Responsive image
博碩士論文 etd-1116109-202132 詳細資訊
Title page for etd-1116109-202132
論文名稱
Title
以微米壓縮量測不同金屬玻璃微米柱之尺寸效應
Effects of Sample Size on Various Metallic Glass Micropillars in Microcompression
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
204
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-29
繳交日期
Date of Submission
2009-11-16
關鍵字
Keywords
玻璃、微米壓縮測試、尺寸效應
microcompression tests, sample size effect, metallic glass
統計
Statistics
本論文已被瀏覽 5744 次,被下載 265
The thesis/dissertation has been browsed 5744 times, has been downloaded 265 times.
中文摘要
在過去的幾十年中,塊狀金屬玻璃已經引起廣泛注意,由於它具備了許多優異的特
性,例如良好的抗腐蝕能力、大的彈性能、高的強度以及硬度等等。然而,由於微機電
系統以及其他微米尺度元件的出現,微米尺度下金屬玻璃的基本機械性質變得越來越重
要。因此,本研究論文中,才會使用單軸微米壓縮測試技術在金屬玻璃上做分析。
不同尺寸大小之Mg65Cu25Gd10 與Zr63.8Ni16.2Cu15Al5 金屬玻璃微米柱已經成功地藉
由聚焦離子束來製備,接著以不同應變速率在室溫下進行微米壓縮測試。其結果發現,
鎂基與鋯基金屬玻璃具有明顯的尺寸效應,也就是說當材料的尺寸變小時,其強度是呈
現上升。而強度的上升也可以藉由Weibull 方程式來做說明及統計,鎂基與鋯基金屬玻
璃之Weibull modulus 分別估算為35 與60。在鋯基金屬玻璃中測得較高Weibull modulus
也符合這個成分的金屬玻璃比較具有延性之特性。
此外,藉由高溫微米壓縮系統研究微米尺度下Au49Ag5.5Pd2.3Cu26.9Si16.3 金屬玻璃在
室溫到其玻璃轉化溫度之變型行為。對於1 μm 尺寸之金基金屬玻璃微米柱而言,發現
在玻璃轉化溫度附近有一個明顯的轉變,其變形機制由不均勻的變形到均勻的變形。結
果發現,這個明顯的轉變大約發生在應變速率1 x 10-2 s-1 以及溫度393 K 下。
而對於3.8 μm 尺寸之金基金屬玻璃微米柱而言,進一步利用高溫微米壓縮測試來
研究金基金屬玻璃在溫度395.9-401.2 K 下的均勻變形行為。其結果發現,微米尺度下
金基金屬玻璃之強度隨溫度上升而下降;隨應變速率下降而下降。而塑性變形行為可以
利用金屬玻璃之變形模型來做分析。其結果發現,變形時之活化能以及尺寸大小都可利
用此變形模型推算出來,且經比較發現結果符合其理論。
Abstract
Over the past decades, bulk metallic glasses (BMGs) have attracted extensive interests
because of their unique properties such as good corrosion resistance, large elastic limit, as
well as high strength and hardness. However, with the advent of micro-electro-mechanical
systems (MEMS) and other microscaled devices, the fundamental properties of
micrometer-sized BMGs have become increasingly more important. Thus, in this study, a
methodology for performing uniaxial compression tests on BMGs having micron-sized
dimensions is presented.
Micropillar with diameters of 3.8, 1 and 0.7 μm are fabricated successfully from the
Mg65Cu25Gd10 and Zr63.8Ni16.2Cu15Al5 BMGs using focus ion beam, and then tested in
microcompression at room temperature and strain rates from 1 x 10-4 to 1 x 10-2 s-1.
Microcompression tests on the Mg- and Zr-based BMG pillar samples have shown an
obvious sample size effect, with the yield strength increasing with decreasing sample
diameter. The strength increase can be rationalized by the Weibull statistics for brittle
materials, and the Weibull moduli of the Mg- and Zr-based BMGs are estimated to be about
35 and 60, respectively. The higher Weibull modulus of the Zr-based BMG is consistent with
the more ductile nature of this system.
In additions, high temperature microcompression tests are performed to investigate the
deformation behavior of micron-sized Au49Ag5.5Pd2.3Cu26.9Si16.3 BMG pillar samples from
room to their glass transition temperature (~400 K). For the 1 μm Au-based BMG pillars, a
transition from inhomogeneous flow to homogeneous flow is clearly observed at or near the
glass transition temperature. Specifically, the flow transition temperature is about 393 K atthe strain rate of 1 x 10-2 s-1.
For the 3.8 μm Au-based BMG pillars, in order to investigate the homogeneous
deformation behavior, microcompression tests are performed at 395.9-401.2 K. The strength
is observed to decrease with increasing temperature and decreasing strain rate. Plastic flow
behavior can be described by a shear transition zone model. The activation energy and the
size of the basic flow unit are deduced and compared favorably with the theory.
目次 Table of Contents
Table of Content i
List of Tables v
List of Figures vii
Abstract xvi
中文摘要 xviii
Chapter 1 Introduction 1
1-1 Amorphous alloys 1
1-2 The evolution of Mg-, Zr- and Au-based amorphous alloys 2
1-3 The sample size effect on amorphous alloys 5
1-4 Motives of this research 7
Chapter 2 Background and Literature Review 10
2-1 The history of amorphous alloys 10
2-2 The systems of amorphous alloys 12
2-3 The indices for predicting glass forming ability (GFA) 13
2-4 The main empirical rules for the synthesis of amorphous alloys 16
2-5 Properties and behaviors of amorphous alloys 19
2-5-1 Mechanical properties 19
2-5-2 Deformation mechanisms 20
2-5-3 Characterization of shear bands 22
2-5-4 Deformation behavior 23
2-5-5 Deformation model 26
2-6 Introduction of microcompression tests 28
2-6-1 Microsample preparation 29
2-6-2 Force application and measurement 32
2-6-3 Parameters of microcompression tests 32
2-6-4 Microscale characterization of mechanical properties 35
Chapter 3 Experimental Procedures 39
3-1 Materials 39
3-2 Sample preparation 40
3-2-1 Preparation for Mg65Cu25Gd10 40
3-2-2 Preparation for Zr63.8Ni16.2Cu15Al5 41
3-2-3 Preparation for Au49Ag5.5Pd2.3Cu26.9Si16.3 43
3-3 Property measurements and analyses 44
3-3-1 XRD and SEM/EDS characterization of as-cast ingots 44
3-3-2 Thermal analysis using DSC 44
3-3-3 Microstructure analysis using TEM 45
3-4 Microcompression test 45
3-4-1 Microcompression sample fabrication using FIB 45
3-4-2 Microcompression test using nanoindentation system 46
3-4-3 Morphology of deformed pillar samples 46
3-4-4 Microstructures of deformed pillar samples 47
3-5 High temperature microcompression test 47
3-5-1 MTS Nanoindenter XP system 48
3-5-2 Hysitron Triboindenter system 48
3-6 Nanoindentation measurements 49
3-6-1 Elastic modulus and hardness 49
3-6-2 Abrasive wear 50
Chapter 4 Experimental Results 51
4-1 XRD and SEM/EDS analysis 51
4-2 DSC analysis 51
4-3 TEM analysis 52
4-4 Microcompression test 54
4-4-1 Results for Mg65Cu25Gd10 54
4-4-2 Results for Zr63.8Ni16.2Cu15Al5 56
4-4-3 TEM analysis of the microstructure in pillar sample 58
4-5 High temperature microcompression test 60
4-5-1 Results for Au49Ag5.5Pd2.3Cu26.9Si16.3 using MTS Nanoindenter 60
4-4-2 Results for Au49Ag5.5Pd2.3Cu26.9Si16.3 using Hysitron Triboindenter 62
4-6 Nanoindentation and nanoscratch test 63
4-6-1 Elastic modulus and hardness 64
4-6-2 Abrasive wear behavior 64
Chapter 5 Discussions 66
5-1 Room temperature microcompression test 66
5-1-1 Evolution of Young's modulus 66
5-1-2 Effect of FIB damage 68
5-1-3 Weibull statistics 69
5-1-4 Sample size and strain rate effect 71
5-1-5 Strain burst phenomena 73
5-1-6 Strain burst speed 75
5-2 High temperature microcompression test 78
5-2-1 Effect of temperature on mechanical behavior 78
5-2-2 Homogeneous flow 80
Chapter 6 Conclusions 83
References 86
Tables 97
Figures 113
參考文獻 References
[1] A. C. Lund and C. A. Schuh, Journal of Applied Physics, 2004, 95, 4815-4822.
[2] K. Mohri, Ieee Transactions on Magnetics, 1984, 20, 942-947.
[3] E. Hristoforou and R. E. Reilly, Ieee Transactions on Magnetics, 1994, 30, 2728-2733.
[4] A. Inoue, Materials Science and Engineering A, 2001, 304-306, 1-10.
[5] N. H. Pryds, Materials Science and Engineering A, 2004, 375-377, 186-193.
[6] A. Inoue, K. Ohtera, K. Kita and T. Masumoto, Japanese Journal of Applied Physics 1988, 27, L2248-L2251.
[7] S. G. Kim, A. Inoue and T. Masumoto, Materials Transactions, JIM, 1990, 31, 929-934.
[8] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Materials Transactions, JIM, 1991, 32, 609-616.
[9] A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Materials Transactions, JIM, 1992, 33, 937-945.
[10] X. K. Xi, R. J. Wang, D. Q. Zhao, M. X. Pan and W. H. Wang, Journal of Non-Crystalline Solids, 2004, 344, 105-109.
[11] H. Men, W. T. Kim and D. H. Kim, Journal of Non-Crystalline Solids, 2004, 337, 29-35.
[12] A. Inoue, T. Zhang and T. Masumoto, Materials Transactions, JIM, 1990, 31, 177-183.
[13] T. Zhang, A. Inoue and T. Masumoto, Materials Transactions, JIM, 1991, 32, 1005-1010.
[14] A. Peker and W. L. Johnson, Applied Physics Letters, 1993, 63, 2342-2344.
[15] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba and T. Masumoto, Materials Transactions, JIM, 1993, 34, 1234-1237.
[16] W. Klement, R. H. Willens and P. Duwez, Nature, 1960, 187, 869-870.
[17] H. S. Chen and D. Turnbull, Journal of Chemical Physics, 1968, 48, 2560-2571.
[18] J. Schroers, B. Lohwongwatana, W. L. Johnson and A. Peker, Applied Physics Letters, 2005, 87, 061912.
[19] C. C. Hays, C. P. Kim and W. L. Johnson, Physical Review Letters, 2000, 84, 2901-2904.
[20] L. Q. Xing, Y. Li, K. T. Ramesh, J. Li and T. C. Hufnagel, Physical Review B, 2001, 64, 180201.
[21] H. Choi-Yim, R. D. Conner, F. Szuecs and W. L. Johnson, Acta Materialia, 2002, 50, 2737-2745.
[22] A. Inoue, W. Zhang, T. Tsurui, A. R. Yavari and A. L. Greer, Philosophical Magazine Letters, 2005, 85, 221-229.
[23] Y. K. Xu, H. Ma, J. Xu and E. Ma, Acta Materialia, 2005, 53, 1857-1866.
[24] J. S. C. Jang, J. Y. Ciou, T. H. Hung, J. C. Huang and X. H. Du, Applied Physics Letters, 2008, 92, 011930.
[25] A. Inoue, T. Zhang and Y. H. Kim, Materials Transactions, JIM, 1997, 38, 749-755.
[26] E. S. Park and D. H. Kim, Acta Materialia, 2006, 54, 2597-2604.
[27] K. F. Yao, F. Ruan, Y. Q. Yang and N. Chen, Applied Physics Letters, 2006, 88, 122016.
[28] Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan and W. H. Wang, Science, 2007, 315, 1385-1388.
[29] M. D. Uchic, D. M. Dimiduk, J. N. Florando and W. D. Nix, Science, 2004, 305, 986-989.
[30] C. A. Volkert and E. T. Lilleodden, Philosophical Magazine, 2006, 86, 5567-5579.
[31] F. Spaepen, Acta Metallurgica, 1977, 25, 407-415.
[32] A. S. Argon, Acta Metallurgica, 1979, 27, 47-58.
[33] C. A. Schuh, T. C. Hufnagel and U. Ramamurty, Acta Materialia, 2007, 55, 4067-4109.
[34] Q. Zheng, S. Cheng, J. H. Strader, E. Ma and J. Xu, Scripta Materialia, 2007, 56, 161-164.
[35] R. D. Conner, Y. Li, W. D. Nix and W. L. Johnson, Acta Materialia, 2004, 52, 2429-2434.
[36] M. F. Ashby and A. L. Greer, Scripta Materialia, 2006, 54, 321-326.
[37] H. S. Chen and D. Turnbull, Acta Metallurgica, 1969, 17, 1021-1031.
[38] H. S. Chen, Acta Metallurgica, 1974, 22, 1505-1511.
[39] A. J. Drehman, A. L. Greer and D. Turnbull, Applied Physics Letters, 1982, 41, 716-717.
[40] H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters, 1984, 45, 615-616.
[41] C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbrough, Applied Physics Letters, 1983, 43, 1017-1019.
[42] A. W. Weeber and H. Bakker, Physica B, 1988, 153, 93-135.
[43] R. B. Schwarz and W. L. Johnson, Physical Review Letters, 1983, 51, 415-418.
[44] P. Ziemann, Materials Science and Engineering, 1985, 69, 95-103.
[45] X. L. Yeh, K. Samwer and W. L. Johnson, Applied Physics Letters, 1983, 42, 242-244.
[46] Z. H. Yan, T. Klassen, C. Michaelsen, M. Oehring and R. Bormann, Physical Review B, 1993, 47, 8520-8527.
[47] A. Inoue, T. Zhang and T. Masumoto, Materials Transactions, JIM, 1989, 30, 965-972.
[48] A. Inoue, Acta Materialia, 2000, 48, 279-306.
[49] A. Inoue, Materials Transactions, JIM, 1995, 36, 866-875.
[50] A. Inoue, N. Nishiyama and H. Kimura, Materials Transactions, JIM, 1997, 38, 179-183.
[51] N. Nishiyama and A. Inoue, Applied Physics Letters, 2002, 80, 568-570.
[52] D. Turnbull and J. C. Fisher, Journal of Chemical Physics, 1949, 17, 71-73.
[53] Z. P. Lu, Y. Li and S. C. Ng, Journal of Non-Crystalline Solids, 2000, 270, 103-114.
[54] Z. P. Lu, H. Tan, Y. Li and S. C. Ng, Scripta Materialia, 2000, 42, 667-673.
[55] T. A. Waniuk, J. Schroers and W. L. Johnson, Applied Physics Letters, 2001, 78, 1213-1215.
[56] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Materialia, 2001, 49, 2645-2652.
[57] T. D. Shen, Y. He and R. B. Schwarz, Journal of Materials Research, 1999, 14, 2107-2115.
[58] T. D. Shen and R. B. Schwarz, Applied Physics Letters, 1999, 75, 49-51.
[59] B. S. Murty and K. Hono, Materials Transactions, JIM, 2000, 41, 1538-1544.
[60] Z. P. Lu and C. T. Liu, Acta Materialia, 2002, 50, 3501-3512.
[61] Z. P. Lu and C. T. Liu, Intermetallics, 2004, 12, 1035-1043.
[62] X. H. Du, J. C. Huang, C. T. Liu and Z. P. Lu, Journal of Applied Physics, 2007, 101, 086108.
[63] A. Inoue, Materials Science and Engineering, 1997, A226-228, 357-363.
[64] A. Inoue, A. Takeuchi and T. Zhang, Metallurgical and Materials Transaction, 1998, A29, 1779-1793.
[65] A. Inoue, T. Zhang and A. Takeuchi, Materials Science Forum, 1998, 269-272, 855-864.
[66] D. Turnbull, Contemporary Physics, 1969, 10, 473-488.
[67] R. E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA, 1994.
[68] A. L. Greer, Science, 1995, 267, 1947-1953.
[69] C. T. Liu, L. Heatherly, D. S. Easton, C. A. Carmichael, J. H. Schneibel, C. H. Chen, J. L. Wright, M. H. Yoo, J. A. Horton and A. Inoue, Metallurgical and Materials Transaction, 1998, A29, 1811-1820.
[70] W. L. Johnson, Mrs Bulletin, 1999, 24, 42-56.
[71] A. S. Argon and H. Y. Kuo, Materials Science and Engineering, 1979, 39, 101-109.
[72] M. L. Falk, Physical Review B, 1999, 60, 7062-7070.
[73] V. V. Bulatov and A. S. Argon, Modelling and Simulation in Materials Science and Engineering, 1994, 2, 185-202.
[74] M. L. Falk and J. S. Langer, Physical Review E, 1998, 57, 7192-7205.
[75] J. S. Langer and L. Pechenik, Physical Review E, 2003, 68, 061507.
[76] J. S. Langer, Physical Review E, 2004, 70, 041502.
[77] E. Bouchbinder, J. S. Langer and I. Procaccia, Physical Review E, 2007, 75, 036107.
[78] J. S. Langer, Physical Review E, 2008, 77, 021502.
[79] M. Zink, K. Samwer, W. L. Johnson and S. G. Mayr, Physical Review B, 2006, 73, 3.
[80] M. H. Cohen and D. Turnbull, Journal of Chemical Physics, 1959, 31, 1164-1169.
[81] D. E. Polk and D. Turnbull, Acta Metallurgica, 1972, 20, 493-498.
[82] Z. F. Zhang, F. F. Wu, G. He and J. Eckert, Journal of Materials Science & Technology, 2007, 23, 747-767.
[83] Q. Xue, M. A. Meyers and V. F. Nesterenko, Acta Materialia, 2002, 50, 575-596.
[84] P. E. Donovan and W. M. Stobbs, Acta Metallurgica, 1981, 29, 1419-1436.
[85] E. Pekarskaya, C. P. Kim and W. L. Johnson, Journal of Materials Research, 2001, 16, 2513-2518.
[86] J. Li, F. Spaepen and T. C. Hufnagel, Philosophical Magazine A, 2002, 82, 2623-2630.
[87] W. H. Jiang and M. Atzmon, Acta Materialia, 2003, 51, 4095-4105.
[88] W. H. Jiang and M. Atzmon, Scripta Materialia, 2006, 54, 333-336.
[89] Y. Zhang and A. L. Greer, Applied Physics Letters, 2006, 89, 071907.
[90] T. W. Wright. The Physics and Mathematics of Adiabatic Shear Bands. Combridge: Combridge University Press, 2002.
[91] B. Yang, M. L. Morrison, P. K. Liaw, R. A. Buchanan, G. Y. Wang, C. T. Liu and M. Denda, Applied Physics Letters, 2005, 86, 141904.
[92] J. J. Lewandowski and A. L. Greer, Nature Materials, 2006, 5, 15-18.
[93] B. Yang, C. T. Liu, T. G. Nieh, M. L. Morrison, P. K. Liaw and R. A. Buchanan, Journal of Materials Research, 2006, 21, 915-922.
[94] Y. Kawamura, T. Shibata, A. Inoue and T. Masumoto, Acta Materialia, 1997, 46, 253-263.
[95] M. D. Demetriou and W. L. Johnson, Journal of Applied Physics, 2004, 95, 2857-2865.
[96] M. D. Demetriou and W. L. Johnson, Acta Materialia, 2004, 52, 3403-3412.
[97] M. D. Demetriou and W. L. Johnson, Materials Science and Engineering A, 2004, 375, 270-275.
[98] G. Wang, J. Shen, J. F. Sun, Y. J. Huang, J. Zou, Z. P. Lu, Z. H. Stachurski and B. D. Zhou, Journal of Non-Crystalline Solids, 2005, 351, 209-217.
[99] J. Schroers and N. Paton, Advanced Materials & Processes, 2006, 164, 61-63.
[100] H. Kato, Y. Kawamura, A. Inoue and H. S. Chen, Applied Physics Letters, 1998, 73, 3665-3667.
[101] Y. Kawamura, T. Nakamura, H. Kato, H. Mano and A. Inoue, Materials Science and Engineering A, 2001, 304-306, 674-678.
[102] T. G. Nieh and J. Wadsworth, Scripta Materialia, 2006, 54, 387-392.
[103] P. De Hey, J. Sietsma and A. Van den Beukel, Acta Materialia, 1998, 46, 5873-5882.
[104] Y. Kawamura, T. Shibata, A. Inoue and T. Masumoto, Materials Transactions, JIM, 1999, 40, 335-342.
[105] A. Reger-Leonhard, M. Heilmaier and J. Eckert, Scripta Materialia, 2000, 43, 459-464.
[106] H. S. Chen, H. Kato and A. Inoue, Materials Transactions, JIM, 2001, 42, 597-605.
[107] M. Bletry, P. Guyot, J. J. Blandin and J. L. Soubeyroux, Acta Materialia, 2006, 54, 1257-1263.
[108] K. Wang, T. Fujita, Y. Q. Zeng, N. Nishiyama, A. Inoue and M. W. Chen, Acta Materialia, 2008, 56, 2834-2842.
[109] H. S. Chen, Scripta Metallurgica, 1973, 7, 931-935.
[110] W. J. Wright, R. B. Schwarz and W. D. Nix, Materials Science and Engineering A, 2001, 319-321, 229-232.
[111] Y. I. Golovin, V. I. Ivolgin, V. A. Khonik, K. Kitagawa and A. I. Tyurin, Scripta Materialia, 2001, 45, 947-952.
[112] W. J. Wright, R. Saha and W. D. Nix, Materials Transactions, JIM, 2001, 42, 642-649.
[113] B. Moser, J. Kuebler, H. Meinhard, W. Muster and J. Michler, Advanced Engineering Materials, 2005, 7, 388-392.
[114] P. Murah and U. Ramamurty, Acta Materialia, 2005, 53, 1467-1478.
[115] G. P. Zhang, W. Wang, B. Zhang, J. Tan and C. S. Liu, Scripta Materialia, 2005, 52, 1147-1151.
[116] H. W. Zhang, X. N. Jing, G. Subhash, L. J. Kecskes and R. J. Dowding, Acta Materialia, 2005, 53, 3849-3859.
[117] B. Moser, J. F. Loffler and J. Michler, Philosophical Magazine, 2006, 86, 5715-5728.
[118] C. A. Schuh, A. C. Lund and T. G. Nieh, Acta Materialia, 2004, 52, 5879-5891.
[119] A. S. Argon and L. T. Shi, Acta Metallurgica, 1983, 31, 499-507.
[120] J. M. Pelletier, B. Van de Moortele and I. R. Lu, Materials Science and Engineering A, 2002, 336, 190-195.
[121] M. Bletry, P. Guyot, Y. Brechet, J. J. Blandin and J. L. Soubeyroux, Materials Science and Engineering A, 2004, 387-389, 1005-1011.
[122] M. Heilmaier and J. Eckert, Advanced Engineering Materials, 2005, 7, 833-841.
[123] Q. Wang, J. M. Pelletier, J. J. Blandin and M. Suery, Journal of Non-Crystalline Solids, 2005, 351, 2224-2231.
[124] M. Bletry, P. Guyot, Y. Brechet, J. J. Blandin and J. L. Soubeyroux, Acta Materialia, 2007, 55, 6331-6337.
[125] X. L. Fu, Y. Li and C. A. Schuh, Acta Materialia, 2007, 55, 3059-3071.
126] S. F. Guo, K. C. Chan, Q. Chen, J. J. Li and L. Liu, Scripta Materialia, 2009, 60, 369-372.
[127] B. Yang, J. Wadsworth and T. G. Nieh, Applied Physics Letters, 2007, 90, 061911.
[128] M. Heggen, F. Spaepen and M. Feuerbacher, Journal of Applied Physics, 2005, 97, 8.
[129] F. Spaepen, Scripta Materialia, 2006, 54, 363-367.
[130] K. S. Lee, H. J. Jun, S. Pauly, B. Bartusch, Y. W. Chang and J. Eckert, Intermetallics, 2009, 17, 65-71.
[131] M. D. Uchic and D. M. Dimiduk, Materials Science and Engineering A, 2005, 400-401, 268-278.
[132] K. J. Hemker and W. N. Sharpe, Annual Review of Materials Research, 2007, 37, 93-126.
[133] Q. Feng, Y. N. Picard, H. Liu, S. M. Yalisove, G. Mourou and T. M. Pollock, Scripta Materialia, 2005, 53, 511-516.
[134] B. H. Kim, S. H. Ryu, D. K. Choi and C. N. Chu, Journal of Micromechanics and Microengineering, 2005, 15, 124-129.
[135] D. M. Dimiduk, M. D. Uchic and T. A. Parthasarathy, Acta Materialia, 2005, 53, 4065-4077.
[136] H. Zhang, B. E. Schuster, Q. Wei and K. T. Ramesh, Scripta Materialia, 2006, 54, 181-186.
[137] J. R. Greer, W. C. Oliver and W. D. Nix, Acta Materialia, 2005, 53, 1821-1830.
[138] M. D. Uchic, D. M. Dimiduk, R. Wheeler, P. A. Shade and H. L. Fraser, Scripta Materialia, 2006, 54, 759-764.
[139] B. E. Schuster, Q. Wei, H. Zhang and K. T. Ramesh, Applied Physics Letters, 2006, 88, 103112.
[140] H. Bei, S. Shim, E. P. George, M. K. Miller, E. G. Herbert and G. M. Pharr, Scripta Materialia, 2007, 57, 397-400.
[141] B. E. Schuster, Q. Wei, M. H. Ervin, S. O. Hruszkewycz, M. K. Miller, T. C. Hufnagel and K. T. Ramesh, Scripta Materialia, 2007, 57, 517-520.
[142] S. Cheng, X. L. Wang, H. Choo and P. K. Liaw, Applied Physics Letters, 2007, 91, 201917.
[143] A. Takeuchi and A. Inoue, Materials Transactions, JIM, 2000, 41, 1372-1378.
[144] X. Y. Yan, Y. A. Chang, Y. Yang, F. Y. Xie, S. L. Chen, F. Zhang, S. Daniel and M. H. He, Intermetallics, 2001, 9, 535-538.
[145] X. H. Lin and W. L. Johnson, Journal of Applied Physics, 1995, 78, 6514-6519.
[146] Y. Yang, Y. A. Chang, J. C. Zhao and B. P. Bewlay, Intermetallics, 2003, 11, 407-415.
[147] N. Sanders and A. P. Miodownik. CALPHAD, Calculation of Phase Diagrams: A Comprehensive Guide. Elsevier Science. Oxford, UK. 1998.
[148] L. Kaufman and H. Bernstein. Computer Calculation of Phase Diagrams. Academic. New York and London. 1970.
[149] Y. A. Chang, S. L. Chen, F. Zhang, X. Y. Yan, F. Y. Xie, R. Schmid-Fetzer and W. A. Oates, Progress in Materials Science, 2004, 49, 313-345.
[150] Y. A. Chang, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2006, 37A, 273-305.
[151] X. H. Du, J. C. Huang, K. C. Hsieh, Y. H. Lai, H. M. Chen, J. S. C. Jang and P. K. Liaw, Applied Physics Letters, 2007, 91, 131901.
[152] PANDAT. 6.0-Phase Diagram Calculation Software for Multicomponent Systems, CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217. Madison, WI 53719. USA.
[153] B. B. Sun, Y. B. Wang, J. Wen, H. Yang, M. L. Sui, J. Q. Wang and E. Ma, Scripta Materialia, 2005, 53, 805-809.
[154] E. C. G. Kirk, D. A. Williams and H. Ahmed, Institute of Physics Conference Series, 1989, 501-506.
[155] M. H. F. Overwijk, F. C. Vandenheuvel and C. W. T. Bullelieuwma, Journal of Vacuum Science & Technology B, 1993, 11, 2021-2024.
[156] R. M. Langford and A. K. Petford-Long, Journal of Vacuum Science & Technology 2001, 19, 2186-2193.
[157] C. A. Schuh, C. E. Packard and A. C. Lund, Journal of Materials Research, 2006, 21, 725-736.
[158] H. M. Chen, Y. C. Chang, T. H. Hung, X. H. Du, J. C. Huang, J. S. C. Jang and P. K. Liaw, Materials Transactions, JIM, 2007, 48, 1802-1805.
[159] J. J. Lewandowski, W. H. Wang and A. L. Greer, Philosophical Magazine Letters, 2005, 85, 77-87.
[160] Z. F. Zhang, J. Eckert and L. Schultz, Acta Materialia, 2003, 51, 1167-1179.
[161] Z. F. Zhang, G. He, J. Eckert and L. Schultz, Physical Review Letters, 2003, 91, 045505.
[162] Z. F. Zhang and J. Eckert, Physical Review Letters, 2005, 94, 094301.
[163] Y. S. Choi, M. D. Uchic, T. A. Parthasarathy and D. M. Dimiduk, Scripta Materialia, 2007, 57, 849-852.
[164] W. D. Nix and H. J. Gao, Journal of the Mechanics and Physics of Solids, 1998, 46, 411-425.
[165] J. G. Swadener, E. P. George and G. M. Pharr, Journal of the Mechanics and Physics of Solids, 2002, 50, 681-694.
[166] J. F. Archard, Journal of Applied Physics, 1953, 24, 981-988.
[167] J. G. Wang, B. W. Choi, T. G. Nieh and C. T. Liu, Journal of Materials Research, 2000, 15, 913-922.
[168] A. M. Hodge and T. G. Nieh, Intermetallics, 2004, 12, 741-748.
[169] H. Bei and S. Shim, Applied Physics Letters, 2007, 91, 111915.
[170] B. E. Schuster, Q. Wei, T. C. Hufnagel and K. T. Ramesh, Acta Materialia, 2008, 56, 5091-5100.
[171] M. Fukuda, S. Tomimatsu, K. Nakamura, M. Koguchi, H. Shichi and K. Umemura, Journal of Electron Microscopy, 2004, 53, 479-483.
[172] K. Thompson, D. Lawrence, D. J. Larson, J. D. Olson, T. F. Kelly and B. Gorman, Ultramicroscopy, 2007, 107, 131-139.
[173] W. Weibull, Journal of Applied Mechanics, 1951, 18, 293-297.
[174] D. R. Askeland, Science and Engineering of Materials, PWS Publishing, Boston, MA, 1994.
[175] W. F. Wu, Y. Li and C. A. Schuh, Philosophical Magazine, 2008, 88, 71-89.
[176] Y. Y. Zhao, E. Ma and J. Xu, Scripta Materialia, 2008, 58, 496-499.
[177] G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, New York, 1986.
[178] S. S. Brenner, Journal of Applied Physics, 1956, 27, 1848-1956.
[179] Y. F. Gao, B. Yang and T. G. Nieh, Acta Materialia, 2007, 55, 2319-2327.
[180] T. Watanabe, M. Yamada, S. Shima and S. Karashima, Philosophical Magazine A, 1979, 40, 667-683.
[181] S. Miura, K. Hamashima and K. T. Aust, Acta Metallurgica, 1980, 28, 1591-1602.
[182] S. X. Song and T. G. Nieh, Intermetallics, 2009, 17, 762-767.
[183] H. M. Chen, J. C. Huang, S. X. Song, T. G. Nieh and J. S. C. Jang, Applied Physics Letters, 2009, 94, 141914.
[184] G. S. Cargill, Journal of Applied Physics, 1970, 41, 12-29.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code