Responsive image
博碩士論文 etd-1117114-104741 詳細資訊
Title page for etd-1117114-104741
論文名稱
Title
計算單變數多項式 Sylvester 矩陣之數值零核維數
Computing the Numerical Nullity of Sylvester Matrix of Univariate Polynomials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
30
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-15
繳交日期
Date of Submission
2014-12-17
關鍵字
Keywords
多項式、西爾維斯特矩陣、最大公因式、正交化分解、數值零核維度
numerical nullity, polynomial, greatest common divisor, Sylvester matrix, QR-factorization
統計
Statistics
本論文已被瀏覽 5705 次,被下載 333
The thesis/dissertation has been browsed 5705 times, has been downloaded 333 times.
中文摘要
計算單變數多項式之最大公因式為一歷史悠久的基礎代數問題。計算最大公因式為一對
資料擾動極敏感的ill-posed problem ,這使得典型歐幾里得演算法並不適合作實際的
數值計算。在本文中我們探討Maple 9 中SNAP 套件QRGCD ,其理論立足於由西爾
維斯特矩陣所得正交化分解之上三角矩陣的最後一個非零列為最大公因式。此方法是作
用在一假設下:上三角矩陣的右下方陣為一零方陣其大小等同西爾維斯特矩陣矩陣之零
核維度。然而非滿秩矩陣的正交化分解並不唯一,這意味右下方陣可能不為零矩陣。最
後我們藉由rank-revealing QR-factorization 演算法得到最大公因式之次數。
Abstract
Computing the greatest common divisor (GCD) of univariate polynomials is one of
the fundamental algebraic problems with a long history. The classical Euclidean
algorithm is not suitable for practical numerical computation because computing
GCD is an ill-posed problem in the sense that it is extremely sensitive to the data
perturbations. In this thesis we study the QRGCD method, included in the SNAP
package of Maple 9, which based on the theorem saying that the last nonzero row of
R in the QR-factorization of Sylvester matrix provides a GCD of polynomials. The
method works under the assumption that the lower right block of R is the zero matrix
of the size of its nullity. However, the QR-factorization of a rank-deficient matrix
is not unique, which implies that the lower right block may not be zero. Hence, we
consider the rank-revealing QR-factorization algorithm (RRQR) to circumvent this
situation.
目次 Table of Contents
論文審定書i
摘要ii
Abstract iii
1 Introduction 1
2 Preliminaries 2
2.1 Sylvester matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Uniqueness of QR-factorization . . . . . . . . . . . . . . . . . . . . . 3
2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Algorithms for greatest common divisor 6
3.1 QR-factorization to compute the GCD . . . . . . . . . . . . . . . . . 6
3.2 Counter-example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Rank revealing QR-factorization 12
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.1 Rank one deficiency . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Rank deficiency more than one . . . . . . . . . . . . . . . . . 14
5 Numerical results 16
5.1 Experiments of RRQR . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Experiments of QRGCD . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Conclusion 20
Appendices 21
References 22
List of Tables
1 Singular matrices with and without using RRQR . . . . . . . . . . . 16
2 Singular matrices with and without using RRQR . . . . . . . . . . . 17
3 Finding GCD by QRGCD . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Finding GCD by QRGCD . . . . . . . . . . . . . . . . . . . . . . . . 18
List of Figures
1 The lower right block of R obtained by QR . . . . . . . . . . . . . . . 19
2 The lower right block of R obtained by RRQR . . . . . . . . . . . . . 19
3 The matrix of RΠ⊤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 The matrix of GRΠ⊤ . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 The lower right block of GRΠ⊤ . . . . . . . . . . . . . . . . . . . . . 20
參考文獻 References
[1] A.W. Bojanczyk, R.P. Brent, F.R. de Hoog, Stability Analysis of a General
Toeplitz Systems Solver, Numerical Algorithms, Volume 10, Issue 2, 1995,
Page: 225-244.
[2] W.S. Brown, On Euclid’s Algorithm and the Computation of Polynomial
Greatest Common Divisors, Journal of the ACM, Volume 18 Issue 4, Oct.
1971, Page: 478-504.
[3] W.S. Brown, J.F. Traub, On Euclid’s Algorithm and the Theory of Subresultants,
Journal of the ACM, Volume 18, Issue 4, Oct. 1971, Page: 505-514.
[4] T.F. Chan, Rank Revealing QR-factorizations, Linear Algebra and its Applications,
Volume: 88-89, April 1987, Page: 67-82.
[5] R.M. Corless, P.M. Gianni, B.M. Trager, S.M. Watt, The Singular Value
Decomposition for Polynomial Systems, Proc. ISSAC ’95, ACM Press, 1995,
Page: 195-207.
[6] R.M. Corless, S.M. Watt, Lihong Zhi, QR-factoring to Compute the GCD of
Univariate Approximate Polynomials, IEEE Transactions on Signal Processing,
Volume:52, Issue:12. December 2004.
[7] E. Kaltofen, Z. Yang, L. Zhi, Structured Low Rank Approximation of a
Sylvester Matrix, Symbolic-Numeric Computation Trends in Mathematics,
2007, Page: 69-83.
[8] M. A. Laidacker, Another Theorem Relating Sylvester’s Matrix and the Greatest
Common Divisor, Mathematics Magazine, Vol. 42, No. 3, May 1969.
[9] F. Lorenzelli, P.C. Hansen, T.F. Chan, K. Yao, A Systolic Implementation of
the Chan/Foster RRQR Algorithm, IEEE transactions on signal processing,
Vol. 42, No. 8, 1994.
[10] C.J. Zarowski, X. Ma, F.W. Fairman, QR-factorization Method for Computing
the Greatest Common Divisor of Polynomials with Inexact Coefficients, IEEE
Transactions on Signal Processing, Volume:48, Issue: 11, Nov. 2000.
[11] Z. Zeng, The Numerical GCD of Univariate Polynomial, Contemporary Mathematics,
Volume: 556, 2011, Page: 187-217.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code