Responsive image
博碩士論文 etd-1116115-174536 詳細資訊
Title page for etd-1116115-174536
論文名稱
Title
奈米材料之合成與鑑定及對細菌與癌細胞之偵測、顯影與抑 制之應用
Nanomaterial synthesis, characterization and application in detection, imaging and killing of bacterial and cancer cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
144
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-26
繳交日期
Date of Submission
2016-01-30
關鍵字
Keywords
磁性奈米粒子、臨界微胞濃度、生物成像、氧化鋅-石墨烯奈米複合材料、斯托克斯位移、螢光光譜儀
fluorescence spectroscopy, graphene oxidezinc oxide hybrid nanostructure, bioimaging, critical micells concentration, Magnetic nanoparticles, stokes shift
統計
Statistics
本論文已被瀏覽 5705 次,被下載 47
The thesis/dissertation has been browsed 5705 times, has been downloaded 47 times.
中文摘要
本論文探討奈米材料在奈米生醫領域之合成與應用。本文嘗試聚焦於氧化鐵奈米粒、碳粒、氧化鋅奈米柱與二維氧化石墨烯奈米層應用於偵測、生物顯影、奈米醫藥及生物感測器之探討。本文亦揭示核殼結構Fe3O4@SiO2 磁性奈米粒的合成(CILMS),該奈米粒可利用CILMS 上的正電荷與細胞膜上負電荷之間的靜電作用而用於病原菌的分離; 分離後以基質輔助雷射脫附游離飛行時間質譜儀(MALDI-MS)偵測病原菌。以具螢光性質之碳粒子測量離子性與非離子性界面活性劑臨界膠束濃度之研究也收錄於本文。固定濃度之碳粒子與不同濃度界面活性劑之系統以史托克斯位移(Stokes shift)作測量。以分子軌域電子躍遷以及分子與溶劑作用來解析光譜之訊號。在溴化四辛基銨存在下微波加熱檸檬酸產生膠狀碳粒子。此碳粒子具細胞滲透性與生物相容性,依此特性將碳粒子應用於海拉細胞(HeLa)顯影。氧化石墨烯與氧化鋅奈米柱的複合材料與其單獨材料相比具有很顯著的抑菌作用,以傳統方法與MALDI-MS 都證實這個新材料具有相當大的應用潛力。磁性奈米碳粒以X-光繞射儀(XRD), (穿透式電子顯微鏡)TEM, (傅里葉轉換紅外光譜儀)FT-IR, (能量分散式光譜儀)EDX, (拉曼光譜儀)Raman 及(紫外光可見光光譜儀)UV-vis 光譜作性質測定。螢光光譜與MALDI-MS 被用於偵測病原菌大腸桿菌(E. coli)及金黄色葡萄球菌(S. aureus)。
Abstract
In this thesis the synthesis of nanomaterials and their applications in the multidisciplinary area of nano-biomedicine was explored. Iron oxide nanoparticles, Carbon dots, Zinc oxide nanorods and two-dimensional graphene oxide nanosheets were fabricated and applied for detection, bioimaging, nano-medicine and biosensors based on their individual characteristic properties. The magnetic nanoparticles were preparedby co-precipitation and the core–shell Fe3O4@SiO2 nanoparticles were prepared by the sol–gel process, followed by the grafting of 3-chloropropyltrimethoxysilane that was reacted further with N-methylimidazole to form cationic ionic liquid-modified Fe3O4@SiO2 magnetic nanoparticles (CILMS). The pathogenic bacteria were separated mainly based on the electrostatic interactions among thenegative charges on the cell membranes and the positive charges of the CILMS particles. The separated cells weredetected using MALDI-MS. Critical micelle concentration (CMC) determination of ionic and non-ionic surfactants using carbon dots (C-dots) which exhibited substantial fluorescence was based on the Stokes shift of a system. A jelly-like form of fluorescent carbon dots (C-dots) was prepared by microwave heating of citric acid in thepresence of tetraoctylammonium bromide. The synthesized carbon dots demonstrated significant cell permeability and biocompatible, which was utilized for HeLa cell imaging.
The hybrid graphene oxide with zinc oxide nanorods utilized to demonstrate an impressive antibacterial effect under intense scrutiny as compared with individual graphene oxide or zinc oxide nanomaterials. The modern technique such as MALDI-MS along with conventional methods were applied and proved that the nanomaterials have a great future in the field of medicine. Finally, magnetic carbon dots were synthesized and confirmed their characteristics using XRD, TEM, FT-IR, EDX, Raman, and UV-visible spectrometer. These nanomaterials were further applied for detection of pathogenic bacteria viz. E. coli, S. aureus using Fluorescence spectroscope and MALDI-TOF MS techniques.
目次 Table of Contents
Acknowledgement.......................................................................................................... i
Abstract in Chinese......................................................................................................... iii
Abstract in English......................................................................................................... iv
Table of Contents.......................................................................................................... v
List of Figures................................................................................................................. ix
List of Tables................................................................................................................... xiv
List of Abbreviations...................................................................................................... xv
Chapter 1 Introduction………........................................................................................ 1
1.1 General introduction…………………………………………............................... 1
1.2 Chemistry of nanomaterials…………………...................................... 2
1.3 Ionic liquid modified iron oxide nanoparticle (Fe3O4@SiO2) applied
for detection of pathogenic bacteria……..…..................................... 6
1.4 Critical micelle concentration (CMC) of surfactant determination
using fluorescent carbon dots……........................................................ 7
1.5 Carbon dots in jelly-like form and their application in cancer cells
imaging.................................................................................................. 8
1.6 Antibacterial action of zinc oxide-graphene oxide nanostructure
(ZnO-GO).............................................................................................. 9
1.7 Bacterial detection using Magnetic carbon dot via fluorescence
spectroscopy.......................................................................................... 9
1.8 Focus of the entire thesis...................................................................... 10
1.9 References............................................................................................ 11
Chapter 2 Rapid and direct MALDI-MS identification of pathogenic bacteria from
blood using ionic liquid modified magnetic nanoparticles (Fe3O4@SiO2)..... 14
2.1 Introduction………................................................................................ 14
2.1.1 Experimental…………………............................................................... 15
vii
2.1.1.1 Materials and instrumentation…………………............................... 15
2.1.1.2 Preparation of magnetic nanoparticles….. ........................................ 16
2.1.1.3 Synthesis of silica coated magnetic microspheres (Fe3O4@SiO2)..... 16
2.1.1.4 Synthesis of the cationic ionic liquid-modified Fe3O4@SiO2 magnetic
nanoparticles (CILMS)……………................................................... 17
2.1.1.5 Optimization of parameters affecting CILMS separation…............... 17
2.1.1.6 Detection of bacteria in mouse blood………………………............. 18
2.1.1.7 Measurement of detection limits………………………………........ 18
2.1.1.8 Evaluation of bacterial selectivity of CILMS……………............... 19
2.1.1.9 CILMS assisted MALDI-MS analysis of bacteria in sheep blood… 19
2.1.1.10 Transmission electron microscopy (TEM)……………………....... 19
2.1.2 Results and discussion……………………………………..................... 20
2.1.2.1 Preparation and characterization of CILMS………........................... 20
2.1.2.2 Effect of CILMS concentration on the separation efficiency…….... 23
2.1.2.3 Evaluation of incubation time…………………………..................... 27
2.1.2.4 MALDI-MS analysis of bacteria in real samples from mice's blood.. 30
2.1.2.5 Evaluation of bacterial selectivity of CILMS…………………........... 37
2.1.2.6 MALDI-MS analysis of bacteria in real samples from sheep blood… 39
2.1.2.7 Mechanistic study of the bacteria separation of CILMS using TEM
analysis…........................................................................................... 42
2.1.3 Conclusions……………………………………………....................... 45
2.1.4 References………………………………………………...................... 45
Chapter 3 Fluorophotometric determination of critical micelle concentrations (CMC)
of ionic and non-ionic surfactants with carbon dots via Stokes shift…....... 49
3.1 Introduction………………………………........................................... 49
3.1.1 Materials and methods…………………………………..................... 51
3.1.1.1 Preparation and purification of C-dots……..................................... 51
3.1.1.2 Determination of critical micelle concentration of surfactants…….. 52
3.1.1.3 Characterization of C-dots……………………................................. 52
3.1.2 Results and discussion………………………..................................... 53
viii
3.1.2.1 The characterization of C-dots…………………............................. 53
3.1.2.2 The evaluation of CMC of CTAB, SDS, Triton X-100, SB-12…... 57
3.1.3 Conclusions……………………………………………...................... 61
3.1.4 References…………………………………….................................... 61
Chapter 4 Synthesis of fluorescent carbon dots via microwave carbonizations of
citric acid in presence of tetraoctyl-ammonium ion, and their application
to cellular bioimaging..................................................................................... 64
4.1 Introduction………………………………………………….............. 64
4.1.1 Experimental section……………………………………..................... 65
4.1.1.1 Materials and methods………………………………………........... 65
4.1.1.2 Synthesis of carbon dots…………………………………….............. 65
4.1.1.3 Characterization of carbon dots……………………………………... 66
4.1.1.4 Cell labeling and cytotoxicity studies……………………….............. 67
4.1.2 Results and discussion…………………………………......................... 68
4.4.3 Conclusions…………………………………………............................. 77
4.4.4 References…………………………………………………………...... 78
Chapter 5 MALDI MS analysis, disk diffusion and optical density measurements
for antimicrobial effect of zinc oxide nanorods integrated in graphene
oxide nanostructures……................................................................................ 81
5.1 Introduction…………………………………………............................ 81
5.1.1 Experimental section………………………………............................... 82
5.1.1.1 Materials and instrumentation………………….................................. 82
5.1.1.2 Preparation of graphene oxide…………………………..................... 83
5.1.1.3 Preparation of zinc oxide nanorods…………..................................... 84
5.1.1.4 Synthesis of graphene oxide-zinc oxide nanocomposite……............. 84
5.1.1.5 Disc diffusion method………………………………………............. 84
5.1.1.6 Optical density measurements…………………….............................. 85
5.1.1.7 Transmission electron microscopy images……..............………….... 85
5.1.2 Results and discussion…………………………………….................... 85
5.1.2.1 Characterization of the constituent and hybrid nanomaterials............. 85
ix
5.1.2.2 Optical density measurement for antimicrobial test……………….... 90
5.1.2.3 MALD-MS study for interactions of nanomaterials towards bacteria.. 92
5.1.2.4 TEM imaging for bacteria treated with hybrid nanomaterials…......... 96
5.1.2.5 A qualitative antibacterial study by disc diffusion assay………........... 98
5.1.3 Conclusions……………………............................................................. 100
5.1.4 References……………………….......................................................... 100
Chapter 6 Fabrication of amine functionalized magnetic carbon dots (Mag-CDs) for
Fluorescent detection of pathogenic bacteria.................................................... 103
6.1 Introduction............................................................................................ 103
6.2.1 Experimental section.............................................................................. 105
6.2.1.1 Materials and method.......................................................................... 105
6.2.1.2 Instrumental utility............................................................................... 105
6.2.1.3 Synthesis of Magnetic Nanoparticles (MNPs).................................... 106
6.2.1.4 Magnetic nanoparticles decorated with Carbon dots (Mag-CDs
nanoparticles)...................................................................................... 106
6.2.1.5 Fluorescence detection of E. coli and S. aureus.................................. 107
6.2.1.6 Bacterial detection using Mag-CDs and measured by MALDI-MS... 107
6.3 Results and Discussion........................................................................... 107
6.4 Conclusions............................................................................................ 117
6.5 References.............................................................................................. 118
Chapter 7 Conclusion of the thesis………….................................................................... 122
Appendix ………………………………………………………………………………... 124
x
List of Figures
Figure 1.1 Different shapes of ZnO nanomaterials................................................. 5
Figure 2.1 Schematic illustrations of the preparation of CILMS and the capture
of bacteria by the magnetic nanoparticles. Optical images represent
the nanoparticles before (up) and after (down) separation…………… 20
Figure 2.2 Characterization of CILMS using TEM images of (A) Fe3O4 and
(B) Fe3O4@SiO2; (C) SEM, (D) EDX analysis and (D) FT-IR
spectra………………………………………………………………… 21
Figure 2.3 Volume effects of CILMS on the capture of E. coli with (a) bacteria
control, (b) 2.0, (c) 5.0, (d) 10, (e) 15, (f) 20, and (g) 25 mL CILMS… 24
Figure 2.4 Volume effects of CILMS on the capture of P. aeruginosa with
(a) bacteria control, (b) 2.0, (c) 5.0, (d) 10, (e) 15, (f) 20, and
(g) 25 mL CILMS. …………………………………………………… 25
Figure 2.5 Volume effects of CILMS on the capture of S. aureus with
(a) bacteria control, (b) 2.0, (c) 5.0, (d) 10, (e) 15, (f) 20, and
(g) 25 mL CILMS ……………….. …………………………. ……… 26
Figure 2.6 Effect of the incubation time on the capture of E. coli (8.1 x 1010
cfu mL-1) with 10 mL CILMS (a) bacteria control, after (b) 2, (c) 5,
(d) 10, (e) 15, and (f) 20 min incubation……………………………. 27
Figure 2.7 Effect of the incubation time on the capture of P. aeruginosa (1.7 x
1010 cfu mL-1) with 10 mL CILMS (a) bacteria control, after (b) 2,
(c) 5, (d) 10, (e) 15, and (f) 20 min incubation………………………. 28
Figure 2.8 Effect of the incubation time of the capture of S. aureus (2.9 x 1010
cfu mL-1) with 10 mL CILMS (a) bacteria control, after (b) 2, (c) 5,
(d) 10, (e) 15, and (f) 20 min incubation………………………………. 29
Figure 2.9 The evaluation of E. coli capture in mice blood sample with CILMS
xi
and (a) blood control, (b) bacteria control, (c) 0.5, (d) 1.0, (e) 3.0,
(f) 10 (g) 20, and (h) 30 mL E. coli (4.8 x 1010 cfu mL-1)……………… 31
Figure 2.10 The evaluation of P. aeruginosa capture in mice blood sample with
CILMS and (a) blood control, (b) bacteria control, (c) 0.5, (d) 1.0,
(e) 3.0, (f) 10, (g) 20, and (h) 30 mL P. aeruginosa (9.8 x 1012 cfu mL-1)... 32
Figure 2.11 The evaluation of S. aureus capture in mice blood sample with
CILMS and (a) blood control, (b) bacteria control, (c) 0.5, (d) 1.0,
(e) 3.0, (f) 10 (g) 20, and (h) 30 mL S. aureus (7.89 x 1013 cfu mL-1)…. 33
Figure 2.12 LOD determination of E. coli from (a) 2.7 x 102, (b) 3.4 x 103,
(c) 4.2 x 103, (d) 6.5 x 105, (e) 7.1 x 106, (f) 8.4 x 107, and (g) 9.1 x 108
cfu mL-1 E. coli with CILMS………………………………………….. 34
Figure 2.13 LOD determination of P. aeruginosa from (a) 2.5 x 102, (b) 3.2 x103,
(c) 5.2 x 105, (d) 6.9 x 106, (e) 7.5 x 107, (f) 8.2 x 108, and (g) 9.6 x 109
cfu mL-1 P. aeruginosa with CILMS………………………………….. 35
Figure 2.14 LOD determination of S. aureus from (a) 3.1×102, (b) 4.2×103, (c) 5.8
×104, (d) 7.2 × 105, and (e) 8.9×106 cfu mL-1 S. aureus with CILMS……. 36
Figure 2.15 The evaluation of bacterial selectivity of CILMS with (a) S. aureus
control (1.7 × 1013 cfu mL-1), (b) P. aeruginosa control (3.6×1013 cfu
mL-1), (c) E. coli control (4.1 × 1013 cfu mL-1), (d) P. aeruginosa
and S. aureus, (e) E. coli & S. aureus, and (f) E. coli & P. aeruginosa… 38
Figure 2.16 The evaluation of E. coli capture in sheep blood sample with
CILMS and (a) blood control, (b) bacteria control, (c) 0.5, (d) 1.0,
(e) 3.0, (f) 10, (g) 20, and (h) 30 μL E. coli (8.5×1012 cfu mL-1)……….. 39
Figure 2.17 The evaluation of P. aeruginosa capture in sheep blood sample
with CILMS and (a) blood control, (b) bacteria control, (c) 0.5,
(d) 1.0, (e) 3.0, (f) 10, (g) 20, and (h) 30 μLP. Aeruginosa
(1.7×1013 cfu mL-1)……………………………………………………… 40
xii
Figure 2.18 The evaluation of S. aureus capture in sheep blood sample with
CILMS and (a) blood control, (b) bacteria control, (c) 0.5, (d) 1.0,
(e) 3.0, (f) 10, (g) 20, and (h) 30 μLS. aureus (7.5 × 1013 cfu mL-1)…….. 41
Figure 2.19 TEM analysis of the bacterial cells (A) P. aeruginosa, (B) S. aureus
and (C) E. coli before (a) and after (b) interaction with CILMS………. 42
Figure 3.1 Schematic illustrations of experimental procedures……………………. 53
Figure 3.2 Characterization of carbon dots: (A) TEM image, (B) histogram
of particles diameter distribution, (C) UV-Vis spectra, and
(D) Fluorescence spectra excited at different wavelengths…………. 54
Figure 3.3 Continued characterizations of carbon dots: (A) FTIR spectra,
(B) XRD pattern,and (C) Raman spectra…………………………….. 55
Figure 3.4 Excitation and emission fluorescence spectra, and the corresponding
relationship of the Stokes shift and the concentration of
surfactant CTAB (A and B), SDS (Cand D), Triton X-100
(E and F), and SB-12 (G and H), respectively………………………. 58
Figure 4.1 Schematic illustration of the synthetic procedure of C-dots,
characterization, cytotoxicity and their applications…………………. 68
Figure 4.2 Characterization of C-dots: (a) UV-visible spectra, (b) XRD pattern,
(c) FT-IR spectra of C-dots I, II, III, and IV, (d) PLspectra of C-dots
I, II, III, IV excited at 514 nm…………………………………………. 69
Figure 4.3 HR-TEM images of C-dots prepared from citric acid with the
Diameter (a) I (biger than 10 nm), (b) II (bigger and smaller
than 10 nm), (c) III (<5 nm), and (d) IV (<5 nm)……………………… 71
Figure 4.4 Fluorescence spectra of C-dots (a) I, (b) II, (c) III, and (d) IV
With different excitation wavelengths increased from 300 to
460 nm in a 20 nm increment…………………………………………. 72
xiii
Figure 4.5 Optical pictures of C-dots I, II, III, IV in (a) a gelly-like form, (b)
solution form under visible light and the corresponding forms (c),
(d) under UV irradiation………………………………………………. 73
Figure 4.6 Fluorescent microscopic images of HeLa cells labelled with C-dots
IV over 24 h incubation: (a, b) HeLa cells without C-dots and (c,
d) HeLa cells incubated with C-dots for 24 h; Scale bar: 50 μm……… 74
Figure 4.7 Cytotoxicity studies of C-dots IV on HeLa cells at 1, 3, and
5 mgmL−1 of concentration……………………………………………… 75
Figure 4.8 Histograms of particle size distribution of C-dots (a) I, (b) II,
(c) III, and (d) IV………………………………………………………… 76
Figure 4.9 Stability test of C-dots with fluorescence at 375 nm, excited at 300 nm… 77
Figure 5.1 Schematic illustrations of the experimental processes…………………. 86
Figure 5.2 Characterization of GO-ZnO nanorods and their constituents by
(A) TEM, (B) SEM images and the corresponding EDX spectra………. 87
Figure 5.3 Continued characterizations of GO-ZnO nanorods and their constituents
by (A) UV, (B) FTIR, (C) XRD, and (D) Raman spectra……… 88
Figure 5.4 Optical density measurements of bacteria at wavelength of 600 nm
(OD600) for (A) S. aureus and (B) E. coli……………………………….. 91
Figure 5.5 MALDI-TOF MS spectra of S. aureus treated with (A) GO,
(B) ZnO, and (C) GO-ZnO nanorods, respectively…………………… 94
Figure 5.6 MALDI-TOF MS spectra of E. coli treated with (A) GO, (B) ZnO,
and (C) GO-ZnO nanorods, respectively……………………………… 95
Figure 5.7 TEM images of the control bacteria (A) S. aureus, (B) E. coli, and
their corresponding TEM images (C, D) after interacted with
GO-ZnO nanorods. Weakened membranes of bacteria are
xiv
demonstrated due to the chemically reactive nanomaterials…………… 97
Figure 5.8 Disk diffusion assay for the qualitative antibacterial study of
GO-ZnOnanorods on (A) S. aureus and (B) E. coli………………….... 99
Figure 6.1 Schematic representation of experimental concepts................................ 108
Figure 6.2 Characterization I: TEM images of (a) Iron oxide nanoparticles and
(b) Mag-CDs. (c) FTIR spectra of Iron oxide and Magnetic C-dots,
and (d) EDX of Mag-CDs........................................................................... 109
Figure 6.3 Characterization II: (a) UV-vis spectra of Mag-CDs and Iron oxide
nanoparticles. (b) Emission spectra of the Mag-CDs at different
excitation wavelength as indicated. (c) The XRD patterns of the Iron
oxide nanoparticles and Mag-CDs. (d) Optical pictures demonstrate
the fluorescent and magnetic properties of Mag-CDs................................ 110
Figure 6.4 (a) Photoluminescence spectra of S. aureus with different concentrations
and (b) the calibration curve of the pathogenic bacteria. (c) Photoluminescence
spectra of S. aureus with different concentrations in urine
sample and (d) the calibration curve of the pathogenic bacteria............... 112
Figure 6.5 (a) Photoluminescence spectra of E. coli with different concentrations
and (b) the calibration curve of the pathogenic bacteria. (c) Photoluminescence
spectra of E. coli with different concentrations in urine
sample and (d) the calibration curve of the pathogenic bacteria.............. 113
Figure 6.6 MALDI-MS spectra of (a) S. aureus, including bacteria control,
urine control, 3×102 cfu mL-1, 1.1×103 cfu mL-1, 1.7×103 cfu mL-1,
and 2.3×103 cfu mL-1 (b ) E. coli, including bacteria control, urine
control, 3.5×103 cfu mL-1 , 1.1×103 cfu mL-1, 1.5×103 cfu mL-1, and
2.9×103 cfu mL-1……………………………………………………….. 116
xv
List of Tables
Table 2.1 Comparison among the different MNPs that were used for
pathogenic bacterial detection……………………………………… 43
Table 2.2 Comparison between different techniques that are used to
extract and identify bacteria………………………………………… 44
Table 3.1 Determination of quantum yield of carbon dots with Quinine
sulphate as the reference……………………………………………. 56
Table 3.2 List of CMC evaluations from some proposed protocols and
the approach in this work……………………………………………… 61
xvi
List of Abbreviations
MALDI-TOF MS Matrix assisted laser desorption ionization time of flight mass
spectrometry
Fe3O4@SiO2 Ionic modified magnetic nanoparticles
S. aureus Staphylococcus aureus
P. aeruginosa Pseudomonas aeruginosa
IL-MNPs Ionic liquid-modified magnetic nanoparticles
CILMS Cationic ionic liquid-modified magnetic nanoparticle
TEM Transmission electron microscopy
TEOS Tetraethylorthosilicate
TEA Triethylamine
CP Chloropropyl
SA Sinapinic acid
HCl Concentrated hydrochloric acid
FeCl2.4H2O Ferrous chloride tetrahydrate
SiO2 Silica dioxide
PBS Phosphate buffer saline
MNPs Magnetic nanoparticles
EDX Energy dispersive analyses
ILS Ionic liquids
FT-IR Fourier transforms infrared spectroscopy
xvii
SALDI-MS Surface assisted laser desorption/ionization mass spectrometry
TNs TiO2 nanocrystals
Anti-body /AuNP/MNPs Antibody/gold nanoparticle/magnetic nanoparticle nanocomposite
Bis-Zn-DPA Zinc-coordinated bis (dipicolylamine)
PCR Polymerase chain reaction
RBC Red blood cells
UESA-DLLME Ultrasonic enhanced surfactant assisted dispersive liquid-liquid
microextraction
CMC Critical micelle concentration
CTAB Cetyltrimethyl ammonium bromide
SDS Sodium dodecyl sulfate
SB-12 Dodecyldimethyl (3-sulfopropyl) ammonium hydroxide
C-dots Carbon dots
PL Photoluminescence
Q Quantum yield
I Integrated emission intensity
n Refractive index of solvent
E Optical density
XRD X-ray diffraction
A Absorbance
TOAB Tetraoctylammonium bromide
xviii
BCRC Bioresource collection and research center, Hsinchu, Taiwan
HR-TEM High resolution transmission electron microscopy
UV-vis Ultraviolet visible spectroscopy
DFT Density functional theory
GO Graphene oxide
NRs Nanorods
E. coli Escherichia coli
SEM Scanning electron microscopy
Zn(Ac)2·2H2O Zinc acetate
OD600 Optical density
ZnO NRs Zinc oxide nanorods
GO–ZnO NRs Graphene oxide-Zinc oxide nanorods hybrid nanomaterials
參考文獻 References
(1) Nel, A.; Xia, T.; Mädler, L.; Li, N. Science 2006, 311, 622-627.
(2) Daniel, M.-C.; Astruc, D. Chemical reviews 2004, 104, 293-346.
(3) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Journal of Physical Chemistry B
2003, 107, 668-677.
(4) Bisen, D.; Sharma, R.; Brahme, N.; Tamrakar, R. Chalcogenide Letters 2009, 6, 427-431.
(5) Kruis, F. E.; Fissan, H.; Peled, A. Journal of Aerosol Science 1998, 29, 511-535.
(6) Lyon, J. L.; Fleming, D. A.; Stone, M. B.; Schiffer, P.; Williams, M. E. Nano Letters 2004, 4,
719-723.
(7) Suganeswari, M. International Journal of Pharmaceutical & Biological Archive 2011, 2.
(8) Wu, W.; He, Q.; Jiang, C. ChemInform 2009, 40, i.
(9) Xie, J.; Xu, C.; Xu, Z.; Hou, Y.; Young, K. L.; Wang, S.; Pourmand, N.; Sun, S. Chemistry of
materials 2006, 18, 5401-5403.
(10) Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 3995-4021.
(11) Mohapatra, M.; Anand, S. International Journal of Engineering, Science and Technology
2010, 2.
(12) Kalita, S. J.; Bhardwaj, A.; Bhatt, H. A. Materials Science and Engineering: C 2007, 27,
441-449.
(13) Shchukin, D. G.; Schattka, J. H.; Antonietti, M.; Caruso, R. A. The Journal of Physical
Chemistry B 2003, 107, 952-957.
(14) Uche, D. O. V. Advances in applied Sci Res 2013, 4, 506-510.
(15) Xie, Y.; Hill, C. A.; Xiao, Z.; Militz, H.; Mai, C. Composites Part A: Applied Science and
Manufacturing 2010, 41, 806-819.
(16) Xu, J.-K.; Zhang, F.-F.; Sun, J.-J.; Sheng, J.; Wang, F.; Sun, M. Molecules 2014, 19, 21506-
21528.
(17) Espie, G.; Denoirjean, A.; Fauchais, P.; Labbe, J.; Dubsky, J.; Schneeweiss, O.; Volenik, K.
Surface and Coatings Technology 2005, 195, 17-28.
(18) SHUBHRA, Q. T. H.
(19) Homola, J.; Yee, S. S.; Gauglitz, G. Sensors and Actuators B: Chemical 1999, 54, 3-15.
(20) Park, H.-Y.; Schadt, M. J.; Wang, L.; Lim, I.-I. S.; Njoki, P. N.; Kim, S. H.; Jang, M.-Y.;
Luo, J.; Zhong, C.-J. Langmuir 2007, 23, 9050-9056.
12
(21) da Silva, J. C. E.; Gonçalves, H. M. TrAC Trends in Analytical Chemistry 2011, 30, 1327-
1336.
(22) Shen, J.; Zhu, Y.; Yang, X.; Li, C. Chemical Communications 2012, 48, 3686-3699.
(23) Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.
ACS nano 2012, 6, 5102-5110.
(24) Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.;
Veca, L. M.; Murray, D. Journal of the American Chemical Society 2007, 129, 11318-11319.
(25) Asefa, T.; Duncan, C. T.; Sharma, K. K. Analyst 2009, 134, 1980-1990.
(26) Schwenke, A. M.; Hoeppener, S.; Schubert, U. S. Advanced Materials 2015, 27, 4113-4141.
(27) Pinto, M. R.; Schanze, K. S. Proceedings of the National Academy of Sciences of the United
States of America 2004, 101, 7505-7510.
(28) Roy, P.; Chen, P.-C.; Periasamy, A. P.; Chen, Y.-N.; Chang, H.-T. Materials Today 2015.
(29) Mao, S.; Wen, Z.; Kim, H.; Lu, G.; Hurley, P.; Chen, J. ACS nano 2012, 6, 7505-7513.
(30) Yang, Y.; Yang, H.; Yang, M.; Shen, G.; Yu, R. Analytica Chimica Acta 2004, 525, 213-
220.
(31) Meng, L.; Fu, C.; Lu, Q. Progress in Natural Science 2009, 19, 801-810.
(32) Holzinger, M.; Le Goff, A.; Cosnier, S. Frontiers in chemistry 2014, 2.
(33) Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R. Scientific reports 2014, 4.
(34) Yi, G.-C.; Wang, C.; Park, W. I. Semiconductor Science and Technology 2005, 20, S22.
(35) Kobos, R. TrAC Trends in Analytical Chemistry 1987, 6, 6-9.
(36) Liu, H.; Xu, J.; Li, Y.; Li, Y. Accounts of chemical research 2010, 43, 1496-1508.
(37) Voss, T.; i Morral, A. F.; Xiong, E. Q.; Boeckl, J. J.; Jagadish, C.; Tutorial, S.; Sunday, P.;
AG, A. I.; Yu, D.; Zhu, X.
(38) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chemical Society Reviews 2010, 39,
228-240.
(39) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Advanced
materials 2010, 22, 3906-3924.
(40) Wu, S.-Y.; An, S. S. A.; Hulme, J. International journal of nanomedicine 2015, 10, 9.
(41) Talbot, G. H.; Bradley, J.; Edwards, J. E.; Gilbert, D.; Scheld, M.; Bartlett, J. G. Clinical
Infectious Diseases 2006, 42, 657-668.
13
(42) Schauer, S.; Sommer, R.; Farnleitner, A. H.; Kirschner, A. K. Applied and environmental
microbiology 2012, 78, 7369-7375.
(43) Sanvicens, N.; Marco, M. P. Trends in biotechnology 2008, 26, 425-433.
(44) Zhou, L.; Gao, C.; Hu, X.; Xu, W. Chemistry of Materials 2011, 23, 1461-1470.
(45) Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Lin, P.-C.; Her, G.-R.; Lai, A. C.-Y.; Chen, J.-H.;
Lin, C.-C.; Chen, Y.-J. Analytical chemistry 2005, 77, 5990-5997.
(46) Liu, X.; Graham, M. D.; Abbott, N. L. Langmuir 2007, 23, 9578-9585.
(47) Dominguez, A.; Fernandez, A.; Gonzalez, N.; Iglesias, E.; Montenegro, L. Journal of
Chemical Education 1997, 74, 1227.
(48) Li, Q.; Ohulchanskyy, T. Y.; Liu, R.; Koynov, K.; Wu, D.; Best, A.; Kumar, R.; Bonoiu, A.;
Prasad, P. N. The Journal of Physical Chemistry C 2010, 114, 12062-12068.
(49) Mizusawa, K.; Ishida, Y.; Takaoka, Y.; Miyagawa, M.; Tsukiji, S.; Hamachi, I. Journal of
the American Chemical Society 2010, 132, 7291-7293.
(50) Luo, P. G.; Sahu, S.; Yang, S.-T.; Sonkar, S. K.; Wang, J.; Wang, H.; LeCroy, G. E.; Cao,
L.; Sun, Y.-P. Journal of Materials Chemistry B 2013, 1, 2116-2127.
(51) Xu, C.; Yang, D.; Mei, L.; Li, Q.; Zhu, H.; Wang, T. ACS applied materials & interfaces
2013, 5, 12911-12920.
(52) Das, S. K.; Choi, S. U.; Yu, W.; Pradeep, T. Nanofluids: science and technology; John
Wiley & Sons, 2007.
(53) Lagaron, J. M.; Ocio, M. J.; Lopez-Rubio, A. Antimicrobial polymers; John Wiley & Sons,
2011.
(54) Wang, Z.; Xue, J.; Han, D.; Gu, F. ACS applied materials & interfaces 2014, 7, 308-317.
(55) Padmavathy, N.; Vijayaraghavan, R. Science and Technology of Advanced Materials 2008,
9, 035004.
(56) Liu, J.-C.; Chen, W.-J.; Li, C.-W.; Mong, K.-K. T.; Tsai, P.-J.; Tsai, T.-L.; Lee, Y. C.;
Chen, Y.-C. Analyst 2009, 134, 2087-2094.
(57) Liu, L.-H.; Dietsch, H.; Schurtenberger, P.; Yan, M. Bioconjugate chemistry 2009, 20,
1349-1355.
(58) Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-
Bortnyak, R.; Kuten, A.; Haick, H. Nature nanotechnology 2009, 4, 669-673.
(1) Gu, H.; Ho, P. L.; Tsang, K. W. T.; Wang, L.; Xu, B. J Am Chem Soc 2003, 125, 15702-15703.
(2) Ho, K. C.; Tsai, P. J.; Lin, Y. S.; Chen, Y. C. Anal Chem 2004, 76, 7162-7168.
(3) Lin, Y.-S.; Tsai, P.-J.; Weng, M.-F.; Chen, Y.-C. Anal Chem 2005, 77, 1753-1760.
(4) Liu, J. C.; Chen, W. J.; Li, C. W.; Mong, K. K.; Tsai, P. J.; Tsai, T. L.; Lee, Y. C.; Chen, Y. C. Analyst 2009, 134, 2087-2094.
(5) Tang, Y.; Zou, J.; Ma, C.; Ali, Z.; Li, Z.; Li, X.; Ma, N.; Mou, X.; Deng, Y.; Zhang, L.; Li, K.; Lu, G.; Yang, H.; He, N. Theranostics 2013, 3, 85-92.
(6) Zhang, X.; He, X.; Chen, L.; Zhang, Y. Journal of Materials Chemistry B 2014, 2, 3254-3262.
(7) Honda, H.; Kawabe, A.; Shinkai, M.; Kobayashi, T. Journal of fermentation and bioengineering 1998, 86, 191-196.
(8) Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. Journal of the American Chemical Society 2002, 124, 3508-3509.
(9) Tsang, K. Chemical Communications 2003, 1966-1967.
(10) Zhao, X.; Hilliard, L. R.; Mechery, S. J.; Wang, Y.; Bagwe, R. P.; Jin, S.; Tan, W. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 15027-15032.
(11) Yitzhaki, S.; Zahavy, E.; Oron, C.; Fisher, M.; Keysary, A. Analytical chemistry 2006, 78, 6670-6673.
(12) El-Boubbou, K.; Gruden, C.; Huang, X. J Am Chem Soc 2007, 129, 13392-13393.
(13) Varshney, M.; Li, Y. Biosens Bioelectron 2007, 22, 2408-2414.
(14) Chen, W.-J.; Tsai, P.-J.; Chen, Y.-C. Analytical chemistry 2008, 80, 9612-9621.
(15) Kell, A. J.; Somaskandan, K.; Stewart, G.; Bergeron, M. G.; Simard, B. Langmuir 2008, 24, 3493-3502.
(16) Kell, A. J.; Stewart, G.; Ryan, S.; Peytavi, R.; Boissinot, M.; Huletsky, A.; Bergeron, M. G.; Simard, B. Acs Nano 2008, 2, 1777-1788.
(17) Liu, J.-C.; Tsai, P.-J.; Lee, Y. C.; Chen, Y.-C. Analytical chemistry 2008, 80, 5425-5432.
(18) Bromberg, L.; Raduyk, S.; Hatton, T. A. Analytical chemistry 2009, 81, 5637-5645.
(19) Gao, J.; Gu, H.; Xu, B. Accounts of chemical research 2009, 42, 1097-1107.
(20) Liu, L.-H.; Dietsch, H.; Schurtenberger, P.; Yan, M. Bioconjugate chemistry 2009, 20, 1349-1355.
(21) Pei, X.; Yan, Y. H.; Yan, L.; Yang, P.; Wang, J.; Xu, R.; Chan-Park, M. B. Carbon 2010, 48, 2501-2505.
(22) Shan, Z.; Wu, Q.; Wang, X.; Zhou, Z.; Oakes, K. D.; Zhang, X.; Huang, Q.; Yang, W. Analytical biochemistry 2010, 398, 120-122.
(23) Abdelhamid, H. N.; Wu, H.-F. Journal of Materials Chemistry B 2013, 1, 3950-3961.
(24) Chung, H. J.; Castro, C. M.; Im, H.; Lee, H.; Weissleder, R. Nat Nano 2013, 8, 369-375.
(25) Zhang, Y.; Xia, C. Applied Catalysis A: General 2009, 366, 141-147.
(26) Safari, J.; Zarnegar, Z. Comptes Rendus Chimie 2013, 16, 821-828.
(27) Sobhani, S.; Honarmand, M. Applied Catalysis A: General 2013, 467, 456-462.
(28) Absalan, G.; Asadi, M.; Kamran, S.; Sheikhian, L.; Goltz, D. M. J Hazard Mater 2011, 192, 476-484.
(29) Bagheri, H.; Daliri, R.; Roostaie, A. Anal Chim Acta 2013, 794, 38-46.
(30) Barrera, C.; Herrera, A.; Zayas, Y.; Rinaldi, C. Journal of Magnetism and Magnetic Materials 2009, 321, 1397-1399.
(31) Sun, W.; Sun, Z.; Zhang, L.; Qi, X.; Li, G.; Wu, J.; Wang, M. Colloids and Surfaces B: Biointerfaces 2013, 101, 177-182.
(32) Wei, Y.; Li, Y.; Tian, A.; Fan, Y.; Wang, X. Journal of Materials Chemistry B 2013, 1, 2066.
(33) Gu, H.; Xu, K.; Xu, C.; Xu, B. Chem Commun (Camb) 2006, 941-949.
(34) Chen, C.-T.; Chen, Y.-C. Journal of Mass Spectrometry 2008, 43, 538-541.
(35) Ravindranath, S. P.; Mauer, L. J.; Deb-Roy, C.; Irudayaraj, J. Anal Chem 2009, 81, 2840-2846.
(36) Gopal, J.; Abdelhamid, H. N.; Hua, P.-Y.; Wu, H.-F. Journal of Materials Chemistry B 2013, 1, 2463-2475.
(37) Gnanaprakash, G.; Ayyappan, S.; Jayakumar, T.; Philip, J.; Raj, B. Nanotechnology 2006, 17, 5851-5857.
(38) Auler, L. M. L. A.; Silva, C. R.; Collins, K. E.; Collins, C. H. Journal of Chromatography A 2005, 1073, 147-153.
(39) Qiu, H.; Jiang, S.; Liu, X. J Chromatogr A2006, 1103, 265-270.
(40) Huang, Y.-F.; Wang, Y.-F.; Yan, X.-P. Environmental Science & Technology2010, 44, 7908-7913.
(41) Abdelhamid, H. N.; Bhaisare, M. L.; Wu, H.-F. Talanta 2014, 120, 208-217.
(42) Abdelhamid, H. N.; Wu, H.-F. Colloids and Surfaces B: Biointerfaces 2014, 115, 51-60.
(43) Ryan, S.; Kell, A. J.; van Faassen, H.; Tay, L.-L.; Simard, B.; MacKenzie, R.; Gilbert, M.; Tanha, J. Bioconjugate chemistry 2009, 20, 1966-1974.
(44) Welker, M. Proteomics 2011, 11, 3143-3153.
(45) Sandrin, T. R.; Goldstein, J. E.; Schumaker, S. Mass Spectrometry Reviews 2013, 32, 188-217.
(46) Joo, J.; Yim, C.; Kwon, D.; Lee, J.; Shin, H. H.; Cha, H. J.; Jeon, S. Analyst 2012, 137, 3609-3612.
(47) Lee, J.-J.; Jeong, K. J.; Hashimoto, M.; Kwon, A. H.; Rwei, A.; Shankarappa, S. A.; Tsui, J. H.; Kohane, D. S. Nano letters 2013, 14, 1-5.
(1) Kumar, D.; Rub, M. A.; Akram, M. Journal of colloid and interface science 2014, 418, 324-329.
(2) Noritomi, H.; Kato, Y.; Kato, S. Journal of Surface Engineered Materials and Advanced Technology 2014, 4, 9.
(3) Young, K. L.; Personick, M. L.; Engel, M.; Damasceno, P. F.; Barnaby, S. N.; Bleher, R.; Li, T.; Glotzer, S. C.; Lee, B.; Mirkin, C. A. Angewandte Chemie International Edition 2013, 52, 13980-13984.
(4) Ruckenstein, E.; Nagarajan, R. The Journal of Physical Chemistry 1975, 79, 2622-2626.
(5) Tian, H.; Deng, C.; Lin, H.; Sun, J.; Deng, M.; Chen, X.; Jing, X. Biomaterials 2005, 26, 4209-4217.
(6) Farvadi, A.; Abolmaali, S.; Sobhani, Z.; GH Yousefi, F. Research in Pharmaceutical Sciences 2013, 9, 1-10.
(7) Yan, K.; Li, H.; Li, P.; Zhu, H.; Shen, J.; Yi, C.; Wu, S.; Yeung, K. W.; Xu, Z.; Xu, H. Biomaterials 2014, 35, 344-355.
(8) Chen, W.; Zhong, P.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Journal of Controlled Release2 013, 169, 171-179.
(9) Kaushal, D.; Rana, D.; Chauhan, S. Fluid Phase Equilibria 2013, 360, 239-247.
(10) Smith, G. N.; Brown, P.; Rogers, S. E.; Eastoe, J. Langmuir 2013, 29, 3252-3258.
(11) Anand, U.; Jash, C.; Mukherjee, S. Journal of colloid and interface science 2011, 364, 400-406.
(12) Furton, K. G.; Norelus, A. Journal of chemical education 1993, 70, 254.
(13) Lin, C. E.; Wang, T. Z.; Chiu, T. C.; Hsueh, C. C. Journal of High Resolution Chromatography1999, 22, 265-270.
(14) Aguiar, J.; Carpena, P.; Molina-Bolıvar, J.; Carnero Ruiz, C. Journal of Colloid and Interface Science 2003, 258, 116-122.
(15) Pandey, S.; Thakur, M.; Mewada, A.; Anjarlekar, D.; Mishra, N.; Sharon, M. Journal of Materials Chemistry B 2013, 1, 4972-4982.
(16) Yu, D.; Huang, F.; Xu, H. Analytical Methods 2012, 4, 47-49.
(17) Mewada, A.; Pandey, S.; Shinde, S.; Mishra, N.; Oza, G.; Thakur, M.; Sharon, M.; Sharon, M. Materials Science and Engineering: C 2013, 33, 2914-2917.
(18) Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y.; Wang, Y.; Zhao, D.; Zheng, G. Advanced Materials 2013, 25, 6569-6574.
(19) Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Angewandte Chemie 2013, 125, 4045-4049.
(20) Zhu, A.; Qu, Q.; Shao, X.; Kong, B.; Tian, Y. Angewandte Chemie 2012, 124, 7297-7301.
(21) Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Small 2008, 4, 455-458.
(22) Wang, Q.; Liu, X.; Zhang, L.; Lv, Y. Analyst 2012, 137, 5392-5397.
(23) Hu, S.; Liu, J.; Yang, J.; Wang, Y.; Cao, S. Journal of Nanoparticle Research 2011, 13, 7247-7252.
(24) YoungáKo, H.; HyunáLee, C. Journal of Materials Chemistry B 2013, 1, 4438-4445.
(25) Halder, M. The Chemical Educator 2007, 12, 33-36.
(26) Kwaambwa, H. M.; Nermark, F. M. Green and Sustainable Chemistry 2013, 2013.
(27) Zhang, J.; Shen, W.; Pan, D.; Zhang, Z.; Fang, Y.; Wu, M. New Journal of Chemistry 2010, 34, 591-593.
(28) Fletcher, A. N. Photochem Photobiol 1969, 9, 439-444.
(29) Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W. Journal of Materials Chemistry 2009, 19, 484-488.
(30) Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. Journal of Materials Chemistry 2012, 22, 24230-24253.
(31) Exall, K.; Balakrishnan, V. K.; Toito, J.; McFadyen, R. Science of The Total Environment 2013, 461, 371-376.
(32) Shi, Y.; Luo, H. Q.; Li, N. B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011, 78, 1403-1407.
(1) Blau, W.; Ji, W. Optical Materials Express 2012, 2, 891-892.
(2) Zhou, J.; Sheng, Z.; Han, H.; Zou, M.; Li, C. Materials Letters 2012, 66, 222-224.
(3) Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. Angewandte Chemie 2009, 121, 4668-4671.
(4) Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y.-P. Journal of the American Chemical Society 2009, 131, 11308-11309.
(5) Kozák, O. e.; Datta, K. K. R.; Greplová, M.; Ranc, V. c.; Kašlík, J.; Zbořil, R. The Journal of Physical Chemistry C 2013, 117, 24991-24996.
(6) Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T. Angewandte Chemie International Edition 2010, 49, 4430-4434.
(7) Zhu, C.; Zhai, J.; Dong, S. Chemical Communications 2012, 48, 9367-9369.
(8) Zhu, A.; Qu, Q.; Shao, X.; Kong, B.; Tian, Y. Angewandte Chemie 2012, 124, 7297-7301.
(9) Zheng, M.; Liu, S.; Li, J.; Qu, D.; Zhao, H.; Guan, X.; Hu, X.; Xie, Z.; Jing, X.; Sun, Z. Advanced Materials 2014, 26, 3554-3560.
(10) Chen, Y.; Liang, H. Journal of Photochemistry and Photobiology B: Biology 2014, 135, 23-32.
(11) Ding, H.; Zhang, P.; Wang, T.-Y.; Kong, J.-L.; Xiong, H.-M. Nanotechnology 2014, 25, 205604.
(12) Jiang, C.; Wu, H.; Song, X.; Ma, X.; Wang, J.; Tan, M. Talanta 2014, 127, 68-74.
(13) Mehta, V. N.; Jha, S.; Kailasa, S. K. Materials Science and Engineering: C 2014, 38, 20-27.
(14) Wang, Z.; Qu, Y.; Gao, X.; Mu, C.; Bai, J.; Pu, Q. Materials Letters 2014, 129, 122-125.
(15) Liang, Q.; Ma, W.; Shi, Y.; Li, Z.; Yang, X. Carbon 2013, 60, 421-428.
(16) da Silva, J. C. E.; Gonçalves, H. M. TrAC Trends in Analytical Chemistry 2011, 30, 1327-1336.
(17) Pisanello, F.; Leménager, G.; Martiradonna, L.; Carbone, L.; Vezzoli, S.; Desfonds, P.; Cozzoli, P. D.; Hermier, J. P.; Giacobino, E.; Cingolani, R. Advanced Materials 2013, 25, 1974-1980.
(18) Algarra, M.; Pérez-Martín, M.; Cifuentes-Rueda, M.; Jiménez-Jiménez, J.; da Silva, J. E.; Bandosz, T.; Rodríguez-Castellón, E.; Navarrete, J. L.; Casado, J. Nanoscale 2014, 6, 9071-9077.
(19) Wang, F.; Pang, S.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C.-y. Chemistry of Materials 2010, 22, 4528-4530.
(20) Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Dou, Y. Biosensors and Bioelectronics 2014, 60, 292-298.
(21) Mazzier, D.; Favaro, M.; Agnoli, S.; Silvestrini, S.; Granozzi, G.; Maggini, M.; Moretto, A. Chem. Commun.2014, 50, 6592-6595.
(22) Wang, J.; Cheng, C.; Huang, Y.; Zheng, B.; Yuan, H.; Bo, L.; Zheng, M.-W.; Yang, S.-Y.; Guo, Y.; Xiao, D. Journal of Materials Chemistry C 2014, 2, 5028-5035.
(23) Ye, C.; Zhong, X.; Yuan, R.; Chai, Y. Sensors and Actuators B: Chemical 2014, 199, 101-107.
(24) Teh, G. B.; Nagalingam, S.; Tilley, R. D.; Ramesh, S.; Lim, Y. S. Zeitschrift für Physikalische Chemie International journal of research in physical chemistry and chemical physics 2009, 223, 1417-1426.
(25) Nair, S. S.; John, S. A.; Sagara, T. Electrochimica Acta 2009, 54, 6837-6843.
(26) Stowell, C. A.; Korgel, B. A. Nano letters 2005, 5, 1203-1207.
(27) Miranda, O. R.; Dollahon, N. R.; Ahmadi, T. S. Crystal growth & design 2006, 6, 2747-2753.
(28) Tilley, R. D.; Warner, J. H.; Yamamoto, K.; Matsui, I.; Fujimori, H. Chem. Commun.2005, 1833-1835.
(29) Miranda, O. R.; Ahmadi, T. S. The Journal of Physical Chemistry B 2005, 109, 15724-15734.
(30) Baker, S. N.; Baker, G. A. Angewandte Chemie International Edition 2010, 49, 6726-6744.
(31) Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W. Journal of Materials Chemistry 2009, 19, 484-488.
(32) Lin, H.; Lin, T.; Juang, J. Cell Death & Differentiation 2007, 14, 607-615.
(33) Zhu, B.; Sun, S.; Wang, Y.; Deng, S.; Qian, G.; Wang, M.; Hu, A. Journal of Materials Chemistry C 2013, 1, 580-586.
(34) Monteiro-Riviere, N. A.; Inman, A. O.; Zhang, L. Toxicology and applied pharmacology 2009, 234, 222-235.
(35) Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J.-H.; Liu, Y.; Chen, M. The Journal of Physical Chemistry C 2009, 113, 18110-18114.
(1) Munson, E. L.; Diekema, D. J.; Beekmann, S. E.; Chapin, K. C.; Doern, G. V. J Clin Microbiol 2003, 41, 495-497.
(2) Ray, P. C.; Khan, S. A.; Singh, A. K.; Senapati, D.; Fan, Z. Chem Soc Rev 2012, 41, 3193-3209.
(3) Allison, B. C.; Applegate, B. M.; Youngblood, J. P. Biomacromolecules 2007, 8, 2995-2999.
(4) Aviv, M.; Berdicevsky, I.; Zilberman, M. J Biomed Mater Res A 2007, 83, 10-19.
(5) Ramstedt, M.; Cheng, N.; Azzaroni, O.; Mossialos, D.; Mathieu, H. J.; Huck, W. T. Langmuir 2007, 23, 3314-3321.
(6) Sharma, V. K.; Yngard, R. A.; Lin, Y. Adv Colloid Interface Sci 2009, 145, 83-96.
(7) Marambio-Jones, C.; Hoek, E. V. Journal of Nanoparticle Research 2010, 12, 1531-1551.
(8) Dash, M.; Chiellini, F.; Ottenbrite, R. M.; Chiellini, E. Progress in Polymer Science (Oxford) 2011, 36, 981-1014.
(9) Lee, S. B.; Koepsel, R. R.; Morley, S. W.; Matyjaszewski, K.; Sun, Y.; Russell, A. J. Biomacromolecules 2004, 5, 877-882.
(10) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666-669.
(11) Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282-286.
(12) Geim, A. K. Science 2009, 324, 1530-1534.
(13) Rao, C. N.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angew Chem Int Ed Engl2 009, 48, 7752-7777.
(14) Akhavan, O.; Ghaderi, E. ACS Nano 2010, 4, 5731-5736.
(15) Wang, Y.-W.; Cao, A.; Jiang, Y.; Zhang, X.; Liu, J.-H.; Liu, Y.; Wang, H. ACS Applied Materials & Interfaces 2014, 6, 2791-2798.
(16) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chemical Society Reviews 2010, 39, 228-240.
(17) Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nature Chemistry 2010, 2, 1015-1024.
(18) Kholmanov, I. N.; Stoller, M. D.; Edgeworth, J.; Lee, W. H.; Li, H.; Lee, J.; Barnhart, C.; Potts, J. R.; Piner, R.; Akinwande, D.; Barrick, J. E.; Ruoff, R. S. ACS Nano 2012, 6, 5157-5163.
(19) Mejías Carpio, I. E.; Santos, C. M.; Wei, X.; Rodrigues, D. F. Nanoscale 2012, 4, 4746-4756.
(20) Zhang, D.; Liu, X.; Wang, X. Journal of Inorganic Biochemistry 2011, 105, 1181-1186.
(21) Ma, J.; Zhang, J.; Xiong, Z.; Yong, Y.; Zhao, X. S. Journal of Materials Chemistry 2011, 21, 3350-3352.
(22) Nguyen, V. H.; Kim, B.-K.; Jo, Y.-L.; Shim, J.-J. The Journal of Supercritical Fluids2012, 72, 28-35.
(23) Yamamoto, O. International Journal of Inorganic Materials 2001, 3, 643-646.
(24) Yamamoto, O.; Komatsu, M.; Sawai, J.; Nakagawa, Z. E. J Mater Sci Mater Med 2004, 15, 847-851.
(25) Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M. F.; Fiévet, F. Nano Letters 2006, 6, 866-870.
(26) Wang, X.; Yang, F.; Yang, W.; Yang, X. Chemical Communications 2007, 4419-4421.
(27) Matai, I.; Sachdev, A.; Dubey, P.; Uday Kumar, S.; Bhushan, B.; Gopinath, P. Colloids and Surfaces B: Biointerfaces 2014, 115, 359-367.
(28) Tam, K. H.; Djurišić, A. B.; Chan, C. M. N.; Xi, Y. Y.; Tse, C. W.; Leung, Y. H.; Chan, W. K.; Leung, F. C. C.; Au, D. W. T. Thin Solid Films 2008, 516, 6167-6174.
(29) Perelshtein, I.; Ruderman, E.; Perkas, N.; Tzanov, T.; Beddow, J.; Joyce, E.; Mason, T. J.; Blanes, M.; Molla, K.; Patlolla, A.; Frenkel, A. I.; Gedanken, A. Journal of Materials Chemistry B 2013, 1, 1968-1976.
(30) Chang, H.; Sun, Z.; Ho, K. Y.-F.; Tao, X.; Yan, F.; Kwok, W.-M.; Zheng, Z. Nanoscale 2011, 3, 258-264.
(31) Kavitha, T.; Gopalan, A. I.; Lee, K.-P.; Park, S.-Y. Carbon 2012, 50, 2994-3000.
(32) Offeman, R.; Hummers, W. J Am Chem Soc 1958, 80, 1339-1339.
(33) Akhavan, O. ACS Nano 2010, 4, 4174-4180.
(34) Abdelhamid, H. N.; Wu, H.-F. Journal of Materials Chemistry B 2013, 1, 3950-3961.
(35) Sun, B.; Sirringhaus, H. Nano Lett 2005, 5, 2408-2413.
(36) Khare, P.; Yadav, R.; Swarup, A.
(37) Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Chemistry of Materials 2010, 22, 1392-1401.
(38) Baby, T. T.; Ramaprabhu, S. Journal of Materials Chemistry 2011, 21, 9702-9709.
(39) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806-4814.
(40) Nagaraju, G.; Ashoka, S.; Chithaiah, P.; Tharamani, C. N.; Chandrappa, G. T. Materials Science in Semiconductor Processing 2010, 13, 21-28.
(41) Xu, J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. ACS Nano 2010, 4, 5019-5026.
(42) Pacholski, C.; Kornowski, A.; Weller, H. Angewandte Chemie International Edition 2002, 41, 1188-1191.
(43) Liu, X.; Pan, L.; Zhao, Q.; Lv, T.; Zhu, G.; Chen, T.; Lu, T.; Sun, Z.; Sun, C. Chemical Engineering Journal 2012, 183, 238-243.
(44) Eda, G.; Chhowalla, M. Advanced Materials 2010, 22, 2392-2415.
(45) Alver, U.; Zhou, W.; Belay, A. B.; Krueger, R.; Davis, K. O.; Hickman, N. S. Applied Surface Science 2012, 258, 3109-3114.
(46) Maurer, L. M.; Yohannes, E.; Bondurant, S. S.; Radmacher, M.; Slonczewski, J. L. Journal of Bacteriology 2005, 187, 304-319.
(47) Fiebelkorn, K. R.; Crawford, S. A.; McElmeel, M. L.; Jorgensen, J. H. Journal of Clinical Microbiology 2003, 41, 4740-4744.

(1) Heo, J.; Hua, S. Z. Sensors 2009, 9, 4483-4502.
(2) El-Boubbou, K.; Gruden, C.; Huang, X. Journal of the American Chemical Society 2007, 129, 13392-13393.
(3) Yang, L.; Li, Y. Analyst 2006, 131, 394-401.
(4) Mannoor, M. S.; Tao, H.; Clayton, J. D.; Sengupta, A.; Kaplan, D. L.; Naik, R. R.; Verma, N.; Omenetto, F. G.; McAlpine, M. C. Nature communications 2012, 3, 763.
(5) Bhaisare, M. L.; Pandey, S.; Khan, M. S.; Talib, A.; Wu, H.-F. Talanta 2015, 132, 572-578.
(6) Pandey, S.; Thakur, M.; Talib, A.; Khan, M. S.; Bhaisare, M. L.; Wu, S.-M.; Wu, H.-F. RSC Advances 2015, 5, 4051-4057.
(7) Gedda, G.; Pandey, S.; Bhaisare, M. L.; Wu, H.-F. RSC Advances 2014, 4, 38027-38033.
(8) Bae, H.; Ahmad, T.; Rhee, I.; Chang, Y.; Jin, S.-U.; Hong, S. Nanoscale research letters 2012, 7, 1-5.
(9) Yang, Y.; Cui, J.; Zheng, M.; Hu, C.; Tan, S.; Xiao, Y.; Yang, Q.; Liu, Y. Chemical Communications 2012, 48, 380-382.
(10) Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Scientific reports 2013, 3.
(11) Chowdhury, D.; Gogoi, N.; Majumdar, G. RSC Advances 2012, 2, 12156-12159.
(12) Wang, Z.; Guo, H.; Yu, Y.; He, N. Journal of Magnetism and Magnetic Materials 2006, 302, 397-404.
(13) Kharisov, B. I.; Dias, H. R.; Kharissova, O. V.; Jiménez-Pérez, V. M.; Perez, B. O.; Flores, B. M. RSC Advances 2012, 2, 9325-9358.
(14) Zhang, S.; Niu, H.; Hu, Z.; Cai, Y.; Shi, Y. Journal of Chromatography A 2010, 1217, 4757-4764.
(15) Liu, J.-C.; Chen, W.-J.; Li, C.-W.; Mong, K.-K. T.; Tsai, P.-J.; Tsai, T.-L.; Lee, Y. C.; Chen, Y.-C. Analyst 2009, 134, 2087-2094.
(16) Ravindranath, S. P.; Mauer, L. J.; Deb-Roy, C.; Irudayaraj, J. Analytical chemistry 2009, 81, 2840-2846.
(17) Varshney, M.; Yang, L.; Su, X.-L.; Li, Y. Journal of Food Protection® 2005, 68, 1804-1811.
(18) Disney, M. D.; Zheng, J.; Swager, T. M.; Seeberger, P. H. Journal of the American Chemical Society 2004, 126, 13343-13346.
(19) Tiposoth, P.; Khamsakhon, S.; Ketsub, N.; Pongtharangkul, T.; Takashima, I.; Ojida, A.; Hamachi, I.; Wongkongkatep, J. Sensors and Actuators B: Chemical 2015, 209, 606-612.
(20) Calderaro, A.; Martinelli, M.; Motta, F.; Larini, S.; Arcangeletti, M.; Medici, M.; Chezzi, C.; De Conto, F. Clinical Microbiology and Infection 2014, 20, O468-O475.
(21) Jiang, Y.; Xu, Y.; Wang, R.; Zhao, B.; Zhang, X.; Zhao, H. RSC Advances 2015, 5, 54338-54344.
(22) Gu, H.; Xu, K.; Xu, C.; Xu, B. Chemical Communications 2006, 941-949.
(23) Kaittanis, C.; Naser, S. A.; Perez, J. M. Nano Letters 2007, 7, 380-383.
(24) Chen, W.-J.; Tsai, P.-J.; Chen, Y.-C. Analytical chemistry 2008, 80, 9612-9621.
(25) Chen, X.; Wu, X.; Gan, M.; Xu, F.; He, L.; Yang, D.; Xu, H.; Shah, N. P.; Wei, H. Journal of dairy science 2015, 98, 1563-1570.
(26) Xue, X.; Pan, J.; Xie, H.; Wang, J.; Zhang, S. Talanta 2009, 77, 1808-1813.
(27) Nandi, S.; Ritenberg, M.; Jelinek, R. Analyst 2015.
(28) Miranda, O. R.; Li, X.; Garcia-Gonzalez, L.; Zhu, Z.-J.; Yan, B.; Bunz, U. H.; Rotello, V. M. Journal of the American Chemical Society 2011, 133, 9650-9653.
(29) Wan, Y.; Sun, Y.; Qi, P.; Wang, P.; Zhang, D. Biosensors and Bioelectronics2014, 55, 289-293.
(30) Bhaisare, M. L.; Abdelhamid, H. N.; Wu, B.-S.; Wu, H.-F. Journal of Materials Chemistry B 2014, 2, 4671-4683.
(31) Tan, W. B.; Zhang, Y. Advanced Materials 2005, 17, 2375-2380.
(32) Liu, X.; Hu, Q.; Fang, Z.; Zhang, X.; Zhang, B. Langmuir 2008, 25, 3-8.
(33) Zhang, X.; Niu, H.; Pan, Y.; Shi, Y.; Cai, Y. Analytical chemistry 2010, 82, 2363-2371.
(34) Huang, Q.; Zhang, H.; Hu, S.; Li, F.; Weng, W.; Chen, J.; Wang, Q.; He, Y.; Zhang, W.; Bao, X. Biosensors and Bioelectronics 2014, 52, 277-280.
(35) Huang, Y.-F.; Wang, Y.-F.; Yan, X.-P. Environmental science & technology 2010, 44, 7908-7913.
(36) Dutta, P. K.; Dutta, J.; Tripathi, V. Journal of Scientific and Industrial Research 2004, 63, 20-31.
(37) Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. Journal of the American Chemical Society 2006, 128, 7756-7757.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code