Responsive image
博碩士論文 etd-1117113-140223 詳細資訊
Title page for etd-1117113-140223
論文名稱
Title
薄膜金屬玻璃與複合之機性行為與剪帶變形機制
Mechanical Behaviors and Shear Band Deformation Mechanisms in Thin Film Metallic Glasses and Composites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
198
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-12-10
繳交日期
Date of Submission
2013-12-17
關鍵字
Keywords
機械性質、微壓縮測試、薄膜、金屬玻璃、奈米壓痕
Microcompresion, Metallic glasses, Thin film, Nanoindentation, Mechanical properties
統計
Statistics
本論文已被瀏覽 5754 次,被下載 57
The thesis/dissertation has been browsed 5754 times, has been downloaded 57 times.
中文摘要
金屬玻璃是一種不具有長程有序的原子結構,因此金屬玻璃較相同成分的合金材料具有較低的彈性極限及較高的降伏強度與硬度。薄膜金屬玻璃,例如鋯基、鈀基金屬玻璃系統等,已被應用在微機電元件上。然而,金屬玻璃的脆性限制了其應用性。剪帶的變型機制是造成金屬玻璃脆性的主因,而剪帶的成核與傳遞與其臨界剪應力和能量釋放有關。許多科學家認為藉由多層膜結構,可以提供吸收能量與阻擋的功能,並改善薄膜金屬玻璃的脆性,例如:非晶/非晶、非晶/結晶等多層膜結構。研究非晶與結晶插入層對薄膜金屬玻璃變型機制的影響便十分重要。另外,在塊狀金屬玻璃方面,常常利用析出結晶強化相來增加延性。

在本實驗中,採用兩種方法來改善延性。第一種是利用磁控濺鍍來製備多層膜結構,藉由膜之間的差異性來增加延性。第二種方法則是利用金屬玻璃的成分調控,來製備出薄膜金屬玻璃複合材料。利用析出的強化相來增加延性。磁控濺鍍製備非晶質鋯基合金(Zr55Cu31Ti14)/非晶質鉭基合金(Zr31Cu15Ti10Ta44)、非晶質鋯基合金(Zr55Cu31Ti14)/非晶質鈀基合金(Pd77Cu6Si17)、非晶質鋯基合金(Zr55Cu31Ti14)/奈米晶鉭多層膜並研究其變型機制。在微壓縮測試的結果發現,薄膜金屬玻璃的剪帶變型機制受其插入層之硬度、楊氏係數以及結構所影響。

在複合材料薄膜製備是利用混和熱的正負選擇,使其析出結晶相。在本實驗是利用鎂鋯銅薄膜來製備複合膜。首先利用磁控濺鍍來製備並調控鎂鋯銅及其成分。藉由鋯與鎂的正混和熱,使其在製備過程中,鎂被鋯排擠而形成鎂的奈米晶粒。鎂鋯銅薄膜依據鎂的成分可以分成三種結構,39-43 at% 為單質金屬玻璃結構,48-73 at% 為複合材料結構,最後78-100 at% 為全結晶結構。利用穿透電子顯微鏡觀察發現,奈米鎂顆粒大小約20-50 nm 左右。另外,奈米鎂顆粒的量隨著鎂的成分增加而增加。而在鎂成分達到65 at% 有著最好的延性。其原因在於析出鎂是奈米雙晶結構。

在奈米壓痕測試中,鎂基複合膜展現出平滑的力與位移曲線。這暗示著鎂奈米晶粒可以阻擋剪帶的傳遞。在微壓縮測試中,鎂鋯銅薄膜在鎂65 at%擁有極高的延性。在強度方面,鎂鋯銅複合薄膜擁有高降伏強度,達到1.5 GPa.

最後,本研究創新開發一種奈米級拉伸試片,可以測得純金屬與金屬玻璃在奈米尺度之拉伸行為與數據,本項成果可與相關材料在微米尺度下之機性作一比較,未來有很大之研發空間。
Abstract
Metallic glasses have attracted considerable attention because of their excellent mechanical properties such as high strength and hardness. Moreover, many researchers note the potential applications in terms of biodegradable and micro-electro-mechanical systems (MEMS) due to the lack of periodic atomic packing, indicating that there is no defect such as grain boundary, dislocation, or plane defect in amorphous alloys. However, the high strength of metallic glasses is often accompanied by a virtually zero plastic strain and can fail in a catastrophic manner. Plastic deformation of metallic glasses is highly localized in shear bands, which usually propagate rapidly through the sample. The brittle problem limits the application of thin film metallic glasses (TFMGs) for MEMS devices.

To improve the brittle problem, this study has used two types of improvement methods, namely, the multilayered thin film metallic glasses and thin film metallic glass composites. For multilayered thin film metallic glasses, ZrCuTi (ZCT) 50 nm / PdCuSi (PCS) 50 nm TFMGs and ZrCuTi (ZCT) 50 nm / ZrCuTiTa (ZCTTa) 50 nm TFMGs are prepared by sputtering. The mechanical properties and the deformation characteristics of TFMGs are investigated by using expanding cavity model and nanoindentation testing. Utilizing the multilayered structure, the as-formed shear bands can be easily detected by scanning electron microscopy (SEM) and cross section transmission electron microscopy (XTEM). Two kinds of shear bands (radius shear bands and semi-circular shear bands) are observed by XTEM. Comparing the results of deformed microstructure and the load-displacement curves, a transition point from the radius type to semi-circular type of shear band can be found. The deflection phenomenon has been found by microcompression. In addition, the yield strength is enhanced by the multilayered structure.

For improving the ductility of bulk metallic glasses (BMGs), nanocrystals within the amorphous matrix have been frequently and intentionally added. Similarly, to reduce the brittle problem of TFMGs, the MgCuZr TFMGs, with a positive mixing heat between Mg and Zr, are fabricated via co-sputtering, in an attempt to separate the pure Mg nano-particles from the amorphous ZrCu matrix. The nanocrystalline Mg particles are expected to hinder the propagation of shear bands and to affect the mechanical characteristics of TFMGs. The structures of sputtered MgCuZr thin films are found to depend on the composition of Mg. For MgCuZr thin films with Mg content from 48 to 73 at%, the structure is the amorphous matrix with discontinuous Mg particles, and the Mg particle size in these TGMGs is all about 20-50 nm, as measured by TEM. The effects of different microstructures of Mg on mechanical response are investigated and discussed.

From the nanoindentation load-displacement curves, the Mg-based metallic glass composites exhibit smoother nature. It implies that the Mg nano-particle can stop the propagation of shear bands under nanoindentation loading. Meanwhile, the microcompression stress-strain curves also show that the Mg-based metallic glasses composites with Mg contents greater than 65% exhibit smoother and more ductile behavior. In addition, due to separation of Mg particles the Mg-based thin films composites and micropillars possess rather high modulus ~80 GPa and yield stress ~1.5 GPa.

Finally, the nano-tension behavior of various pure metals and TFMGs are explored. The results are discussed and compared with those obtained from the micro-compression. There is tremendous room for future research along this line.
目次 Table of Contents
Chapter 1 Introduction 1
1-1 Amorphous alloys 1
1-2 Evolution of BMGs and TEMGs 2
1-3 The development of Zr-, Pd- and Mg-based BMGs and TFMGs 3
1-4 Motivation 5
Chapter 2 Background and Literature Review 8
2-1 The characters and forming conditions of amorphous alloys 8
2-1-1 Supercooled liquid region (SCLR) 8
2-1-2 Glass forming ability (GFA) 8
2-1-3 The empirical rule for forming amorphous alloys 10
2-2 Mechanical properties of metallic glasses 11
2-3 Ductility improvement of metallic glasses 13
2-4 Theory and phenomena of sputter deposition process 15
2-4-1 Growth of sputter-deposited film 17
2-4-2 Zone model for sputtered coatings 17
2-4-3 Parameters of sputter deposition 18
2-5 Mechanical properties of metallic glasses composites 20
2-5-1 Secondary phase 20
2-5-2 Difference of modulus 20
2-5-3 Particle size and space between particles 21
2-6 Mechanical properties of multilayered structures 22
2-6-1 The effect of modulation periodicity 23
2-6-2 The effect of interfaces 23
2-6-3 The effect of the layer thickness 24
2-6-4 Rule of mixture 24
2-6-5 The improvement via amorphous/crystalline metal multilayers 25
2-6-6 The improvement via amorphous/amorphous metal multilayers 27
2-7 Microscale characterization via nanoindentation 28
2-7-1 Initial penetration or zero point determination 31
2-7-2 Effect of substrate 31
2-7-3 Analysis of load-displacement curve 32
2-7-4 Shear bands evolution under nanoindentation tests 33
2-8 Microscale characterization via micro-compression 34
2-8-1 Microscale mechanical properties on micropillars 34
2-8-2 Parameters of micro-compression tests 36
2-9 Microscale tensile tests 38
2-10 Nanoscale characterization via nano-compression 39
2-11 Nanoscale characterization via nano-tension 40
Chapter 3 Experimental Procedures 42
3-1 Materials 42
3-2 Sample preparation 42
3-2-1 Pretreatment for subatrate 43
3-2-2 Preparation for thin films and multilayer thin films 43
3-3 Alloy Designation 44
3-4 Property measurements and analyses 45
3-4-1 X-ray diffraction 45
3-4-2 SEM observation 45
3-4-3 Qualitative and quantitative component analyses 46
3-4-4 Cross-section-view TEM analysis 46
3-4-5 Plan-view TEM analysis 46
3-5 Nanoindentation tests 47
3-6 Microcompressive tests 47
3-6-1 Preparation for microcompression samples 47
3-6-2 Preparation for nanotension samples 47
3-6-3 Microcompression test using nanoindentation system 48
3-6-4 Preparation for TEM foil of the deformed micropillars 48
Chapter 4 Results and discussions 49
4-1 Multilayer systems of Zr-Cu-Ti/Pd-Cu-Si thin film metallic glasses 49
4-1-1 Sample preparations 49
4-1-2 EDS and XRD analyses 49
4-1-4 TEM results for multilayered films 50
4-1-5 Mechanical properties of ZCT/PCS multilayered thin film under nanoindentation 50
4-1-6 The expanding cavity model of metallic glasses under nanoindentation 52
4-1-7 The shear band evolution of ZCT/PCS multilayered thin films under nanoindentation 54
4-1-8 Mechanical behaviors of monolithic ZCT and PCS micropillars 55
4-1-9 Mechanical behaviors of ZCT/PCS multilayered micropillars 57
4-1-10 Modulus mismatch effect on deflection phenomenon of multilayer structure 57
4.2 Multilayer systems of Zr-Cu-Ti/Zr-Cu-Ti-Ta thin film metallic glasses 60
4-2-1 Sample preparations 60
4-2-2 EDS and XRD analyses 61
4-2-3 TEM results for multilayered films 62
4-2-4 Mechanical behaviors of monolithic ZCT and ZCTTa micropillars 62
4-2-5 Yield strength enhancement of ZCT/ZCTTa multilayer micropillars 62
4-3 Mechanical characteristics of Mg-ZrCu TFMG 63
4-3-1 Sample preparations 63
4-3-2 Materials 63
4-3-3 EDS and XRD analyses 64
4-3-4 The structure of Mg thin films characterized by TEM 64
4-3-5 The structure of MgZrCu thin films characterized by TEM 65
4-3-6 The volume fraction of Mg nano-particles 66
4-3-7 The nano-twins of MgZrCu thin films 67
4-3-8 The effect on nano-twining for MgZrCu thin films 67
4-3-9 The Mg content effect on pop-events 68
4-3-10 Microcompression results 69
4-4 Mechanical characteristics of Ag-ZrCu TFMG 73
4-4-1 Sample preparations 73
4-4-2 Materials 73
4-4-3 EDS and XRD analyses 73
4-4-4 The Ag content effect on pop-events 74
4-4-5 Microcompression results 74
4-5 Nano-scaled mechanical properties under compression tests 75
4-5-1 The mechanical behavior of nanocompression of Zr 75
4-5-2 The mechanical behavior of nanocompression of Mg 77
4-6 Nano-scaled mechanical properties under tension tests 78
4-6-1 Samples 78
4-6-2 The mechanical behavior of Mg under nanotension 78
4-6-3 Tension/compression strength asymmetry of nanotension and nanocompression 80
4-6-4 The mechanical behavior of Zr under nanotension 81
4-6-5 The mechanical behavior of ZrCu metallic glass under nanotension 82
4-7 Summary 83
Chapter 5 Overall Summary 85
Chapter 6 Conclusions 89
References 90
參考文獻 References
[1] A.C. Lund, C.A. Schuh, Journal of Applied Physics, 95 (2004) 4815-4822.
[2] A. Inoue, Acta Materialia, 48 (2000) 279-306.
[3] W.L. Johnson, MRS Bull, 24 (1999) 42-56.
[4] N.H. Pryds, Materials Science and Engineering A, 375-377 (2004) 186-193.
[5] M.F. Ashby, A.L. Greer, Scripta Materialia, 54 (2006) 321-326.
[6] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Japanese Journal of Applied Physics, 40 (2001) 5382-5388.
[7] W. Klement, R.H. Willens, P. Duwez, Nature, 187 (1960) 869-870.
[8] H.S. Chen, D. Turnbull, Acta Metallurgica, 17 (1969) 1021-1031.
[9] H.S. Chen, Acta Metallyrgica, 24 (1976) 153-158.
[10] R.B. Schwarz, W.L. Johnson, Physical Review Letters, 51 (1983) 415-418.
[11] E.J. Cotts, W.J. Meng, W.L. Johnson, Physical Review Letters, 57 (1986) 2295-2298.
[12] T.G. Nieh, T.W. Barbee, J. Wadsworth, Scripta Materialia, 41 (1999) 929-935.
[13] S. Hata, K. Sato, A. Shimokohbe, Procceeding of SPIE, 3892 (1999) 92-108.
[14] A. Inoue, T. Zhang, T. Masumoto, Materials Transactions, JIM, 31 (1990) 177-183.
[15] T. Zhang, A. Inoue, T. Masumoto, Materials Transactions, JIM, 32 (1991) 1005-1010.
[16] A. Peker, W.L. Johnson, Applied Physics Letters, 63 (1993) 2342-2344.
[17] J. Dudonis, R. Brucas, A. Miniotas, Thin Solid Films, 275 (1996) 164-167.
[18] H.S. Chou, J.C. Huang, L.W. Chang, T.G. Nieh, Applied Physics Letters, 93 (2008) 191901.
[19] H.W. Kui, A.L. Greer, D. Turnbull, Applied Physics Letters, 45 (1984) 615-616.
[20] A. Inoue, N. Nishiyama, H. Kimura, Materials Transactions, JIM, 38 (1999) 179-183.
[21] K.F. Yao, Y.Q. Yang, N. Chen, Intermetallics, 15 (2007) 639-643.
[22] F. Sommer, G. Bucher, B. Predel, Journal De Physique, (1980) C8-563-C568-566.
[23] A. Inoue, A. Kato, T. Zhang, S.G. Kim, T. Masumoto, Materials Transactions, JIM, 32 (1991) 609-616.
[24] H. Men, D.H. Kim, Journal of materials research, 18 (2003) 1502-1504.
[25] H.S. Chou, J.C. Huang, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, Journal of Alloys and Compounds, 483 (2009) 341-354.
[26] X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, W. Wang, Biomaterials, 31 (2010) 1093-1103.
[27] D.G. Pan, H.F. Zhang, A.M. Wang, Z.Q. Hu, Applied Physics Letters, 89 (2006) 261904.
[28] J.S.C. Jang, J.Y. Ciou, T.H. Li, J.C. Huang, T.G. Nieh, Intermetallics, 18 (2010) 451-458.
[29] K.M. Flores, R.H. Dauskardt, Scripta Materialia, 41 (1999) 937.
[30] X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, P.K. Liaw, Applied Physics Letters, 91 (2007) 131901.
[31] J.S.C. Jang, J.Y. Ciou, T.H. Hung, J.C. Huang, X.H. Du, Applied Physics Letters, 92 (2008) 011930.
[32] N. Mattern, U. Kuhn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, L. Schultz, Scripta Materialia, 53 (2005) 271-274.
[33] D. Turnbull, J.C. Fisher, The Journal of Chemical Physics, 17 (1949) 71.
[34] Z.P. Lu, C.T. Liu, Acta Materialia, 50 (2002) 3501-3512.
[35] X.H. Du, J.C. Huang, C.T. Liu, Z.P. Lu, Journal of Applied Physics, 101 (2007) 086108.
[36] A. Inoue, Materials Transactions, JIM, 36 (1995) 866-875.
[37] A. Inoue, Materials Science and Engineering A, A226-228 (1997) 357-363.
[38] A. Inoue, A. Takeuchi, T. Zhang, Metallurgical and Materials Transactions A, 29 (1998) 1779-1793.
[39] A.S. Argon, H.Y. Kuo, Materials Science and Engineering, 39 (1979) 101-109.
[40] F. Spaepen, Acta Metallurgica, 25 (1977) 407-415.
[41] M. Zink, K. Samwer, W.L. Johnson, S.G. Mayr, Physical Review B, 73 (2006) 172203.
[42] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Materialia, 55 (2007) 4067-4109.
[43] D.E. Polk, D. Turnbull, Acta Metallurgica, 20 (1972) 493-498.
[44] Z.F. Zhang, J. Eckert, L. Schultz, Acta Materialia, 51 (2003) 1167-1179.
[45] J.J. Lewandowski, A.L. Greer, Nature Materials, 5 (2006) 15-18.
[46] H.C. Yim, W.L. Johnson, Applied Physics Letters, 71 (1997) 3808-3810.
[47] R.D. Conner, R.B. Danliker, W.L. Johnson, Acta Materialia, 46 (1998) 6089-6102.
[48] M.L. Lee, Y. Li, C.A. Schuh, Acta Materialia, 52 (2004) 4121-4131.
[49] X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, P.K. Liaw, Applied Physics Letters, 90 (20074) 131901.
[50] J. Pan, L. Liu, K.C. Chan, Scripta Materialia, 60 (2009) 822-825.
[51] X.H. Du, J.C. Huang, H.M. Chen, H.S. Chou, Y.H. Lai, K.C. Hsieh, J.S.C. Jang, P.K. Liaw, Intermetallics, 17 (2009) 607-613.
[52] W. Husinsky, G. Betz, Thin Solid Films, 272 (1996) 289-309.
[53] M. Copel, M.C. Reuter, E. Kaxiras, R.M. Tromp, Physical Review Letters, 63 (1989) 632-635.
[54] J.A. Thornton, Journal of Vacuum Science & Technology, 4 (1986) 3059-3065.
[55] J.A. Thormton, Journal of Vacuum Science & Technology, 11 (1973) 666-670.
[56] K.B. Sundaram, A. Khan, Thin Solid Films, 295 (1997) 87-91.
[57] C. Wang, P. Brault, C. Zaepffel, J. Thiault, A. Pineau, T. Sauvage, Journal of Physics D: Applied Physics, 36 (2003) 2709-2713.
[58] R. Wuhrer, W.Y. Yeung, Scripta Materialia, 49 (2003) 199-205.
[59] D.C. Hofmann, J. Suh, A. Wiest, M. Lind, M.D. Demetriou, W.L. Johnson, Proceedings of the National Academy of Sciences of the United States of America, 105 (2008) 20136-20140.
[60] C. Fan, A. Inoue, Applied Physics Letters, 77 (2000) 46-48.
[61] L.Q. Xing, C. Bertrand, J.P. Dallas, M. Cornet, Materials Science and Engineering A, 241 (1998) 216-225.
[62] M.E. Launey, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009) 4986-4991.
[63] A.G. Evans, M.Y. He, Journal of American Ceramic Society, 72 (1989) 2300-2303.
[64] Y. Zhang, A.L. Greer, Applied Physics Letters, 89 (2006) 071907.
[65] L. Gao, R.S. Chen, E.H. Han, Journal of Alloys and Compounds, 481 (2009) 379-384.
[66] K.M. Youssef, Y.B. Wang, X.Z. Liao, S.N. Mathaudhu, L.J. Kecskes, Y.T. Zhu, C.C. Koch, Materials Science and Engineering A, 528 (2011) 7494-7499.
[67] C.W. Su, B.W. chua, L. Lu, M.O. Lai, Materials Science and Engineering A, 402 (2005) 163-169.
[68] K. Hajlaoui, A.R. Yavari, J. Das, G. Vaughan, Journal of Alloys and Compounds, 434-435 (2007) 6-9.
[69] R.L. Zong, S.P. Wen, F. Zeng, Y. GAo, X.W. Li, B. He, F. Pan, Surface & Coatings Technology, 2007 (2007) 7932-7938.
[70] H.S. Kim, Materials Science and Engineering A, 289 (2000) 30-33.
[71] S.P. Wen, R.L. Zong, F. Zeng, Y. Gao, F. Pan, Materials Science and Engineering A, 457 (2007) 38-43.
[72] X. Chu, S.A. Bamett, Journal of Applied Physics, 77 (1995) 4403-4411.
[73] P.E. Hovsepian, D.B. Lewis, W.D. Munz, Surface & Coatings Technology, 133-134 (2000) 166-175.
[74] J.B. Vella, A.B. Mann, H. Kung, C.L. Chien, T.P. Weihs, R.C. Cammarata, Journal of materials research, 19 (2004) 1840-1848.
[75] R.L. Zong, S.P. Wen, F. Lv, F. Zeng, Y. Gao, F. Pan, Surface & Coatings Technology, 202 (2008) 4242-4247.
[76] T. Masumoto, R. Maddin, Acta Metallurgica, 19 (1971) 725-741.
[77] T.G. Nieh, J. Wadsworth, Intermetallics, 16 (2008) 1156-1159.
[78] M.C. Liu, J.C. Huang, H.S. Chou, Y.H. Lai, C.J. Lee, T.G. Nieh, Scripta Materialia, 61 (2009) 840-843.
[79] T.G. Neih, T.W. Barbee, J. Wadsworth, Scripta Materialia, 9 (1999) 929-935.
[80] A. Donohue, F. Spaepen, R.G. Hoagland, A. Misra, Applied Physics Letters, 91 (2007) 241905.
[81] Y. Wang, J. Li, A.V. Hamza, T.W. Barbee, Proceedings of the National Academy of Sciences of the United States of America, 104 (2007) 11155-11160.
[82] Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Science, 315 (2007) 1385-1388.
[83] P. Sharma, K. Yubuta, H. Kimura, A. Inoue, Physical Review B, 80 (2009) 024106.
[84] J.B. Pethicai, R. Hutchings, W.C. Oliver, Philosophical Magazine A, 48 (1983) 593-606.
[85] J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, Journal of Tribology, 106 (1984) 43-48.
[86] W.C. Oliver, C.J. Mchargue, S.J. Zinkle, Thin Solid Films, 153 (1987) 185-196.
[87] C.A. Schuh, Materialstoday, 9 (2006) 32-40.
[88] S.J. Bull, Journal of Physics D: Applied Physics, 38 (2005) R393-R413.
[89] A.C. Fischer-Cripps, Surface & Coatings Technology, 200 (2006) 4153-4165.
[90] R. Saha, W.D. Nix, Acta Materialia, 50 (2002) 23-38.
[91] A.C. Lund, A.M. Hodge, C.A. Schuh, Applied Physics Letters, 85 (2004) 1362-1364.
[92] C.A. Schuh, T.G. Nieh, Acta Materialia, 51 (2003) 87-99.
[93] J. Jang, M.J. Lance, S. Wen, T.Y. Tsui, G.M. Pharr, Acta Materialia, 53 (2005) 1759-1770.
[94] M.D. Uchic, A.M. Dimiduk, J.N. Florando, W.D. Nix, Science, 305 (2004) 986-989.
[95] K.L. Johnson, Journal of the Mechanics and Physics of solids, 18 (1970) 115-126.
[96] S. Jana, R. Bhowmick, Y. Kawamura, K. Chattopadhyay, U. Ramamurty, Intermetallics, 12 (2004) 1097-1102.
[97] H.W. Zhang, X.N. Jing, G. Subhash, L.J. Kecskes, R.J. Dowding, Acta Materialia, 53 (2005) 3849-3859.
[98] K.W. Chen, J.F. Lin, International Journal of Plasticity, 26 (2010) 1645-1658.
[99] U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadhyay, Acta Materialia, 53 (2005) 705-717.
[100] H.W. Zhang, G. Subhash, X.N. Jing, L.J. Kecskes, R.J. Dowding, Philosophical Magazine Letters, 86 (2006) 333-345.
[101] C. Su, L. Anand, Acta Materialia, 54 (2006) 179-189.
[102] S. Jana, U. Ramamurty, K. chattopadhyay, Y. Kawamura, Materials Science and Engineering A, 375-377 (2004) 1191-1195.
[103] M.D. Uchic, D.M. Dimiduk, R. Wheeler, P.A. Shade, H.L. Fraser, Scripta Materialia, 54 (2006) 759-764.
[104] B.E. Schuster, Q. Wei, M.H. Ervin, S.O. Hruszkewycz, M.K. Miller, T.C. Hufnagel, K.T. Ramesh, Scripta Materialia, 57 (2007) 517-520.
[105] C.J. Lee, J.C. Huang, T.G. Nieh, Applied Physics Letters, 91 (2007) 161913.
[106] Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang, S.R. Jian, J.S.C. Jang, T.G. Nieh, Scripta Materialia, 58 (2008) 890-893.
[107] H. Zhang, B.E. Schuster, Q. Wei, K.T. Ramesh, Scripta Materialia, 54 (2006) 181-186.
[108] Z.F. Zhang, H. Zhang, X.F. Pan, J. Das, J. Eckert, Philosophical Magazine Letters, 85 (2005) 513-521.
[109] Y.M. Wang, A.V. Hamza, T.W. Barbee, Applied Physics Letters, 91 (2007) 061924.
[110] F. Macionczyk, W. Bruckner, Journal of Applied Physics, 86 (1999) 4922-4929.
[111] J.Y. Zhang, G. Liu, X. Zhang, G.J. Zhang, J. Sun, E. Ma, Scripta Materialia, 62 (2010) 333-336.
[112] H.J. Pei, C.J. Lee, X.H. Du, Y.C. Chang, J.C. Huang, Materials Science and Engineering A, 528 (2011) 7317-7322.
[113] F.F. Wu, Z.F. Zhang, S.X.Y. Mao, Advanced Engineeing Materials, 11 (2009) 899-901.
[114] L. Huang, Q.J. Li, Z.W. Shan, J. Sun, E. Ma, Nature Communications, (2011) DOI: 10.1038/ncomms1557.
[115] J. Ye, R.K. Mishra, A.M. Minor, Scripta Materialia, 59 (2008) 951-954.
[116] M.C. Liu, J.C. Huang, K.W. Chen, J.F. Lin, W.D. Li, Y.F. Gao, T.G. Nieh, Scripta Materialia, 66 (2012) 817-820.
[117] D. Kiener, P. Hosemann, S.A. Maloy, A.M. Minor, Nature Materials, (2011) DOI: 10.1038/NMAT3055.
[118] C.J. Lee, Y.H. Lai, J.C. Huang, X.H. Du, L. Wang, T.G. Nieh, Scripta Materialia, 63 (2010) 105-108.
[119] S.Y. Kuan, H.S. Chou, J.C. Huang, Surface & Coatings Technology, (2012) doi:10.1016/j.surfcoat.2012.1003.1055.
[120] H.S. Huang, H.J. Pei, Y.C. Chang, C.J. Lee, J.C. Huang, Thin Solid Films, 529 (2013) 177-180.
[121] H. Shimamura, T. Nakamura, Polymer Degradation and Stability, 94 (2009) 1389-1396.
[122] H. Zheng, A. Cao, C.R. Weinberger, J.Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, S.X. Mao, Nature Communications, (2010) DOI: 10.1038/ncomms1149.
[123] Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, Nano Letters, 11 (2011) 3151-3155.
[124] H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, E. Ma, Nature Materials, 6 (2007) 735-739.
[125] L. Tian, Y.Q. Cheng, Z.W. Shan, J. Li, C.C. Wang, X.D. Han, J. Sun, E. Ma, (2012) DOI: 10.1038/ncomms1619.
[126] E.R.D. Boer, R. Boom, W.C.M. Matterns, A.R. Miedema, A.K. Niessen, Cohesion in Metals, North-Holland, New York, (1988).
[127] M.D. Uchic, D.M. Dimiduk, R. Wheeler, P.A. Shade, H.L. Fraser, Scripta Materialia, 54 (2006) 759-764.
[128] M.H.F. Overwijk, F.C.V.D. Heuvel, C.W.T. Bulle-Lieuwma, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 11 (1993) 2021-2024.
[129] D.K. Misra, S.W. Sohn, W.T. Kim, D.H. Kim, Intermetallics, 17 (2009) 11-16.
[130] Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, A.I. Tyurin, Scripta Materialia, 45 (2001) 947-952.
[131] N.K. Mukhopadhyay, A. Belger, P. Paufler, D.H. kim, Materials Science and Engineering A, 449-451 (2007) 954-957.
[132] C.A. Schuh, A.C. Lund, T.G. Nieh, Acta Materialia, 52 (2004) 5879-5891.
[133] R. Narasimhan, Mechanics of Materials, 36 (2004) 633-645.
[134] K.L. Johnson, Journal of the Mechanics and Physics of solids, 18 (1970) 115-126.
[135] D.M. Marsh, Proccedings of the Royal Society of London. Series A, 279 (1964) 420-435.
[136] F.J. Lockett, Journal of the Mechanics and Physics of solids, 11 (1963) 345-355.
[137] D. Hull, T.W. Clyne, Cambridge University Press, (1981).
[138] P.E. Donovan, W.M. Stobbs, Journal of Non-Crystalline Solids, 55 (1983) 61-76.
[139] K. Madani, M. Belhouari, B.B. Bouiadjra, B. Serier, M. Benguediab, Computational Materials Science, 38 (2007) 625-630.
[140] L.B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution, (2003).
[141] S. Pauly, S. Gorantla, G. Wang, U. Kuhn, J. Eckert, Nature Materials, 9 (2010) 473.
[142] X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, P.K. Liaw, Applied Physics Letters, 90 (2007) 131901.
[143] J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, Physical Review Letters, 94 (2005) 205501.
[144] K.M. Youssef, Y.B. Wang, X.Z. Liao, S.N. mathaudhu, L.J. Kecskes, Y.T. Zhu, C.C. Koch, Materials Science and Engineering A, 528 (2011) 7494-7499.
[145] W.D. Nix, H. Gao, Journal of the Mechanics and Physics of solids, 46 (1998) 411-425.
[146] K.W. Chen, J.F. Lin, International Journal of Plasticity, 26 (2010) 1645-1658.
[147] S.Y. Kuan, X.H. Du, H.S. Chou, J.C. Huang, Surface & Coatings Technology, 206 (2011) 1116-1119.
[148] D. Jang, C. Cai, J.R. Greer, Nano Letters, 11 (2011) 1743-1746.
[149] Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, A.M. Minor, Nano Letters, 12 (2012) 887-892.
[150] K.M. Youssef, Y.B. Wang, X.Z. Liao, S.N. Mathaudhu, L.J. Kecskes, Y.T. Zhu, C.C. Koch, Materials Science and Engineering A, 528 (2011) 7994-7499.
[151] A.C. Lund, C.A. Schuh, Intermetallics, 12 (2004) 1159-1165.
[152] A.C. Lund, C.A. Schuh, Acta Materialia, 51 (2003) 5399-5411.
[153] C.A. Schuh, A.C. Lund, Nature Materials, 2 (2003) 449-452.
[154] A.C. Lund, T.G. Nieh, C.A. Schuh, Physical Review B, 69 (2004) 012101.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code