H. Bei, S. Xie and E. P. George, Physical Review Letters 96 (2006) 105503.
[43] H. M. Chen, Y. C. Chang, T. H. Hung, X. H. Du, J. C. Huang, J. S. C. Jang and P. K. Liaw, Materials Transactions, JIM 48 (2007) 1802-1805.
[44] Z. F. Zhang, J. Eckert and L. Schultz, Acta Materialia 51 (2003) 1167-1179.
[45] B. J. Park, H. J. Chang, D. H. Kim and W. T. Kim, Applied Physics Letters 85 (2004) 6353-6355.
[46] B. J. Park, H. J. Chang, D. H. Kim, W. T. Kim, K. Chattopadhyay, T. A. Abinandanan and S. Bhattacharyya, Physical Review Letters 96 (2006) 245503.
[47] A. Takeuchi and A. Inoue, Materials Transactions, JIM 41 (2000) 1372-1378.
[48] 吳學陞, 工業材料 149 (1999) 154-165.
[49] H. S. Chen and C. E. Miller, Review of Scientific Instruments 41 (1970) 1237-1238.
[50] H. H. Liebermann and C. D. Graham, Ieee Transactions on Magnetics 12 (1976) 921-923.
[51] A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Materials Transactions, JIM 33 (1992) 937-945.
[52] I. W. Donald and H. A. Davies, Journal of Non-Crystalline Solids 30 (1978) 77-85.
[53] A. Hruby, Czechoslovak Journal of Physics Section B 22 (1972) 1187-1193.
[54] K. Mondal and B. S. Murty, Journal of Non-Crystalline Solids 351 (2005) 1366-1371.
[55] Z. J. Yan, J. F. Li, S. R. He and Y. H. Zhou, Materials Research Bulletin 38 (2003) 681-689.
[56] X. S. Xiao, S. S. Fang, L. Xia, W. H. Li, Q. Hua and Y. D. Dong, Journal of Alloys and Compounds 351 (2003) 324-328.
[57] O. N. Senkov and D. B. Miracle, Materials Research Bulletin 36 (2001) 2183-2198.
[58] Z. P. Lu, C. T. Liu and Y. D. Dong, Journal of Non-Crystalline Solids 341 (2004) 93-100.
[59] T. H. Hung, J. C. Huang, J. S. C. Jang and S. C. Lu, Materials Transactions, JIM 48 (2007) 239-243.
[60] O. N. Senkov, D. B. Miracle and H. M. Mullens, Journal of Applied Physics 97 (2005) 103502.
[61] D. B. Miracle and O. N. Senkov, Journal of Non-Crystalline Solids 319 (2003) 174-191.
[62] T. H. Hung, Y. C. Chang, Y. N. Wang, C. W. Tang, J. N. Kuo, H. M. Chen, Y. L. Tsai, J. C. Huang, J. S. C. Jang and C. T. Liu, Materials Transactions, JIM 48 (2007) 1621-1625.
[63] T. Egami and Y. Waseda, Journal of Non-Crystalline Solids 64 (1984) 113-134.
[64] T. Egami, Materials Science and Engineering A 226 (1997) 261-267.
[65] T. Egami, Journal of Non-Crystalline Solids 207 (1996) 575-582.
[66] Y. M. Wang, W. P. Xu, J. B. Qiang, C. H. Wong, C. H. Shek and C. Dong, Materials Science and Engineering A (2004) 411-416.
[67] Y. M. Wang, C. H. Shek, J. B. Qian, C. H. Wong, W. R. Chen and C. Dong, Scripta Materialia 48 (2003) 1525-1529.
[68] Q. Wang, Y. M. Wang, J. B. Qiang, X. F. Zhang, C. H. Shek and C. Dong, Intermetallics 12 (2004) 1229-1232.
[69] C. H. Shek, Y. M. Wang and C. Dong, Materials Science and Engineering A 291 (2000) 78-85.
[70] M. Iqbal, W. S. Sun, H. F. Zhang, J. I. Akhter and Z. Q. Hu, Materials Science and Engineering A 447 (2007) 167-173.
[71] S. S. Fang, X. Xiao, X. Lei, W. H. Li and Y. D. Dong, Journal of Non-Crystalline Solids 321 (2003) 120-125.
[72] W. Chen, Y. Wang, J. Qiang and C. Dong, Acta Materialia 51 (2003) 1899-1907.
[73] S. Azad, A. Mandal and R. K. Mandal, Materials Science and Engineering A 458 (2007) 348-354.
[74] Z. P. Lu, Y. Li and S. C. Ng, Journal of Non-Crystalline Solids 270 (2000) 103-114.
[75] Z. P. Lu, H. Tan, Y. Li and S. C. Ng, Scripta Materialia 42 (2000) 667-673.
[76] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng and T. T. Goh, Scripta Materialia 36 (1997) 783-787.
[77] T. A. Waniuk, J. Schroers and W. L. Johnson, Applied Physics Letters 78 (2001) 1213-1215.
[78] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Materialia 49 (2001) 2645-2652.
[79] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Materials Transactions 42 (2001) 1149-1151.
[80] T. D. Shen, Y. He and R. B. Schwarz, Journal of Materials Research 14 (1999) 2107-2115.
[81] Z. P. Lu and C. T. Liu, Acta Materialia 50 (2002) 3501-3512.
[82] Z. P. Lu and C. T. Liu, Physical Review Letters 91 (2003) 115505.
[83] G. J. Fan, H. Choo and P. K. Liaw, Journal of Non-Crystalline Solids 353 (2007) 102-107.
[84] Q. J. Chen, J. Shen, D. L. Zhang, H. B. Fan, J. Sun and D. G. McCartney, Materials Science and Engineering A 433 (2006) 155-160.
[85] X. H. Du, J. C. Huang, C. T. Liu and Z. P. Lu, Journal of Applied Physics 101 (2007) 086108.
[86] X. K. Xi, D. Q. Zhao, M. X. Pan and W. H. Wang, Intermetallics 13 (2005) 638-641.
[87] D. Ma, H. Cao, L. Ding, Y. A. Chang, K. C. Hsieh and Y. Pan, Applied Physics Letters 87 (2005) 171914.
[88] Z. P. Lu and C. T. Liu, Journal of Materials Science 39 (2004) 3965-3974.
[89] E. S. Park, H. G. Kang, W. T. Kim and D. H. Kim, Journal of Non-Crystalline Solids 279 (2001) 154-160.
[90] K. Amiya and A. Inoue, Materials Transactions 42 (2001) 543-545.
[91] K. Amiya and A. Inoue, Materials Transactions, JIM 41 (2000) 1460-1462.
[92] H. Men, Z. Q. Hu and J. Xu, Scripta Materialia 46 (2002) 699-703.
[93] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, Applied Physics Letters 87 (2005) 181915.
[94] Y. T. Cheng, T. H. Hung, J. C. Huang, P. J. Hsieh and J. S. C. Jang, Materials Science and Engineering A 449 (2007) 501-505.
[95] Y. T. Cheng, T. H. Hung, J. C. Huang, J. S. C. Jang, C. Y. A. Tsao and F. Lee, Intermetallics 14 (2006) 866-870.
[96] T. Zhang and A. Inoue, Materials Transactions, JIM 39 (1998) 857-862.
[97] Y. Yokoyama, K. Yamano, K. Fukaura, H. Sunada and A. Inoue, Materials Transactions, JIM 40 (1999) 1015-1018.
[98] Y. Yokoyama, N. Nishiyama, K. Fukaura, H. Sunada and A. Inoue, Materials Transactions, JIM 40 (1999) 696-699.
[99] A. Inoue, A. Takeuchi and T. Zhang, Metallurgical and Materials Transactions A 29 (1998) 1779-1793.
[100] A. Inoue, Y. Shinohara and J. S. Gook, Materials Transactions, JIM 36 (1995) 1427-1433.
[101] A. Inoue, H. Koshiba, T. Zhang and A. Makino, Journal of Applied Physics 83 (1998) 1967-1974.
[102] A. Inoue and A. Katsuya, Materials Transactions, JIM 37 (1996) 1332-1336.
[103] A. Inoue, K. Fujita, T. Zhang and A. Makino, Materials Transactions, JIM 39 (1998) 327-333.
[104] A. Inoue, T. Zhang, W. Zhang and A. Takeuchi, Materials Transactions, JIM 37 (1996) 99-108.
[105] A. Inoue, T. Zhang, A. Takeuchi and W. Zhang, Materials Transactions, JIM 37 (1996) 636-640.
[106] Chaudhar.P, J. J. Cuomo and R. J. Gambino, Applied Physics Letters 22 (1973) 337-339.
[107] K. H. J. Buschow and A. M. Vanderkraan, Journal of Magnetism and Magnetic Materials 22 (1981) 220-226.
[108] C. L. Qin, W. Zhang, K. Asami, H. Kimura and A. Inoue, Journal of Materials Research 22 (2007) 1710-1717.
[109] C. L. Qin, K. Asami, T. Zhang, W. Zhang and A. Inoue, Materials Transactions 44 (2003) 1042-1045.
[110] S. J. Pang, T. Zhang, K. Asami and A. Inoue, Acta Materialia 50 (2002) 489-497.
[111] S. Pang, T. Zhang, K. Asami and A. Inoue, Materials Transactions 43 (2002) 2137-2142.
[112] K. Asami, C. L. Qin, T. Zhang and A. Inoue, Materials Science and Engineering A 375-377 (2004) 235-239.
[113] H. B. Yao, Y. Li and A. T. S. Wee, Electrochimica Acta 48 (2003) 2641-2650.
[114] Y. Li, H. Y. Bai, P. Wen, Z. X. Liu and Z. F. Zhao, Journal of Physics 15 (2003) 4809-4815.
[115] Y. Li and H. Y. Bai, Journal of Non-Crystalline Solids 351 (2005) 2378-2382.
[116] H. Tanaka, H. Senoh, N. Kuriyama, K. Aihara, N. Terashita and T. Nakahata, Materials Science and Engineering B 108 (2004) 81-90.
[117] T. Shoji and A. Inoue, Journal of Alloys and Compounds 292 (1999) 275-280.
[118] K. Isogai, T. Shoji, H. Kimura and A. Inoue, Materials Transactions, JIM 41 (2000) 1486-1489.
[119] Z. F. Zhang, G. He, J. Eckert and L. Schultz, Physical Review Letters 91 (2003) 045505.
[120] F. Spaepen, Scripta Materialia 54 (2006) 363-367.
[121] F. Spaepen, Acta Metallurgica 25 (1977) 407-415.
[122] J. Schroers, Q. Pham and A. Desai, Journal of Microelectromechanical Systems 16 (2007) 240-247.
[123] J. Schroers, T. Nguyen, S. O'Keeffe and A. Desai, Materials Science and Engineering A 449 (2007) 898-902.
[124] H. Q. Li, K. X. Tao, C. Fan, P. K. Liaw and H. Choo, Applied Physics Letters 89 (2006) 041921.
[125] H. Q. Li, C. Fan, H. Choo and P. K. Liaw, Materials Transactions, JIM 48 (2006) 1752-1754.
[126] C. Fan, P. K. Liaw, V. Haas, J. J. Wall, H. Choo, A. Inoue and C. T. Liu, Physical Review B 74 (2006) 014205.
[127] C. Fan, H. Q. Li, L. J. Kecskes, K. X. Tao, H. Choo, P. K. Liaw and C. T. Liu, Physical Review Letters 96 (2006) 145506
[128] C. Fan, Y. F. Gao, H. Q. Li, H. Choo, P. K. Liaw, A. Inoue and C. T. Liu, Journal of Materials Research 22 (2007) 445-452.
[129] F. H. Dalla Torre, A. Dubach, M. E. Siegrist and J. F. Loffler, Applied Physics Letters 89 (2006) 091918.
[130] J. Zhang, J. M. Park, D. H. Kim and H. S. Kim, Materials Science and Engineering A 449 (2007) 290-294.
[131] X. S. Xiao, S. S. Fang, L. Xia, W. H. Li, Q. Hua and Y. Dong, Journal of Non-Crystalline Solids 330 (2003) 242-247.
[132] W. H. Jiang, F. X. Liu, F. Jiang, K. Q. Qiu, H. Choo and P. K. Liaw, Journal of Materials Research 22 (2007) 2655-2658.
[133] T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue and K. Higashi, Intermetallics 10 (2002) 1071-1077.
[134] W. H. Jiang, G. J. Fan, F. Liu, G. Y. Wang, H. Choo and P. K. Liaw, International Journal of Plasticity 24 (2008) 1-16.
[135] Q. Zheng, S. Cheng, J. H. Strader, E. Ma and J. Xu, Scripta Materialia 56 (2007) 161-164.
[136] S. Xie and E. P. George, Intermetallics 16 (2008) 485-489.
[137] W. F. Wu, Z. Han and Y. Li, Applied Physics Letters 93 (2008) 061908.
[138] F. F. Wu, Z. F. Zhang, S. X. Mao and J. Eckert, Philosophical Magazine Letters 89 (2009) 178-184.
[139] C. A. Volkert, A. Donohue and F. Spaepen, Journal of Applied Physics 103 (2008) 083539.
[140] B. E. Schuster, Q. Wei, T. C. Hufnagel and K. T. Ramesh, Acta Materialia 56 (2008) 5091-5100.
[141] B. E. Schuster, Q. Wei, M. H. Ervin, S. O. Hruszkewycz, M. K. Miller, T. C. Hufnagel and K. T. Ramesh, Scripta Materialia 57 (2007) 517-520.
[142] C. J. Lee, J. C. Huang and T. G. Nieh, Applied Physics Letters 91 (2007) 161913.
[143] Y. H. Lai, C. J. Lee, Y. T. Cheng, H. S. Chou, H. M. Chen, X. H. Du, C. I. Chang, J. C. Huang, S. R. Jian, J. S. C. Jang and T. G. Nieh, Scripta Materialia 58 (2008) 890-893.
[144] Y. J. Huang, J. Shen and J. F. Sun, Applied Physics Letters 90 (2007) 081919.
[145] Y. Yang, J. C. Ye, J. Lu, F. X. Liu and P. K. Liaw, Acta Materialia 57 (2009) 1613-1623.
[146] W. F. Wu, C. Y. Zhang, Y. W. Zhang, K. Y. Zeng and Y. Li, Intermetallics 16 (2008) 1190-1198.
[147] W. F. Wu, Y. Li and C. A. Schuh, Philosophical Magazine 88 (2008) 71-89.
[148] G. Sunny, J. Lewandowski and V. Prakash, Journal of Materials Research 22 (2007) 389-401.
[149] K. Mondal and K. Hono, Materials Transactions 50 (2009) 152-157.
[150] W. H. Jiang, K. Q. Qiu, F. X. Liu, H. Choo and P. K. Liaw, Advanced Engineering Materials 9 (2007) 147-150.
[151] K. Wang, T. Fujita, Y. Q. Zeng, N. Nishiyama, A. Inoue and M. W. Chen, Acta Materialia 56 (2008) 2834-2842.
[152] C. Fan and A. Inoue, Materials Transactions, JIM 41 (2000) 1467-1470.
[153] C. Fan, R. T. Ott and T. C. Hufnagel, Applied Physics Letters 81 (2002) 1020-1022.
[154] C. Fan, D. C. Qiao, T. W. Wilson, H. Choo and P. K. Liaw, Materials Science and Engineering A 431 (2006) 158-165.
[155] T. Wada, A. Inoue and A. L. Greer, Applied Physics Letters 86 (2005) 251907.
[156] S. Pauly, J. Das, J. Bednarcik, N. Mattern, K. B. Kim, D. H. Kim and J. Eckert, Scripta Materialia 60 (2009) 431-434.
[157] S. Pauly, J. Das, N. Mattern, D. H. Kim and J. Eckert, Intermetallics 17 (2009) 453-462.
[158] D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, Applied Physics Letters 89 (2006) 261904.
[159] C. A. Pampillo and Reimschu.Ac, Journal of Materials Science 9 (1974) 718-724.
[160] M. H. Cohen and D. Turnbull, Journal of Chemical Physics 31 (1959) 1164-1169.
[161] D. E. Polk and D. Turnbull, Acta Metallurgica 20 (1972) 493-498.
[162] A. S. Argon, Acta Metallurgica 27 (1979) 47-58.
[163] D. Srolovitz, V. Vitek and T. Egami, Acta Metallurgica 31 (1983) 335-352.
[164] C. A. Schuh and A. C. Lund, Nature Materials 2 (2003) 449-452.
[165] M. L. Falk, Physical Review B 60 (1999) 7062-7070.
[166] A. S. Argon and H. Y. Kuo, Materials Science and Engineering 39 (1979) 101-109.
[167] D. Pan, A. Inoue, T. Sakurai and M. W. Chen, Proceedings of the National Academy of Sciences of the United States of America 105 (2008) 14769-14772.
[168] M. Zink, K. Samwer, W. L. Johnson and S. G. Mayr, Physical Review B 73 (2006) 172203.
[169] S. G. Mayr, Physical Review Letters 97 (2006) 195501.
[170] J. S. Langer, Physical Review E 77 (2008) 021502.
[171] B. Yang, C. T. Liu, T. G. Nieh, M. L. Morrison, P. K. Liaw and R. A. Buchanan, Journal of Materials Research 21 (2006) 915-922.
[172] B. Yang, C. T. Liu and T. G. Nieh, Applied Physics Letters 88 (2006) 221911.
[173] W. L. Johnson and K. Samwer, Physical Review Letters 95 (2005) 195501.
[174] P. E. Donovan, Acta Metallurgica 37 (1989) 445-456.
[175] Z. F. Zhang and J. Eckert, Physical Review Letters 94 (2005) 094301.
[176] T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue and K. Higashi, Scripta Materialia 46 (2002) 43-47.
[177] G. He, J. Lu, Z. Bian, D. J. Chen, G. L. Chen, G. C. Tu and G. J. Chen, Materials Transactions, JIM 42 (2001) 356-364.
[178] S. Takayama, Scripta Metallurgica 13 (1979) 463-467.
[179] N. I. Noskova, N. F. Vildanova, Y. I. Filippov and A. P. Potapov, Physica Status Solidi A 87 (1985) 549-557.
[180] J. Megusar, A. S. Argon and N. J. Grant, Materials Science and Engineering 38 (1979) 63-72.
[181] P. Lowhaphandu, S. L. Montgomery and J. J. Lewandowski, Scripta Materialia 41 (1999) 19-24.
[182] A. Inoue, H. M. Kimura and T. Zhang, Materials Science and Engineering A 294-296 (2000) 727-735.
[183] L. A. Davis and Y. T. Yeow, Journal of Materials Science 15 (1980) 230-236.
[184] V. Z. Bengus, P. Diko, K. Csach, J. Miskuf, V. Ocelik, E. B. Korolkova, E. D. Tabachnikova and P. Duhaj, Journal of Materials Science 25 (1990) 1598-1602.
[185] A. T. Alpas, L. Edwards and C. N. Reid, Materials Science and Engineering 98 (1988) 501-504.
[186] W. J. Wright, R. Saha and W. D. Nix, Materials Transactions 42 (2001) 642-649.
[187] H. B. Cao, Y. Pan, L. Ding, C. Zhang, J. Zhu, K. C. Hsieh and Y. A. Chang, Acta Materialia 56 (2008) 2032-2036.
[188] H. B. Cao, D. Ma, K. C. Hsieh, L. Ding, W. G. Stratton, P. M. Voyles, Y. Pan, M. D. Cai, J. T. Dickinson and Y. A. Chang, Acta Materialia 54 (2006) 2975-2982.
[189] X. Y. Yan, Y. A. Chang, Y. Yang, F. Y. Xie, S. L. Chen, F. Zhang, S. Daniel and M. H. He, Intermetallics 9 (2001) 535-538.
[190] X. H. Lin and W. L. Johnson, Journal of Applied Physics 78 (1995) 6514-6519.
[191] N. Sanders and A. P. Miodownik, CALPHAD, Calculation of Phase Diagrams: A Comprehensive Guide. 1998, Oxford, UK: Elsevier Science.
[192] L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams. 1970, New York: Academic Press.
[193] Y. A. Chang, S. L. Chen, F. Zhang, X. Y. Yan, F. Y. Xie, R. Schmid-Fetzer and W. A. Oates, Progress in Materials Science 49 (2004) 313-345.
[194] S. L. Chen, F. Zhang, S. Daniel, F. Y. Xie, X. Y. Yan, Y. A. Chang, R. Schmid-Fetzer and W. A. Oates, JOM: Journal of the Minerals Metals & Materials Society 55 (2003) 48-51.
[195] S. L. Chen, S. Daniel, F. Zhang, Y. A. Chang, X. Y. Yan, F. Y. Xie, R. Schmid-Fetzer and W. A. Oates, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 26 (2002) 175-188.
[196] J. S. C. Jang, C. C. Tseng, L. J. Chang, C. F. Chang, W. J. Lee, J. C. Huang and C. T. Liu, Materials Transactions, JIM 48 (2007) 1684-1688.
[197] F. Spaepen, Acta Metallurgica 23 (1975) 615-620.
[198] R. D. Conner, Y. Li, W. D. Nix and W. L. Johnson, Acta Materialia 52 (2004) 2429-2434.
[199] P. J. Tao, Y. Z. Yang, X. J. Bai, Z. W. Xie, X. C. Chen, Z. J. Dong, J. G. Wen and H. J. Long, Journal of Non-Crystalline Solids 354 (2008) 3742-3746.
[200] Y. Zhang and A. L. Greer, Applied Physics Letters 89 (2006) 071907.
[201] M. Q. Jiang, W. H. Wang and L. H. Dai, Scripta Materialia 60 (2009) 1004-1007.
[202] J. S. C. Jang, C. T. Tseng, L. J. Chang, J. C. C. Huang, Y. C. Yeh and J. L. Jou, Advanced Engineering Materials 10 (2008) 1048-1052.
[203] J. Lu, G. Ravichandran and W. L. Johnson, Acta Materialia 51 (2003) 3429-3443.
[204] Y. Kawamura, T. Nakamura, H. Kato, H. Mano and A. Inoue, Materials Science and Engineering A 304-306 (2001) 674-678.
[205] Y. Kawamura, T. Nakamura and A. Inoue, Scripta Materialia 39 (1998) 301-306.
[206] Y. Kawamura and A. Inoue, Applied Physics Letters 77 (2000) 1114-1116.
[207] J. S. C. Jang, C. F. Chang, Y. C. Huang, J. C. Huang, W. J. Chiang and C. T. Liu, Intermetallics 17 (2009) 200-204.
[208] J. P. Chu, C. L. Chiang, T. G. Nieh and Y. Kawamura, Intermetallics 10 (2002) 1191-1195.
[209] Y. C. Chang, T. H. Hung, H. M. Chen, J. C. Huang, T. G. Nieh and C. J. Lee, Intermetallics 15 (2007) 1303-1308.
[210] Y. C. Chang, J. C. Huang, C. W. Tang, C. I. Chang and J. S. C. Jang, Materials Transactions, JIM 49 (2008) 2605-2610.
[211] Y. C. Chang, J. C. Huang, Y. T. Cheng, C. J. Lee, X. H. Du and T. G. Nieh, Journal of Applied Physics 103 (2008) 103521.
[212] S. X. Song, H. Bei, J. Wadsworth and T. G. Nieh, Intermetallics 16 (2008) 813-818.
[213] H. S. Chen, Scripta Metallurgica 7 (1973) 931-935.
[214] W. J. Wright, R. B. Schwarz and W. D. Nix, Materials Science and Engineering A 319 (2001) 229-232.
[215] F. H. Dalla Torre, A. Dubach, J. Schallibaum and J. F. Loffler, Acta Materialia 56 (2008) 4635-4646.
[216] J. J. Lewandowski and A. L. Greer, Nature Materials 5 (2006) 15-18.
[217] T. C. Hufnagel, T. Jiao, Y. Li, L. Q. Xing and K. T. Ramesh, Journal of Materials Research 17 (2002) 1441-1445.
[218] C. J. Gilbert, J. W. Ager, V. Schroeder, R. O. Ritchie, J. P. Lloyd and J. R. Graham, Applied Physics Letters 74 (1999) 3809-3811.
[219] K. Georgarakis, M. Aljerf, Y. Li, A. LeMoulec, F. Charlot, A. R. Yavari, K. Chornokhvostenko, E. Tabachnikova, G. A. Evangelakis, D. B. Miracle, A. L. Greer and T. Zhang, Applied Physics Letters 93 (2008) 031907.
[220] T. Masumoto and R. Maddin, Acta Metallurgica 19 (1971) 725.
[221] S. X. Song and T. G. Nieh, Intermetallics 17 (2009) 762-767.
[222] W. J. Wright, T. C. Hufnagel and W. D. Nix, Journal of Applied Physics 93 (2003) 1432-1437.
[223] W. L. Johnson, J. Lu and M. D. Demetriou, Intermetallics 10 (2002) 1039-1046.
[224] M. H. Cohen and G. S. Grest, Physical Review B 20 (1979) 1077-1098.
[225] G. S. Grest and M. H. Cohen, Advances in Chemical Physics 48 (1981) 455-525.
[226] H. Kimura and T. Masumoto, Acta Metallurgica 31 (1983) 231-240.
[227] C. M. McNally, W. H. Kao and T. G. Nieh, Scripta Metallurgica 22 (1988) 1847-1850.
[228] D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou and W. L. Johnson, Nature 451 (2008) 1085-U3.
[229] R. E. Reed-hill and R. Abbaschian, Physical Metallurgy Principles. 1994: I.T. Publishing, 3rd. 432.
[230] T. H. Hung, Ph.D. Thesis, Study of Thermal and Mechanical Properties in Mg-Cu-Gd Amorphous Alloys, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code