Responsive image
博碩士論文 etd-1116114-133130 詳細資訊
Title page for etd-1116114-133130
論文名稱
Title
利用新建置之氣膠真空紫外光光電子光譜儀探測水溶液氣膠之價電子能級結構
Probing Valence Electronic Structures of Aqueous Aerosols via a Newly Built Aerosol VUV Photoelectron Spectroscopic Instrucment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-12-08
繳交日期
Date of Submission
2014-12-24
關鍵字
Keywords
質子化與去質子化、半胱胺酸、甘胺酸、可動式掃描粒徑分析儀、可調氣動聚焦系統、真空紫外光光電子光譜儀、氣膠
scanning mobility particle sizer, adjustable aerodynamics lens, VUV aerosol photoelectron spectroscopy, aerosols, protonated, deprotonated, glycine, cysteine
統計
Statistics
本論文已被瀏覽 5711 次,被下載 34
The thesis/dissertation has been browsed 5711 times, has been downloaded 34 times.
中文摘要
氣膠(aerosol)是氣體中懸浮微粒的泛稱。這些懸浮微粒可以極細微之固態顆粒或是液滴形式存在。它們的尺寸範圍通常介於數個奈米乃至微米量級。由於氣膠本身的化學組成、外在形狀甚至是內部結構都對其物理、化學及光學性質有絕對的影響力,故其在環境化學、大氣化學以及星際化學等領域都扮演重要的角色。不同成分、大小之氣膠其價電子能級結構直接影響到它們與其他物質發生化學作用時的化學活性,因此,對於氣膠價殼層電子結構及尺寸效應之探討顯得格外重要。為了能夠從原子及分子層級了解氣膠奈米粒子的化學性質與結構特性,我們利用新建置的氣膠真空紫外光光電子光譜儀(VUV Aerosol Photoelectron Spectroscopy),並以同步輻射產生之真空紫外光 (Vacuum Ultraviolet Radiation, VUV)作為游離光源,來探測氣膠粒子之價殼層電子能階結構。氣膠粒子是經由霧化器(Atomizer)產生,並藉由可調式氣動聚焦系統(Adjustable aerodynamic lens, AADL) 引入紫外光光電子光譜儀內進行紫外光光電子光譜之偵測。氣膠粒子的尺寸分布情形及粒子密度則藉由可動性掃描粒徑分析儀(Scanning Mobility Particle Sizer, SMPS)來得知。藉由氣膠真空紫外光光電子光譜儀,我們首先測得純水氣膠液滴的光電子光譜,並得到了較過去相關文獻中解析度更好的凝態水之光電子光譜圖。有鑒於目前吾人對於胺基酸在不同酸鹼環境下的電子結構的了解尚不清楚,我們透過形成氣膠的方式,深入探討了胺基酸中結構最簡單的甘胺酸(Glycine)與含有硫醇基(-SH)的半胱胺酸(Cysteine)在不同的酸鹼值的水溶液環境中,由於質子化與去質子化(protonated/deprotonated)所形成的陰離子(anion)、陽離子(cation)及兩性離子(zwitterion)的光電子光譜。本工作除了測量了於不同酸鹼性水溶液環境下物質之價殼層電子結構產生的變化以及游離能的改變外,也從微觀的角度來探討一般對親核性(nucleophilicity)概念的認知以及其對於生物體系中的電荷轉移反應可能造成的影響。
Abstract
“Aerosols” are broadly referred to ultrafine particulate matters suspended in a gas. These ultrafine suspensions may exist in the form of solid paprticles or liquid droplets with the size ranging from sub-nm up to a few microns. Since aerosols have a great variety in size, shape, composition and architecture, their fundamental physical, chemical and optical properties often deviate considerably from their gaseous and bulk counterparts. To fully understand the underlying origins responsible for their importance in environmental sciences, atmospheric chemistry and planetary sciences, it is crucial to understand the fundamental structural properties of aerosols from the atomic and molecular level. Of particular significance is the valence electronic energetic structure of aerosols, as this property directly governs the chemical activities of aerosols when they undergo chemical reactions with other substances. To address this issue, we have newly constructed an Aerosol VUV Photoelectron Spectroscopy apparatus to probe the valence electron energy structure of aerosols. Aerosols of interest are generated by an atomizer and introduced into the aerosol VUV photoelectron spectroscopy chamber via a set of adjustable aerodynamics lens from which aerosols form a highly collimated aerosol beam. The size distribution and number density of aerosols are pre-characterized by the Scanning Mobility Particle Sizer (SMPS).

In this thesis, we first investigated the VUV photoelectron spectra of pure water aerosols utilizing this new VUV aerosol photoelectron spectroscopy. With the superior spectral resolution of the newly constructed aerosol apparatus, the vibrationally resolved fine structure of condensed water is resolved for the first time. Considering that the valence electronic structures of amino acid molecules under the aqueous environments of varying pH values are largely unknown, we interrogated the VUV photoelectron spectra of glycine aqueous aerosols and the thiol (-SH)-containing cysteine aqueous aerosols of varying pH conditions. Under various pH conditions, the solvated amino acid molecules undergo protonation/ deprotonation processes and the amino acid molecule dominate in different form of anion, cation and zwitterion. By probing the evolution of the valence electronic structure of aqueous amino acid aerosols as a function of pH value, this work provides the microscopic insight to illustrate the conventionally macroscopic concept of nucleophilicity and its potential impact in the charge transfer process of many important biological reactions.
目次 Table of Contents
謝誌 ii
摘要 iii
Abstract v
Table of contents vii
List of Figures x
List of Tables xvi
Chapter 1 Introduction 1
1.1. Introduction of aerosols 1
1.1.1. Aerosols in atmospheric chemistry 2
1.1.2. Aerosols in environment sciences 4
1.1.3. Aerosols in biomedical chemistry 6
1.2. Conventional techniques for aerosol measurements 8
1.2.1. Aerosol mass spectrometry (AMS) 8
1.2.2. Optical measurement techniques 9
1.3. Novel multi-functional aerosol instrument 11
1.4. Motivation and scope of this thesis 12
Chapter 2. Experiments 14
2.1. Introduction 14
2.1.1. Principle of photoelectron spectroscopy (UPS) 14
2.2. Overview of the newly built aerosol VUV photoelectron spectroscopy 21
2.4. Aerosol pre-characterization 26
2.5. Aerosol beam formation via aerodynamic focusing 31
2.5.1. The components of AADL system 33
2.5.2. Functions of AADL system 34
2.5.3. Simulation of AADL for optimal aerodynamic focusing 34
2.5.4. Final design of the AADL system 36
2.6. Ionization light sources 40
2.6.1. He(I) discharge lamp 40
2.6.2. VUV synchrotron radiation 41
2.7. Hemispherical electron energy analyzer 44
Chapter 3. Preliminary test on the aerosol VUV photoelectron spectroscopy instrument 47
3.1. Comparisons of photoelectron spectra of effusive Ar gas obtained from different ionization sources 48
3.1.1. Photoelectron spectrum of effusive Ar gas obtained from He(I) discharge lamp 48
3.1.2. Photoelectron spectrum of effusive At gas obtained from synchrotron based VUV radiation (Bending and Undulator, hν = 21.2 eV) 50
3.2. Photoelectron spectrum of pure water aerosols at 25 eV 54
Chapter 4. VUV photoelectron spectroscopy of glycine aqueous aerosols 59
4.1. Introduction 59
4.2. VUV photoelectron spectra of glycine aqueous aerosols at varying pH conditions 61
4.3. Summary 71
5.1.1. The biological significance of cysteine 72
5.1.2. Microscopic properties of cysteine from previous experimental/calculated studies 74
5.2. VUV photoelectron spectra of cysteine aqueous aerosols at varying pH conditions 78
5.2.1. pH dependence of the binding energy of Cys nS. 88
5.2.2. pH dependence of the binding energy of Cys nO and Cys nN. 90
5.2.3. The new feature of 6.97 eV, Cys nS’ 92
5.3. DFT Simulation of various possible forms of cysteine in the solution 93
5.4. Summary 101
Chapter 6. Conclusions 102
Reference: 105
參考文獻 References
1. Rodriguez, J. M.; Ko, M. K. W.; Sze, N. D., Role of Heterogeneous Conversion of N2o5 on Sulfate Aerosols in Global Ozone Losses. Nature 1991, 352 (6331), 134-137.
2. Fahey, D. W.; Kawa, S. R.; Woodbridge, E. L.; Tin, P.; Wilson, J. C.; Jonsson, H. H.; Dye, J. E.; Baumgardner, D.; Borrmann, S.; Toohey, D. W.; Avallone, L. M.; Proffitt, M. H.; Margitan, J.; Loewenstein, M.; Podolske, J. R.; Salawitch, R. J.; Wofsy, S. C.; Ko, M. K. W.; Anderson, D. E.; Schoeberl, M. R.; Chan, K. R., Insitu Measurements Constraining the Role of Sulfate Aerosols in Midlatitude Ozone Depletion. Nature 1993, 363 (6429), 509-514.
3. Solomon, S., Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37 (3), 275-316.
4. Solomon, S.; Garcia, R. R.; Rowland, F. S.; Wuebbles, D. J., On the Depletion of Antarctic Ozone. Nature 1986, 321 (6072), 755-758.
5. Liu, C. G.; Zhang, P.; Yang, B.; Wang, Y. F.; Shu, J. N., Kinetic Studies of Heterogeneous Reactions of Polycyclic Aromatic Hydrocarbon Aerosols with NO3 Radicals. Environ. Sci. Technol. 2012, 46 (14), 7575-7580.
6. Liu, C. G.; Gan, J.; Zhang, Y.; Liang, M.; Shu, X.; Shu, J. N.; Yang, B., Heterogeneous Reaction of Suspended Phosmet Particles with NO3 Radicals. J. Phys. Chem. A 2011, 115 (39), 10744-10748.
7. Zhang, Y.; Yang, B.; Gan, J.; Liu, C. G.; Shu, X.; Shu, J. N., Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO3 radicals. Atmos. Environ. 2011, 45 (15), 2515-2521.
8. Yang, B.; Zhang, Y.; Meng, J. W.; Gan, J.; Shu, J. N. A., Heterogeneous Reactivity of Suspended Pirimiphos-Methyl Particles with Ozone. Environ. Sci. Technol. 2010, 44 (9), 3311-3316.
9. Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A., Impact of a future H-2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality. Atmos. Chem. Phys. 2013, 13 (13), 6117-6137.
10. Goldstein, A. H.; Koven, C. D.; Heald, C. L.; Fung, I. Y., Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (22), 8835-8840.
11. Chen, B.; Andersson, A.; Lee, M.; Kirillova, E. N.; Xiao, Q. F.; Krusa, M.; Shi, M. N.; Hu, K.; Lu, Z. F.; Streets, D. G.; Du, K.; Gustafsson, O., Source Forensics of Black Carbon Aerosols from China. Environ. Sci. Technol. 2013, 47 (16), 9102-9108.
12. Abdeen, Z.; Qasrawi, R.; Heo, J.; Wu, B.; Shpund, J.; Vanger, A.; Sharf, G.; Moise, T.; Brenner, S.; Nassar, K., Spatial and Temporal Variation in Fine Particulate Matter Mass and Chemical Composition: The Middle East Consortium for Aerosol Research Study. The Scientific World Journal 2014, 2014.
13. Han, T. T.; Liu, X. G.; Zhang, Y. H.; Qu, Y.; Gu, J. W.; Ma, Q.; Lu, K. D.; Tian, H. Z.; Chen, J.; Zeng, L. M.; Hu, M.; Zhu, T., Characteristics of Aerosol Optical Properties and Their Chemical Apportionments during CAREBeijing 2006. Aerosol. Air. Qual. Res. 2014, 14 (5), 1431-1442.
14. Wyzga, R. E.; Folinsbee, L. J., Health effects of acid aerosols. Water. Air. Soil. Poll. 1995, 85 (1), 177-188.
15. Buseck, P. R.; Schwartz, S. E., "Tropospheric aerosols," in Treatise on Geochemistry. Elsevier: San Diego, Calif, USA, 2003; p 91-142.
16. Forster, P.; Ramaswamy, V.; Artaxo, P.; al., e., "Change in atmospheric constituents and in radiative forcing," in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press: New York, NY, USA, 2007.
17. Pope III, C. A.; Burnett, R. T.; Thun, M. J.; Calle, E. E.; Krewski, D.; Ito, K.; Thurston, G. D., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 2002, 287 (9), 1132-1141.
18. Niven, R. W., Delivery of Biotherapeutics by Inhalation Aerosol. Crit. Rev. Ther. Drug. 1995, 12 (2-3), 151-231.
19. Reed, C. E.; Offord, K. P.; Nelson, H. S.; Li, J. T.; Tinkelman, D. G.; Beclometha, A. A. A. A. I., Aerosol beclomethasone dipropionate spray compared with theophylline as primary treatment for chronic mild-to-moderate asthma. J. Allergy. Clin. Immun. 1998, 101 (1), 14-23.
20. Miller, W. F., Aerosol Therapy in Acute and Chronic Respiratory-Disease. Arch. Intern. Med. 1973, 131 (1), 148-155.
21. T., F., Medihaler therapy for bronchial asthma: a new type of aerosol therapy. Postgrad. Med. J. 1956, 20, 73-667.
22. Ariyananda, P. L.; Agnew, J. E.; Clarke, S. W., Aerosol delivery systems for bronchial asthma. Postgrad. Med. J. 1996, 72 (845), 151-156.
23. Vincent, J. H.; Johnston, A. M.; Jones, A. D.; Bolton, R. E.; Addison, J., Kinetics of Deposition and Clearance of Inhaled Mineral Dusts during Chronic Exposure. Brit. J. Ind. Med. 1985, 42 (10), 707-715.
24. Wilson, K. R.; Jimenez-Cruz, M.; Nicolas, C.; Belau, L.; Leone, S. R.; Ahmed, M., Thermal vaporization of biological nanoparticles: fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and, beta-carotene. J. Phys. Chem. A 2006, 110 (6), 2106-2113.
25. Nash, D. G.; Baer, T.; Johnston, M. V., Aerosol mass spectrometry: An introductory review. Int. J. Mass. Spectrom. 2006, 258 (1-3), 2-12.
26. Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.; Allan, J. D.; Alfarra, M. R.; Zhang, Q.; Onasch, T. B.; Drewnick, F.; Coe, H.; Middlebrook, A.; Delia, A.; Williams, L. R.; Trimborn, A. M.; Northway, M. J.; DeCarlo, P. F.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R., Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass. Spectrom. Rev. 2007, 26 (2), 185-222.
27. Hinz, K. P.; Spengler, B., Instrumentation, data evaluation and quantification in on-line aerosol mass spectrometry. J. Mass. Spectrom. 2007, 42 (7), 843-860.
28. Murphy, D. M., The design of single particle laser mass spectrometers. Mass. Spectrom. Rev. 2007, 26 (2), 150-165.
29. Gao, S.; Zhang, Y.; Meng, J.; Shu, J., Online investigations on ozonation products of pyrene and benz [a] anthracene particles with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. Atmos. Environ. 2009, 43 (21), 3319-3325.
30. Gao, S. K.; Zhang, Y.; Meng, J. W.; Shu, J. A., Real-time analysis of soot emissions from bituminous coal pyrolysis and combustion with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. Sci. Total. Environ. 2009, 407 (3), 1193-1199.
31. Shu, J.; Gao, S.; Li, Y., A VUV photoionization aerosol time-of-flight mass spectrometer with a RF-powered VUV lamp for laboratory-based organic aerosol measurements. Aerosol. Sci. Technol. 2008, 42 (2), 110-113.
32. Devara, P. C. S.; Sonbawne, S. M.; Saha, S. K., Novel Technique for Profiling of Aerosol, Ozone and Water Vapor during Winter Using Mobile Radiometers over a Hilltop Station. Aerosol. Air. Qual. Res. 2014, 14 (5), 1443-1454.
33. Chen, W.-N.; Chen, Y.-W.; Chou, C. C. K.; Chang, S.-Y.; Lin, P.-H.; Chen, J.-P., Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan. Atmos. Environ. 2009, 43 (17), 2700-2708.
34. King, G. B.; Sorensen, C. M.; Lester, T. W.; Merklin, J. F., Photon-Correlation Spectroscopy Used as a Particle-Size Diagnostic in Sooting Flames. Appl. Optics. 1982, 21 (6), 976-978.
35. Hinds, W.; Reist, P., Aerosol measurement by laser doppler spectroscopy—I. Theory and experimental results for aerosols homogeneous. J Aerosol Sci 1972, 3 (6), 501-514.
36. Einstein, A., UN THE MOVEMENT OF SMALL PARTICLES SUSPENDED IN STATIUNARY LIQUIDS REQUIRED BY THE MOLECULAR-KINETIC THEORY 0F HEAT. Ann. Phys. 1905, 17, 549-560.
37. Seidel, R.; Thurmer, S.; Winter, B., Photoelectron Spectroscopy Meets Aqueous Solution: Studies from a Vacuum Liquid Microjet. J Phys Chem Lett 2011, 2 (6), 633-641.
38. Winter, B., Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Meth. A. 2009, 601 (1-2), 139-150.
39. Ottosson, N.; Borve, K. J.; Spangberg, D.; Bergersen, H.; Saethre, L. J.; Faubel, M.; Pokapanich, W.; Ohrwall, G.; Bjorneholm, E.; Winter, B., On the Origins of Core-Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and ab Initio Calculations of Glycine(aq). J. Am. Chem. Soc. 2011, 133 (9), 3120-3130.
40. Peterka, D. S.; Kim, J. H.; Wang, C. C.; Poisson, L.; Neumark, D. M., Photoionization dynamics in pure helium droplets. J. Phys. Chem. A 2007, 111 (31), 7449-7459.
41. Wang, C. C.; Kornilov, O.; Gessner, O.; Kim, J. H.; Peterka, D. S.; Neumark, D. M., Photoelectron imaging of helium droplets doped with Xe and Kr atoms. J. Phys. Chem. A 2008, 112 (39), 9356-9365.
42. Kornilov, O.; Wang, C. C.; Bunermann, O.; Healy, A. T.; Leonard, M.; Peng, C.; Leone, S. R.; Neumark, D. M.; Gessner, O., Ultrafast Dynamics in Helium Nanodroplets Probed by Femtosecond Time-Resolved EUV Photoelectron Imaging. J. Phys. Chem. A 2010, 114 (3), 1437-1445.
43. Kornilov, O.; Bunermann, O.; Haxton, D. J.; Leone, S. R.; Neumark, D. M.; Gessner, O., Femtosecond Photoelectron Imaging of Transient Electronic States and Rydberg Atom Emission from Electronically Excited He Droplets. J. Phys. Chem. A 2011, 115 (27), 7891-7900.
44. Shu, J. N.; Wilson, K. R.; Ahmed, M.; Leone, S. R., Coupling a versatile aerosol apparatus to a synchrotron: Vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry. Rev. Sci. Instrum. 2006, 77 (4).
45. Wilson, K. R.; Zou, S. L.; Shu, J. N.; Ruhl, E.; Leone, S. R.; Schatz, G. C.; Ahmed, M., Size-dependent angular distributions of low-energy photoelectrons emitted from NaCl nanoparticles. Nano Lett. 2007, 7 (7), 2014-2019.
46. Wilson, K. R.; Peterka, D. S.; Jimenez-Cruz, M.; Leone, S. R.; Ahmed, M., VUV photoelectron imaging of biological nanoparticles: Ionization energy determination of nanophase glycine and phenylalanine-glycine-glycine. Phys. Chem. Chem. Phys. 2006, 8 (16), 1884-1890.
47. Yoder, B. L.; West, A. H. C.; Schlappi, B.; Chasovskikh, E.; Signorell, R., A velocity map imaging photoelectron spectrometer for the study of ultrafine aerosols with a table-top VUV laser and Na-doping for particle sizing applied to dimethyl ether condensation. J. Chem. Phys.2013, 138 (4).
48. Yoder, B. L.; Litman, J. H.; Forysinski, P. W.; Corbett, J. L.; Signorell, R., Sizer for Neutral Weakly Bound Ultrafine Aerosol Particles Based on Sodium Doping and Mass Spectrometric Detection. J. Phys. Chem. Lett. 2011, 2 (20), 2623-2628.
49. Knutson, E. O.; Whitby, K. T., Accurate measurement of aerosol electric mobility moments. J. Aerosol Sci. 1975, 6, 453-460.
50. Murphy, W.; Sears, G., Production of particulate beams. J. Appl. Phys. 1964, 35 (6), 1986-1987.
51. Allen, J.; Gould, R. K., Mass-Spectrometric Analyzer for Individual Aerosol-Particles. Rev. Sci. Instrum. 1981, 52 (6), 804-809.
52. Hall, T. D.; Beeman, W. W., Secondary-Electron Emission from Beams of Polystyrene Latex Spheres. J. Appl. Phys. 1976, 47 (12), 5222-5225.
53. Seapan, M.; Selman, D.; Seale, F.; Siebers, G.; Wissler, E. H., Aerosol Characterization Using Molecular-Beam Techniques. J. Colloid. Interf. Sci. 1982, 87 (1), 154-166.
54. Sinha, M. P.; Friedlander, S. K., Mass-Distribution of Chemical-Species in a Polydisperse Aerosol - Measurement of Sodium-Chloride in Particles by Mass-Spectrometry. J. Colloid. Interf. Sci. 1986, 112 (2), 573-582.
55. Kantrowitz, A.; Grey, J., A high intensity source for the molecular beam. Part I. Theoretical. Rev. Sci. Instrum. 1951, 22 (5), 328-332.
56. Liu, P.; Ziemann, P. J.; Kittelson, D. B.; McMurry, P. H., Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 1995, 22 (3), 293-313.
57. Liu, P.; Ziemann, P. J.; Kittelson, D. B.; McMurry, P. H., Generating particle beams of controlled dimensions and divergence: II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 1995, 22 (3), 314-324.
58. Zhang, X. F.; Smith, K. A.; Worsnop, D. R.; Jimenez, J.; Jayne, J. T.; Kolb, C. E., A numerical characterization of particle beam collimation by an aerodynamic lens-nozzle system: Part I. An individual lens or nozzle. Aerosol Sci. Technol. 2002, 36 (5), 617-631.
59. Zhang, X. F.; Smith, K. A.; Worsnop, D. R.; Jimenez, J. L.; Jayne, J. T.; Kolb, C. E.; Morris, J.; Davidovits, P., Numerical characterization of particle beam collimation: Part II - Integrated aerodynamic-lens-nozzle system. Aerosol Sci. Technol. 2004, 38 (6), 619-638.
60. Jayne, J. T.; Leard, D. C.; Zhang, X.; Davidovits, P.; Smith, K. A.; Kolb, C. E.; Worsnop, D. R., Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Technol. 2000, 33 (1-2), 49-70.
61. Northway, M. J.; Jayne, J. T.; Toohey, D. W.; Canagaratna, M. R.; Trimborn, A.; Akiyama, K. I.; Shimono, A.; Jimenez, J. L.; DeCarlo, P. F.; Wilson, K. R.; Worsnop, D. R., Demonstration of a VUV Lamp Photoionization Source for Improved Organic Speciation in an Aerosol Mass Spectrometer. Aerosol Sci. Technol. 2007, 41 (9), 828-839.
62. Gao, S.; Zhang, Y.; Meng, J.; Shu, J., Online investigations on ozonation products of pyrene and benz[a]anthracene particles with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. Atmos. Environ. 2009, 43 (21), 3319-3325.
63. Loh, N. D.; Hampton, C. Y.; Martin, A. V.; Starodub, D.; Sierra, R. G.; Barty, A.; Aquila, A.; Schulz, J.; Lomb, L.; Steinbrener, J.; Shoeman, R. L.; Kassemeyer, S.; Bostedt, C.; Bozek, J.; Epp, S. W.; Erk, B.; Hartmann, R.; Rolles, D.; Rudenko, A.; Rudek, B.; Foucar, L.; Kimmel, N.; Weidenspointner, G.; Hauser, G.; Holl, P.; Pedersoli, E.; Liang, M.; Hunter, M. M.; Gumprecht, L.; Coppola, N.; Wunderer, C.; Graafsma, H.; Maia, F. R. N. C.; Ekeberg, T.; Hantke, M.; Fleckenstein, H.; Hirsemann, H.; Nass, K.; White, T. A.; Tobias, H. J.; Farquar, G. R.; Benner, W. H.; Hau-Riege, S. P.; Reich, C.; Hartmann, A.; Soltau, H.; Marchesini, S.; Bajt, S.; Barthelmess, M.; Bucksbaum, P.; Hodgson, K. O.; Struder, L.; Ullrich, J.; Frank, M.; Schlichting, I.; Chapman, H. N.; Bogan, M. J., Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 2012, 486 (7404), 513-517.
64. Wang, X.; McMurry, P. H., Instruction Manual for the Aerodynamic Lens Calculator. Aerosol Sci. Technol. 2006, 40 (5), 1-10.
65. Wang, X. L.; McMurry, P. H., A design tool for aerodynamic lens systems. Aerosol Sci. Technol. 2006, 40 (5), 320-334.
66. Gidwani, A. Studies of Flow and Particle Transport in Hypersonic Plasma Particle Deposition and Aerodynamic Focusing. University of Minnesota, Minneapolis, 2003.
67. Wang, X. L.; Gidwani, A.; Girshick, S. L.; McMurry, P. H., Aerodynamic focusing of nanoparticles: II. Numerical simulation of particle motion through aerodynamic lenses. Aerosol Sci. Technol. 2005, 39 (7), 624-636.
68. Brundle, C. R.; Turner, D. W., High Resolution Molecular Photoelectron Spectroscopy. II. Water and Deuterium Oxide. Proc. R. Soc. Lon. Ser-A 1968, 307 (1488), 27-36.
69. Faubel, M.; Steiner, B.; Toennies, J. P., Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 1997, 106 (22), 9013-9031.
70. Winter, B.; Weber, R.; Widdra, W.; Dittmar, M.; Faubel, M.; Hertel, I. V., Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 2004, 108 (14), 2625-2632.
71. Myneni, S.; Luo, Y.; Naslund, L. A.; Cavalleri, M.; Ojamae, L.; Ogasawara, H.; Pelmenschikov, A.; Wernet, P.; Vaterlein, P.; Heske, C.; Hussain, Z.; Pettersson, L. G. M.; Nilsson, A., Spectroscopic probing of local hydrogen-bonding structures in liquid water. J. Phys-Condens Mat. 2002, 14 (8), L213-L219.
72. Bergmann, U.; Wernet, P.; Glatzel, P.; Cavalleri, M.; Pettersson, L. G. M.; Nilsson, A.; Cramer, S. P., X-ray Raman spectroscopy at the oxygen K edge of water and ice: Implications on local structure models. Phys. Rev. B 2002, 66 (9).
73. Guo, J. H.; Luo, Y.; Augustsson, A.; Rubensson, J. E.; Sathe, C.; Agren, H.; Siegbahn, H.; Nordgren, J., X-ray emission spectroscopy of hydrogen bonding and electronic structure of liquid water. Phys. Rev. Lett. 2002, 89 (13).
74. Bjorneholm, O.; Federmann, F.; Kakar, S.; Moller, T., Between vapor and ice: Free water clusters studied by core level spectroscopy. J. Chem. Phys. 1999, 111 (2), 546-550.
75. Reutt, J. E.; Wang, L. S.; Lee, Y. T.; Shirley, D. A., Molecular-Beam Photoelectron-Spectroscopy and Femtosecond Intramolecular Dynamics of H2O+ and D2O+. J. Chem. Phys. 1986, 85 (12), 6928-6939.
76. Faubel, M.; Steiner, B.; Toennies, J. P., Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 1997, 106 (22), 9013-9031.
77. Nishizawa, K.; Kurahashi, N.; Sekiguchi, K.; Mizuno, T.; Ogi, Y.; Horio, T.; Oura, M.; Kosugi, N.; Suzuki, T., High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys. Chem. Chem. Phys. 2011, 13 (2), 413-417.
78. Debies, T. P.; Rabalais, J. W., Electronic-Structure of Amino-Acids and Ureas. J. Electron. Spectrosc. Relat. Phenom. 1974, 3 (4), 315-322.
79. Cannington, P. H.; Ham, N. S., He(I) and He(II) Photoelectron-Spectra of Glycine and Related Molecules. J. Electron. Spectrosc. Relat. Phenom. 1983, 32 (2), 139-151.
80. Cannington, P.; Ham, N. S., The photoelectron spectra of amino-acids: A survey. J. Electron. Spectrosc. Relat. Phenom. 1979, 15 (1), 79-82.
81. Plekan, O.; Feyer, V.; Richter, R.; Coreno, M.; de Simone, M.; Prince, K. C.; Carravetta, V., Investigation of the amino acids glycine, proline, and methionine by photoemission Spectroscopy. J. Phys. Chem. A 2007, 111 (43), 10998-11005.
82. Gordon, M. L.; Cooper, G.; Morin, C.; Araki, T.; Turci, C. C.; Kaznatcheev, K.; Hitchcock, A. P., Inner-shell excitation spectroscopy of the peptide bond: Comparison of the C 1s, N 1s, and O 1s spectra of glycine, glycyl-glycine, and glycyl-glycyl-glycine. J. Phys. Chem. A 2003, 107 (32), 6144-6159.
83. Zubavichus, Y.; Zharnikov, M.; Schaporenko, A.; Grunze, M., NIEXAFS study of glycine and glycine-based oligopeptides. J. Electron. Spectrosc. Relat. Phenom. 2004, 134 (1), 25-33.
84. Zubavichus, Y.; Shaporenko, A.; Grunze, M.; Zharnikov, M., Innershell absorption spectroscopy of amino acids at all relevant absorption edges. J. Phys. Chem. A 2005, 109 (32), 6998-7000.
85. Kaznacheyev, K.; Osanna, A.; Jacobsen, C.; Plashkevych, O.; Vahtras, O.; Agren, H.; Carravetta, V.; Hitchcock, A. P., Innershell absorption Spectroscopy of amino acids. J. Phys. Chem. A 2002, 106 (13), 3153-3168.
86. Grasjo, J.; Andersson, E.; Forsberg, J.; Duda, L.; Henke, E.; Pokapanich, W.; Bjorneholm, O.; Andersson, J.; Pietzsch, A.; Hennies, F.; Rubensson, J. E., Local Electronic Structure of Functional Groups in Glycine As Anion, Zwitterion, and Cation in Aqueous Solution. J. Phys. Chem. B 2009, 113 (49), 16002-16006.
87. Tia, M.; Cunha de Miranda, B.; Daly, S.; Gaie-Levrel, F.; Garcia, G. A.; Nahon, L.; Powis, I., VUV Photodynamics and Chiral Asymmetry in the Photoionization of Gas Phase Alanine Enantiomers. J. Phys. Chem. A 2014, 118 (15), 2765-2779.
88. Ghosh, D.; Roy, A.; Seidel, R.; Winter, B.; Bradforth, S.; Krylov, A. I., First-Principle Protocol for Calculating Ionization Energies and Redox Potentials of Solvated Molecules and Ions: Theory and Application to Aqueous Phenol and Phenolate. J. Phys. Chem. B 2012, 116 (24), 7269-7280.
89. Slavíček, P.; Winter, B.; Faubel, M.; Bradforth, S. E.; Jungwirth, P., Ionization energies of aqueous nucleic acids: Photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations. J. Am. Chem. Soc. 2009, 131 (18), 6460-6467.
90. Wang, A.; Lu, S.-D.; Mark, D. F., Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science 1984, 224 (4656), 1431-1433.
91. Giese, N.; Robbins, K.; Aaronson, S., The role of individual cysteine residues in the structure and function of the v-sis gene product. Science 1987, 236 (4806), 1315-1318.
92. Ruppersberg, J. P.; Stacker, M.; Pongs, O.; Heinemann, S. H.; Frank, R.; Koenen, M., Regulation of fast inactivation of cloned mammalian IK (A) channels by cysteine oxidation. 1991.
93. Schweers, O.; Mandelkow, E.-M.; Biernat, J.; Mandelkow, E., Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc. Nati. Acad. Sci. U.S.A. 1995, 92 (18), 8463-8467.
94. Lee, S.-R.; Bar-Noy, S.; Kwon, J.; Levine, R. L.; Stadtman, T. C.; Rhee, S. G., Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc. Nati. Acad. Sci. 2000, 97 (6), 2521-2526.
95. Haendeler, J.; Hoffmann, J.; Tischler, V.; Berk, B. C.; Zeiher, A. M.; Dimmeler, S., Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat. cell. biol. 2002, 4 (10), 743-749.
96. van Montfort, R. L.; Congreve, M.; Tisi, D.; Carr, R.; Jhoti, H., Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 2003, 423 (6941), 773-777.
97. Levonen, A.; Landar, A.; Ramachandran, A.; Ceaser, E.; Dickinson, D.; Zanoni, G.; Morrow, J.; Darley-Usmar, V., Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J 2004, 378, 373-382.
98. Hess, D. T.; Matsumoto, A.; Kim, S.-O.; Marshall, H. E.; Stamler, J. S., Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell. Bio. 2005, 6 (2), 150-166.
99. Gould, N.; Doulias, P.-T.; Tenopoulou, M.; Raju, K.; Ischiropoulos, H., Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J. Biol. Chem. 2013, 288 (37), 26473-26479.
100. Kan, H.-I.; Chen, I.-Y.; Zulfajri, M.; Wang, C. C., Subunit disassembly pathway of human hemoglobin revealing the site-specific role of its cysteine residues. J. Phys. Chem. B 2013, 117 (34), 9831-9839.
101. Jia, L.; Bonaventura, C.; Bonaventura, J.; Stamler, J. S., S-Nitrosohaemoglobin: A Dynamic Activity of Blood Involved in Vascular Control. . Nature 1996, 380, 221-226.
102. Stamler, J. S.; Jia, L.; Eu, J. P.; McMahon, T. J.; Demchenko, I. T.; Bonaventura, J.; Gernert, K.; Piantadosi, C. A., Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 1997, 276 (5321), 2034-2037.
103. Edwards, J. O.; Pearson, R. G., The factors determining nucleophilic reactivities. J. Am. Chem. Soc. 1962, 84 (1), 16-24.
104. Kamada, M.; Sugiyama, H.; Takahashi, K.; Azuma, J.; Kitajima, S.; Ogawa, K.; Sumimoto, M.; Hori, K.; Fujimoto, H., Photoelectron Spectroscopic Study of Electronic Structures of L-Cysteine. J. Phys. Soc. Jpn. 2010, 79 (3).
105. Risberg, E. D.; Jalilehvand, F.; Leung, B. O.; Pettersson, L. G.; Sandström, M., Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide. Dalton. Trans. 2009, (18), 3542-3558.
106. Gronert, S.; Ohair, R. A. J., Ab-Initio Studies of Amino-Acid Conformations .1. The Conformers of Alanine, Serine, and Cysteine. J. Am. Chem. Soc. 1995, 117 (7), 2071-2081.
107. Close, D. M., Calculated Vertical Ionization Energies of the Common alpha-Amino Acids in the Gas Phase and in Solution. J. Phys. Chem. A 2011, 115 (13), 2900-2912.
108. Canle, L. M.; Ramos, D. R.; Santaballa, J. A., A DFT study on the microscopic ionization of cysteine in water. Chem. Phys. Lett. 2006, 417 (1-3), 28-33.
109. Dehareng, D.; Dive, G., Vertical ionization energies of alpha-L-amino acids as a function of their conformation: an ab initio study. Int. J. Mol. Sci. 2004, 5 (11-12), 301-332.
110. Risberg, E. D.; Jalilehvand, F.; Leung, B. O.; Pettersson, L. G. M.; Sandstrom, M., Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide. Dalton. Trans. 2009, (18), 3542-3558.
111. Slavicek, P.; Winter, B.; Faubel, M.; Bradforth, S. E.; Jungwirth, P., Ionization Energies of Aqueous Nucleic Acids: Photoelectron Spectroscopy of Pyrimidine Nucleosides and ab Initio Calculations. J. Am. Chem. Soc. 2009, 131 (18), 6460-6467.
112. Kamiński, M.; Kudelski, A.; Pecul, M., Vibrational Optical Activity of Cysteine in Aqueous Solution: A Comparison of Theoretical and Experimental Spectra. J. Phys. Chem. B 2012, 116 (16), 4976-4990.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code