Responsive image
博碩士論文 etd-1117114-174827 詳細資訊
Title page for etd-1117114-174827
論文名稱
Title
選殖的甘藷抗壞血酸過氧化酶SPAPX 延緩ethephon誘導的葉片老化過程
The cloned ascorbate peroxidase SPAPX mitigates and delays ethephon-induced leaf senescence in sweet potato
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-11-25
繳交日期
Date of Submission
2014-12-17
關鍵字
Keywords
甘藷、葉片老化、鹽、乙烯利、抗壞血酸過氧化酶
Sweet potato, Leaf senescence, Ascorbate peroxidase, Ethephon, NaCl
統計
Statistics
本論文已被瀏覽 5653 次,被下載 1
The thesis/dissertation has been browsed 5653 times, has been downloaded 1 times.
中文摘要
甘藷抗壞血酸過氧化酶 (ascorbate peroxidase, APX) 是穀胱甘肽—抗壞血酸循環 (glutathione - ascorbate cycle) 中的一個清除活性氧 (ROS) 關鍵酵素,以抵禦植物在環境逆境所誘導的氧化壓力。抗壞血酸過氧化酶是以抗壞血酸作為電子供應者,以催化過氧化氫產生水和氧氣。而乙烯利 (ethephon) 是一種乙烯釋放物質,可促進葉片老化和 H2O2 含量上升,此現象應與在甘藷葉片中氧化態的抗壞血酸 (AsA) 含量增加有關。 抗壞血酸過氧化酶基因是否有參與乙烯誘導的葉片老化過程尚未被釐清。在此研究,由甘藷葉片選殖出的被推定為抗壞血酸過氧化酶基因的ORF (open reading frame) 含有753個核苷酸(250個胺基酸),且與其他植物物種的抗壞血酸過氧化酶基因序列具有高相似性 (84% ~ 92%),這些物種為菸草(Nicotiana tabacum)、辣椒(Capsicum annuum)、短果茴芹(Pimpinella Brachycarpa)、茄子(Solanum melongena)、馬鈴薯(Solanum tuberosum)、陸地棉(Gossypium hirsutum)、大豆(Glycine max) 和豇豆(Vigna unguiculata) 。基因表現分析顯示SPAPX基因在甘藷成熟葉片表現量最多,隨著葉片老化過程其表現量明顯減少。在ethephon處理甘藷葉片24小時後, SPAPX 基因的表現量顯著增加,且在ethephon處理48和72小時後基因表現量明顯減少。在NaCl 逆境下, SPAPX 基因表現量會在鹽分處理第3天後顯著增加,之後逐漸減少。在葉片老化過程中,H2O2 含量、脂質過氧化物 (malondialdehyde, MDA) 和離子滲漏程度皆會明顯增加,而與SPAPX 基因表現量分析呈現負相關。再者,外加SPAPX融合蛋白可以延緩乙烯所誘導的葉片老化。綜上所述,甘藷抗壞血酸過氧化酶可能參與清除ethephon和NaCl誘導甘藷葉片老化過程中所造成活性氧物質。
Abstract
Ascorbate peroxidase (APXs) is a key enzyme of glutathione-ascorbate cycle and plays an important role in the removal of reactive oxygen species(ROS)and protection against oxidative stress in plants under developmental cues and environmental stresses. With ascorbic acid as the electron donor, APXs catalyze the conversion of H2O2into H2O and O2.Ethephon, an ethylene-releasing compound, promoted leaf senescence and H2O2 elevation, which correlated with the increased level of oxidized AsA in sweet potato leaves. The APX gene and its association with ethephon mediated effects, whereas, mostly remains unclear. In this report, a full-length cDNA, SPAPX, encoding putative ascorbate peroxidase has been cloned from sweet potato leaves. Its open reading frame contains 753 nucleotides (250 amino acids) and exhibits high amino acid sequence identity (ca. 84% to 92%) with various plant APXs, including Nicotiana tabacum, Capsicum annuum, Pimpinella brachycarpa, Solanum melongena, Solanum tuberosum, Gossypium hirsutum, Glycine max, and Vigna unguiculata. Gene expression patterns showed that SPAPX was remarkably enhanced in mature leaves, then drastically reduced in partially and completely yellow senescent leaves. Ethephon significantly promoted SPAPX expression within the first 24 h, and the induction was much reduced at 48 and 72 h after treatment. NaCl stress also temporarily enhanced SPAPX expression starting from day 3 to day 6, and then gradually decreased until day 9 after treatment. During leaf senescence, the H2O2 amount, malondialdehyde (MDA) and ion leakage levels were also significantly increased and exhibited a negative correlation with the SPAPX expression patterns. Furthermore, exogenous purified SPAPX fusion protein significantly mitigated ethephon-mediated leaf senescence. These data conclude for the first time that an ethephon and NaCl stress-inducible ascorbate peroxidase (SPAPX) has been cloned and exhibits a negative association with ethephon and NaCl stress induced.leaf senescence and H2O2 elevation. A speculated role of SPAPX in the protection against ROS and leaf senescence caused by ethephon or NaCl stress in sweet potato leaf is suggested.
目次 Table of Contents
論文審定書………………………………..………………………………………….....i
誌謝………………………………………………………..…………………................ii
中文摘要………….…………………………………………………………......iii
英文摘要…………….…………………………………………………………...........iv
目錄……………………………………………………………….……………………v
圖次...........................................................................................................................vii
壹、緒論……………………………………………………………..……………....1
甘藷……………….……………………………………………………………1
葉片老化的生理及生化機制…………………………………………...............1
乙烯與氧化逆境…………………………………………………………………..2
鹽分逆境與葉片老化……….…………………………………………................3
抗氧化酵素與氧化逆境……………………..............................................4
抗壞血酸過氧化酶….…………………………………………….…................5
目的與重要性.....................................................................................7
貳、研究材料與方法.....................................................................................8
(一)研究材料…………………………………………………………………….8
甘藷…......................................................................................................8
(二)實驗方法………………………………………………………………………….8
A. 基因選殖和生物資訊學分析.......................................................................8
B. 甘藷抗壞血酸過氧化酶基因 ( SPAPX ) 的定性分析…………………………9
C. 甘藷抗壞血酸過氧化酶基因 ( SPAPX ) 表現載體的構築
與誘導融合蛋白的表現和純化……………………………………….…........10
D.外加不同劑量的 SPAPX 融合蛋白及 Ethephon 處理
甘藷成熟葉片…………………………………………...………………………11
※各項分析方法........................................................................................11
Total RNA 抽取…........................................................................................11
RT-PCR………………………………………………………….....................12
聚合酶連鎖反應 ( PCR ) ………………....................................................13
葉綠素含量………………………………………………………………………14
光合作用效率 ( Fv/Fm value ) ……………………………………………….14
DAB 染色分析……………………………………….……………………….15
H2O2 定量分析…………………………………………………………………15
MDA 含量分析…………………………………………………………….........15
cDNA 分子選殖………………….……………………………………………16
Gel extraction…………………………………………………………………16
DNA ligation………………………………………………………………16
Transformation………………………………………………………………17
質體純化 ( Plasmid isolation ) ………………………………………………17
SPAPX 融合蛋白的純化……………………………………………………18
轉型 SPAPX 至 BL21 ( DE3 )………………………………………………18
培養可表現 SPAPX 的勝任細胞 BL21 ( DE3 ) 及誘導…………………18
親和性管柱層析純化 SPAPX 融合蛋白……………………………………19
蛋白質濃度測定………………………………….…………………………19
SDS-PAGE 電泳分析……………………………….………………………19
參、結果…..………………………………………………………………………..21
A. 基因選殖和生物資訊學分析………...……………………………………..21
B. 甘藷抗壞血酸過氧化酶基因 ( SPAPX ) 的定性分析………………………25
Ⅰ. SPAPX 在不同葉片生長發育階段的表現…………………………….……25
Ⅱ. 在成熟甘藷葉片中,SPAPX 基因表現受 Ethephon 誘導………………...26
Ⅲ. 在成熟甘藷葉片中,SPAPX 基因表現受 NaCl 逆境誘導…….………….29
C. 甘藷抗壞血酸過氧化酶融合蛋白 ( SPAPX )
延緩 Ethephon 誘導的甘藷葉片老化………………………………………31
Ⅰ. SPAPX 融合蛋白的誘導與純化………………………………………..31
Ⅱ. SPAPX 融合蛋白延緩 Ethephon 誘導的甘藷葉片老化…………………31
肆、討論……………………………………………………………………………….34
伍、參考文獻..........................................................................................................37
參考文獻 References
呂明螢,(2006) UV-B誘導芥藍切離葉片老化過程中之抗氧化反應。國立台灣大學園藝學研究所,碩士論文。
吳欣黛,(2010) 從甘藷葉片選殖 ethephon 可誘導之基因與定性分析。國立中山大學生物科學系研究所,碩士論文。
黃琴淑,(2011) 還原態穀胱甘肽及NADPH 氧化酶抑制劑DPI減緩乙烯誘導甘藷葉片老化、H2O2 含量上升及老化相關基因表現。國立中山大學生物科學系研究所,碩士論文。
Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences 76:170-174
Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene 322:93-103
Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Radical Biology and Medicine 23:473-479
Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53:1331-41
Amako K, Chen GX, Asada K (1994) Separate assays for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant and Cell Physiology 35: 497–504
Asada K (1992) Ascorbate peroxidase — a hydrogen peroxide-scavenging enzyme in plants. Physiologia Plantarum 85:235–241
Asada K (1999) The water-water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601–639


Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A,Tanaka K (2004) Overexpression of ascorbate peroxidase in tobacco chloroplastsenhances the tolerance to salt stress and water deficit. Physiologia Plantarum 121: 231–238
Balazadeh S, Wu A, Mueller-Roeber B (2010) Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signaling & Behavior 5:733-735
Bhattacharjee S (1997) Membrane lipid peroxidation, free radical scavengers and ethylene evolution in Amaranthus as affected by lead and cadmium. Biologia Plantarum 40:131-135
Bleecker AB, Kende H. (2000) Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology 16:1-18
Bonifacio A, Martins MO, Ribeiro CW, Fontenele AV, Carvalho FE, Margis-Pinheiro M, Silveira JA (2011) Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant, Cell & Environment 34:1705-1722
Buchanan-Wollaston V, Earl S, Harrison E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence – a genomics approach. Plant Biotechnology Journal 1:3-22
Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/ starvationinduced senescence in Arabidopsis. The Plant Journal 42:567–585
Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology 35:1011-9
Chang CM, Kao CH, Wang TT (2007) Antioxidant responses in ethylene-induced leaf senescence of chinese kale Brassica oleracea L Alboglabra Group. Journal of the Taiwan Society for Horticultural Science 53:427-440
Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiology 87:547-550


Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isoenzymes and the differences in their enzymatic and molecular properties. Plant Cell Physiology 30:987–998
Chen, HJ, Hou WC, Jane WN, Lin YH (2000) Isolation and characterization of an isocitrate lyase gene from senescent leaves of sweet potato (Ipomea batatas cv. Tainong 57). Plant Physiology 157:669-676
Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH (2003) Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. J. Plant Physiology 160:547-55
Chen HJ, Huang CS, Huang GJ, Chow TJ, Lin YH (2013b) NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas). Journal of Plant Physiology 170:1471-1483
Chen HJ, Tsai YJ, Chen WS, Huang GJ, Huang SS, Lin YH (2010b) Ethephon-mediated effects on leaf senescence are affected by reduced glutathione and EGTA in sweet potato detached leaves. Botanical Studies 51:171-181
Chen HJ, Wu SD, Huang GJ, Shena CY, Mufidah Afiyantia, Li WJ, LinYH (2012a) Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. Journal of Plant Physiology 169:86-97
Chen HJ, Wu SD, Lin ZW, Huang GJ, Lin YH (2012b) Cloning and characterization of a sweet potato calmodulin SPCAM that participates in ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. Journal of Plant Physiology 169:529-541
Clouse SD (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. The Plant Journal 10:1-8
D'Arcy-Lameta A, Ferrari-Iliou R, Contour-Ansel D, Pham-Thi AT, Zuily-Fodil Y (2006) Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Annals of Botany 97:133-40
De J, Yakimova ET, Kapchina VM, Woltering EJ (2002) A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 214:537-45
Eltelib HA, Badejo AA, Fujikawa Y, Esaka M (2011) Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). Journal of Plant Physiology 168:619-27
Fortmeier R, Schubert S (1995) Salt tolerance of maize (Zea Mays L.): the role of sodium exclusion. Plant Cell & Environment 18:1041-1047
Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures. Plant Physiology and Biochemistry 40:659–668
Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. The Plant Journal 33:691-705
Gavino VC, Miller JS, Ikharebha SO, Milo GE, Cornwell DG (1981) Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. The Journal of Lipid Research 22:763-769
Giacomelli L, Masi A, Ripoll DR, Lee MJ, VanWijk KJ (2007) Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Molecular Biology 65:627–644
Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31:149-190
Harb J, Khraiwesh B, Streif J, Reski R, Frank W (2010) Characterization of blueberry monodehydroascorbate reductase gene and changes in levels of ascorbic acid and the antioxidative capacity of water soluble antioxidants upon storage of fruits under various conditions. Scientia Horticulturae 125 390–395
Harding SA, Guikema JA, Paulsen GM (1990) Photosynthetic decline from high temperature stress during maturation of wheat I. Interaction with Senescence Processes Plant Physiology 92: 648–653
Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin- Academia Sinica Taipei 46:1-10
Islam S (2006) Sweetpotato (Ipomoea batatas L.) Leaf: Its Potential Effect on Human Health and Nutrition Journal of Food Science 71:13-21

Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala EM, Aro EM, Rintamäki E (2008) Diverse s for chloroplast stromal and thylakoidbound ascorbate peroxidases in plant stress responses. Biochemical Journal 412:275–285
Kent L, Lauchli A (1985) Germination and seedling growth of cotton:salinity calcium interactions. Plant, Cell & Environment 8:155-159
Kawakami S, Matsumoto Y, Matsunaga A, Mayama S, Mizuno M (2002) Molecular cloning of ascorbate peroxidase in potato tubers and its response during storage at low temperature. Plant Science 163:829-836
Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007b) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Reports 26:591-598
Li M, Ma F, Guo C, Liu J (2010) Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Plant Physiology and Biochemistry 48:216-24
Li K, Pang CH, Ding F, Sui N, Feng ZT, Wang BS (2012) Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. South African Journal of Botany 78:235-245
Lim PO, Kim HJ,Nam HG (2007) Leaf senescence. Annual Review of Plant Biology 58:115-136
Lin KH, Lo HF, Lin CH, Chan MT (2007) Cloning and expression analysis of ascorbate peroxidase gene from eggplant under flooding stress. Botanical Studies 48:25-34
Lin KH, Pu SF (2010) Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biologia Plantarum 54:664-670
Lovelli S, Rivelli AR, Nardiello I, Perniola M, Tarantino E (2000) Growth, leaf ion concentration, stomatal behaviour and photosynthesis of bean (Phaseolus vulgaris L.) irrigated with saline water. Acta Horticulturae 537:679-686
Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909-1917
Lutts S, Kinet J, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany 78:389-398
Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444:139-158
Menezes-Benavente L, Teixeira FK, Kamei CLA, Margis-Pinheiro M (2004) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.) Plant Science 166:323-331
Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynthesis Research 86:435-457
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9:490-498
Miyake C, Cao WH, Asada K (1993) Purification and molecular properties of the thylakoid-bound ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiology 34:881–889
Miyazaki JH, Yang SF (1987) The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiologia Plantarum 69:366-370
Moftah A E, Michel BE (1987) The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiology 83:238-240
Moon SC, Kvvon S II, An CS (2005) Changes in expression of the cytosolic ascorbate peroxidase gene, Ca-cAPX1, during germination and development of hot pepper seedlings. Journal of Plant Biology 48:276-283
Munné Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology 31:203-216
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651-681
Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49:249–279
Nooden LD, Guiamet JJ, John I (1997) Senescence mechanisms. Physiologia Plantarum 101:746-753
Olsson P, Yilmaz JL, Sommarin M, Persson S, Bulow L (2004) Expression of bovine calmodulin in tobacco plants confers faster germination on saline media. Plant Science 166:1595-1604
Orvar BL, Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. The Plant Journal 11: 1297–1305

Otegui MS, Noh YS, Martinez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant Journal 41:831-44
Panchuk II, Volkov RA, Shoffl F (2002) Heat stress and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology 129:838–853
Park SY, Ryu SH, Jang IC, Kwon SY, Kim JG, Kwak SS (2004) Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweetpotato and its expression in response to stress. Molecular Genetics & Genomics 271:339-346
Pastori G, Foyer CH, Mullineaux P (2000) Low temperature-induced changes in the distribution of H2O2 and antioxidants between the bundle sheath and mesophyll cells of maize leaves. Journal Experimental Botany 51: 107–113
Prisco JT, O’ Leary JW (1972) Enhancement of intact bean leaf senescence by NaCl salinity. Physiologia Plantarum 2:95-100
Raven EL (2003) Understanding functional diversity and substrate specificity in haem peroxidases: what can we learn from ascorbate peroxidase? Natural Product Reports 20:367–381
Rosa SB, Caverzan A, Teixeira FK, Lazzarotto F, Silveira JA, Ferreira-Silva SL, Abreu-Neto J, Margis R and Margis-Pinheiro M (2010) Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry 71:548-558
Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine 30:1191-1212
Schantz ML, Schreiber H, Guillemaut P, Schantz R (1995) Changes in ascorbate peroxidase activities during fruit ripening in Capsicum annum. FEBS Letters 358:149-152
Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM (2008) Higher plant antioxidants and redox signaling under environmental stresses. Comptes rendus biologies 331:433-441


Shi WM, Muramoto Y, Ueda A, Takabe T (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273:23-27
Shi F, Yamamoto R, Shimamura S, Hiraga S, Nakayama N, Nakamura T, Yukawa K, Hachinohe M, Matsumoto H, Komatsu S (2008) Cytosolic ascorbate peroxidase 2 (cAPX 2) is involved in the soybean response to flooding. Phytochemistry 69:1295–1303
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany 53:1305-1319
Shu DF, Wang LY, Duan M, Deng YS, Meng QW (2011) Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiology and Biochemistry 49:1228-1237
Smart CM (1994) Gene expression during leaf senescence. New Phytologist 126:419-448
Sohn Si, Kim Jc, Lee Kw, Rhee Hi, Wang Mh (2002) Molecular cloning and of a cDNA encoding cytosolic ascorbate peroxidase from Pimpinella brachycarpa. Journal of Plant Physiology 59:1029-1035
Steffens B, Sauter M (2009) Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21:184-96
Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environmental and Experimental Botany 65:270-281
Takahashi MA, Asada K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Archives of Biochemistry and Biophysics 226:558-556
Teisseire H, Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Science 153:65-72
Teixeira FK, Menezes-Benavente L, Galvão VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300-314
Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT (2008) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. Journal of Plant Physiology 165:514-21
Torsethaugen G, Pitcher LH, Zilinskas BA, Pell EJ (1997) Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiology 114:529–537
Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. Journal of Experimental Botany 53:1227-1236
Wang MH, Lee SY, Rhee HI (1999) Properties of anionic peroxidasespurified from Chinese cabbage roots. Plant Physiology and Biochemistry 37:459–464
Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. The Plant Cell Online 14:S131-S151
Xu Q, Paulsen AQ, Guikema JA, Paulsen GM (1995) Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation. Environmental and Experimental Botany 35: 43–54
Yabuta Y, Motoki T, Yoshimura K, Takada T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. The Plant Journal 32:912–925
Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ (1991) Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany 42:881-889
Yoon HS, Lee H, Lee IA, Kim KY, Jo J (2004) Molecular cloning of the monodehydroascorbate reductase gene from Brassica campestris and analysis of its mRNA level in response to oxidative stress. Biochimica et Biophysica Acta 1658:181-186
Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isozymes in response to oxidative stress. Plant Physiology 123:223–233
Zhang H, Wang J, Nickel U, Allen RD, Goodman HM (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Molecular Biology 34:967-971
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.253.221
論文開放下載的時間是 校外不公開

Your IP address is 3.14.253.221
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code