Responsive image
博碩士論文 etd-1116114-172818 詳細資訊
Title page for etd-1116114-172818
論文名稱
Title
愛河截流對高雄港水體生態環境影響模擬
Modeling Nutrient Dynamics in Love River and Kaohsiung Harbor due to Sewerage Diversion
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
211
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-12-11
繳交日期
Date of Submission
2014-12-17
關鍵字
Keywords
營養鹽、愛河、高雄港、生態模式、水動力模式
Love River, Kaohsiung Harbor, ecological model, hydrodynamic model, nutrient
統計
Statistics
本論文已被瀏覽 5686 次,被下載 471
The thesis/dissertation has been browsed 5686 times, has been downloaded 471 times.
中文摘要
高雄港是一狹長海灣,原為天然潟湖,自日治時期開始,歷經一個世紀的發展,已成為台灣第一大港,但也因高雄市工業發展的原故,使高雄港及愛河水質逐年的下降。由於高雄市早期汙水下水道不普及,大量汙染流進愛河,使原具有排水功能的愛河無法負荷這些汙染,成為一條嚴重汙染的河川,同時高雄港亦因愛河淡水的注入,水質受到嚴重影響。愛河在1990建置污水幹管進行截流,對高雄港水質改善明顯,但由於南台灣氣候乾濕季節分明,在雨季及颱風季節時大量沉積營養鹽因雨水沖刷進入愛河。因此本研究為了解愛河對高雄港以及高雄港外海之互動關係,以三維水動力模式耦合生態模式進行案例模擬,以高雄港水質實測資料為基礎,在矽營養鹽及磷營養鹽為充足的假設前提下,結合潮汐循環以及氣象條件進行生態模擬。
研究結果顯示,不論是在乾濕季或截流後之氨氮、硝酸鹽及化學需氧量皆比截流前低,溶氧也比截流前高許多,浮游動物比截流前略高,表示愛河晴天污水截流後,高雄港內水質改善很多,但港內之浮游藻類及氨氮依然比外港高些,而外港之溶氧亦比港內高。颱風期間,不論是截流前截流後,愛河的閘門都會打開,且帶來大量的淡水及營養鹽,從模擬結果可得知截流前後兩者差異不大,表示當愛河流量很強的時候對高雄港影響相當明顯,並且將營養鹽帶到外海,結果顯示營養鹽從愛河帶到港外約需96小時,且可看到水舌現象,亦表示颱風過後兩天才明顯在港外看到藻華現象。
Abstract
Kaohsiung Harbor was a narrow coastal lagoon. It has become the most important harbor in Taiwan, even internationally important, through a century development since the Japanese colonial period. The water quality of the harbor and the Love River became worse and worse due to intensive industrial developments since 1970. The sewerage system of Kaohsiung was not properly constructed before 1990, which cause the water seriously polluted. Since 1990, Kaohsiung city government started the interceptor project to improve the water quality of the Love River and the harbor. However, there are clear seasonal patterns in the south of Taiwan, which divides the year into dry and wet season. The dry weather flows are intercepted into sewer mains and convey to treatment which improves the water quality condition during the dry season. However, sediments accumulated in the drainage systems were flushing out to the Love River during the wet season because the interceptor had to open letting rain storm discharge into the River, particularly during typhoon periods. In order to study the seasonal variation of the water from Love River to Kaohsiung Harbor and the neighboring coastal seas, a 3-D hydrodynamic model (SELFE) coupled with an ecological model have been constructed. Decades of water quality data have been collected and analyzed as basic information for the study. Besides the hydrodynamics and the nitrogen cycle in the water environment are modeled, silicate and phosphate are considered as sufficiently supplied.
According to the model results, no matter in dry or wet season, ammonia, nitrate and COD in the Love River were lower, oxygen and zooplankton were higher after the completion of the interceptor project. Though phytoplankton and ammonia were still a little higher in the harbor the water quality of the Kaohsiung Harbor and its associated waters was much improved. The interceptors were opened during typhoon periods, loads of nutrients accompanied with fresh water flushed into the Love River. Model results are shown little difference during storm season before and after the interceptor project because the gates were all opened. It is also means the nutrients can affect Kaohsiung Harbor and to the coastal water too. The nutrients can be transported into coastal water in about 96 hours. The algal bloom can be observed from the model results 2 days after typhoon left.
目次 Table of Contents
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 3
1-2-1 港口水動力交換相關研究 3
1-2-2 國外港口及灣岸相關研究 3
1-2-3 國內港口及港灣相關研究 8
1-2-4 高雄港相關研究 11
1-2-5 愛河相關研究 15
1-3 研究架構 17
第二章 模式介紹 18
2-1前言 18
2-2 水動力模式 20
2-2-1控制方程式 20
2-2-2模式特性 22
2-3 生態模式 25
2-3-1模式特性 26
2-3-2浮游動物 (Zooplankton) 33
2-3-3 浮游藻類 (Phytoplankton) 35
2-3-4 有機碳 (Organic Carbon): 39
2-3-5 有機氮類 (Nitrogen) 42
2-3-6 磷酸鹽類 (Phosphorus) 47
2-3-7 矽酸鹽類 (Silicate) 51
2-3-8 化學需氧量 (chemical oxygen demand) 54
2-3-9 溶氧量 (Oxygen demand) 54
2-4 參數敏感度分析 56
2-4-1 敏感度分析案例設定 56
2-4-2 敏感度分析結果討論 58
2-4-3 敏感度分析結果小結 61
2-5 理想案例測試 62
第三章 模式建置 69
3-1 高雄港資料蒐集與整理 69
3-1-1 高雄港及愛河水文與水質資料整理 70
3-2 水動力模式 80
3-2-1 水動力模式網格製作 80
3-2-2 邊界設定 83
3-2-3 模式校驗 84
3-3 生態模式 91
3-3-1 模式溫度測試 91
3-3-2 模式循環測試 97
第四章 案例分析及討論 101
4-1 前言 101
4-2 情境案例設計 101
4-2-1 案例描述 101
4-2-2 案例背景設定 102
4-2-3 案例條件限制 105
4-3 結果討論 107
4-3-1 氣象場影響 107
4-3-2 流場討論 110
4-3-3 案例I生態模擬結果探討 134
4-3-4 案例II生態模擬結果探討 143
4-3-5 案例III生態模擬結果探討 152
4-3-6 案例IV生態模擬結果探討 161
4-3-7 愛河截流前後乾濕季生態比較 170
4-3-8 愛河截流後颱風對高雄港一港口區域影響 175
第五章 結論與建議 181
5-1 結論 181
5-2 建議 182
參考文獻 184
附錄 188
參考文獻 References
1. Arnoldo, V. L. and K. M. M. Lwiza, (1995) : The effects of channels and shoals on exchange between the Chesapeake Bay and the adjacent ocean. Journal of Geophysical Research, Vol. 100, No. C9, Pages 18551-18563, September 15, 1994.
2. Aubrey, D.G., Speer, P.E., (1985) : A Study of Non-linear Tidal Propagation in shallow Inlet/Estuarine Systems. Part I: Observatopns. Estuarine, Coastal and Shelf Scirnce 21, 185-205.
3. Blumberg, A.F., Mellor, G.L., (1987) : A description of a three-dimensional coastal ocean circulation model. In: Heaps, N. (Ed.), Three-Dimensional Coastal Ocean Models, In: Coastal and Estuarine Studies, vol.4. AGU, Washington, DC, pp. 1-16.
4. Barron, C.N., Kara, A.B., Martin, P.J., Rhodes, R.C., Smedstad, L.F., (2006) : Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM). Ocean Modell. 11, 347-375.
5. Brooks D. A., M. W. Baca and Y. T. Lo, (1999) : tidal Circulation and Residence Time in a Macrotidal Estuary : Cobscook Bay, Marine. Estuary, Coastal and Shelf Science, Vol. 49, pp. 647-665, 1999.
6. Casulli, V., Cheng, R.T., (1992) : Semi-implicit finite difference methods for three-dimensional shallow water flow. Int. J. Numer. Methods Fluids 15, 629-648.
7. Casulli, V., Walters, R.A., (2000) : An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Methods Fluids 32, 331-348.
8. Casulli, V., Zanolli, P., (2005) : High resolution methods for multidimensional advection-diffusion problems in free-surface hydrodynamics. Ocean Model. 10, 137-151
9. Cerco, C.F., Cole, T.M., (1994) : Three-Dimensional Eutrophication Model of Chwsapeake Bay.
10. Cerco, C.F., Cole, T.M., (1995) : User’s Guide to the CE-QUAL-ICM: Three-Dimensional Eutrophication Model.
11. Chen, C., Liu, H., Beardsley, R.C., (2003) : An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J. Atmos. Oceanic Technol. 20, 159-186.
12. Chen, C.S., Beardsley, R.C., (2006) : An unstructured grid, fifnite-volume coastal ocean model (FVCOM) System. Oceanography vol. 19, No. 1, Mar, 2006.
13. Iskandarani, M., Haidvogel, D.B., Levin, J.C., (2003) : A three-dimensional spectral element model for the solution of the hydrostatic primitive equations. J. Comput. Phys. 186, 397-425.
14. Kjerfve. B., (1986) : Comparative oceanography of coastal lagoons. Estuarine Variability. Academic Press, New York, U.S.A., pp. 63-881.
15. Luettich, R.A., Westerink, J.J., Scheffner, N.W., (1991) : ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries. Coast. Engrg. Res. Ct., US Army Engs. Wtrways. Experiment Station, Vicksburg, MS Report 1: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL.
16. Luyten, P.J., Jones, J.E., Proctor, R., Tabor, A., Tett, P., Wild-Allen, K., (1999) : COHERENS : A coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas. COHERENS, Released 8.4, September 1999.
17. Lynch, D.R., Werner, F.E., (1991) : Three-dimensional hydrodynamics on finite elements. Part II: non-linear time-stepping model. Int. J. Numer. Methods Fluids 12, 507-533.
18. Oliveira, A., Baptista, A.M., (1998) : On the role of tracking on Eulerian-Lagrangian solutions of the transport equation. Adv. Water Res. 21, 539-554.
19. Manel, G., Almudena, F., Luis, F., Julien, M., Manuel, G., Manuel, E., (2009) : 3D hydrodynamic characterization of a meso-tidal harbor: The case of Bilbao. Coastal Engineering. 56. 2009, 907-918.
20. Manel, G., Gabriel, J., Manuel, E., (2014) : Surface water renewal and mixing mechanisms in a semi-enclosed microtidal domain. The Barcelona harbor case. Journal of Sea Research. 90, 2014, 54-63.
21. Paul Bissett, W., Sharon, D., Daniel, D., (2004) : Ecological Simulation (EcoSim) 2.0 Technical Description. Florida Environmental Research Institute-2004-0002-U-D.
22. Pawlowicz, R., Beardsley, B. and Lentz, S., (2002) : Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences 28. 2002, 929-937.
23. Shchepetkin, A.F., McWilliams, J.C., (2005) : The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate, oceanic model. Ocean Modell. 9, 347-404.
24. Snowling, S.D., Kramer, J.R., (2001) : Evaluating modelling uncertainty for model selection. Ecological Modelling. 138, 17-30.
25. Song, Y., Haidvogel, D., (1994) : A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys. 115, 228-244.
26. Spitz, Y.H., Allen, J.S., Gan, J., (2005) : Modeling of ecosystem processes on the Oregon shelf during the 2001 summer upwelling, Journal of Geophysical Research, VOL. 110, C10S17.
27. Suh, S.W., Kim,J.H., Hwang, I.T., Lee, H.K., (2001) : Water quality simulation on an artificial estuarine lake Shiwhaho, Korea. Journal of Marine System. 45, 2004, 143-158.
28. Thomas, G., Vladimir, G.K., (2007) : Tidal and residual circulation in coupled restricted and leaky lagoons. Estuarine, Coastal and Shelf Science. 77, 2008, 396-408.
29. Van de Kreeke, J., (1988) : Hydrodynamics of tidal inlet. Lecture Notes on Coastal and Estuaries Studies, 29, pp. 1-21.
30. Yoshie, N., Yamanaka, Y., Rose, K.A., Eslinger, D.L.,Ware, D.M., Kishi, M.J., (2007) : Parameter sensitivity of the NEMURO lower trophic level marine ecosystem model. Ecological Modelling. 202, 26-37.
31. Zhang, Y.L., Baptista, A.M., Myers, E.P., (2004) : A cross-scale model for 3D baroclinic circulation in estuary–plume–shelf systems: I. Formulation and skill assessment. Cont. Shelf Res. 24, 2187-2214.
32. Zang, Y.L. and Baptista, A.M., (2008) : “SELFE:A semi-Eulerian-Lagrangian finite-element model for cross-scale ocean circulation.” Ocean Modell. (2008), doi:10.1016.ocemod.2007.11.005
33. 尤皓正、江朕榮、于嘉順、蘇青和 (2007) : 台中港結構對近岸流場的影響,第29屆海洋工程研討會論文集,第153-158頁。
34. 張穎昌 (2011) : 以三維數值海流模式探討潮口改善工程對大鵬灣水體交換之影響,國立中山大學海洋環境及工程學系碩士論文。
35. 孫佩君、曾若玄、蘇青和, (1999) : 高雄港港池流場的數值模擬與現場觀測。
36. 蔡致維, (2004) : 愛河之水文研究,國立中山大學海洋資源研究所碩士論文。
37. 蘇青和、莊文傑、陳明宗 (1996) : 台中港港口海流數值推算,中華民國第十八屆海洋工程研討會論文集,第389-400頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code