Responsive image
博碩士論文 etd-1117115-145435 詳細資訊
Title page for etd-1117115-145435
論文名稱
Title
高屏峽谷與南海浮游性有孔蟲殼體面積密度之變化
Variations of the Planktonic Foraminiferal Area Density from the Gao-ping Submarine Canyon and Northern South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-11-27
繳交日期
Date of Submission
2015-12-17
關鍵字
Keywords
南海北部、台灣西南海域、殼體面積密度、浮游性有孔蟲
northern South China Sea, area density, foraminifera, southwestern Taiwan
統計
Statistics
本論文已被瀏覽 5824 次,被下載 282
The thesis/dissertation has been browsed 5824 times, has been downloaded 282 times.
中文摘要
本研究目的為觀察浮游性有孔蟲殼體面積密度之變化,並探討變化的原因以及與環境參數的關係。透過國內研究船採集2003年夏季、2007及2012年秋季、2013年春季及夏季位於南海北部及台灣西南海域所採集的拖網樣本,以及相同區域藉由沉積物收集器取得的六個串列樣品,其中一個佈放在南海SEATS (South-East Asian Time-series Study)站,其餘五個則在南海東北部靠近台灣西南海域的位置。浮游性有孔蟲主要挑選Globigerinoides sacculifer、Globigerinoides ruber、Neogloboquadrina dutertrei、Orbulina universa、Globigerinella aequilateralis共五種種屬,以殼體面積密度和沉積物收集器串列的參數及現場CTD量測的水文參數進行討論,並透過EOF分析觀察殼體面積密度與參數的關係及造成變化的原因。
分析的結果顯示O. universa及G. aequilateralis兩種浮游性有孔蟲種屬雖然殼室的形狀不同,但殼體面積密度變化皆會同時受到殼體大小的影響,而殼體側影的拍攝結果顯示殼體厚度亦會影響面積密度的變化。以三天為單位的沉積物收集器所採集的樣本則顯示G. sacculifer的殼體面積密度與殼體大小有相同的變化趨勢,殼體較大及數量較多時,面積密度呈現高值,反之殼體較小及數量也較少時,面積密度則呈現低值。G. ruber的殼體面積密度則呈現類似半月週期的變化趨勢,隨著月亮的朔望週期而有明顯變化。面積密度與串列參數進行EOF分析的結果顯示G. sacculifer的殼體面積密度會與數量通量正相關;G. ruber的殼體面積密度則未與其他串列參數有相同變化趨勢。
同航次在上層水體由水平拖網採集的樣本顯示浮游性有孔蟲G. sacculifer及G. ruber的殼體面積密度未與採樣的緯度呈現明顯關連性;同一海域,但不同年份所採集的G. sacculifer的殼體面積密度數據,則反映隨間隔5年和10年的時間而減少的現象,與利用經驗公式計算的海水pH值呈現類似的變化,可能是海水酸化的佐證之一。拖網樣本與既有水文參數進行EOF分析的結果則顯示G. sacculifer的殼體面積密度與pH值和螢光值積分呈現正相關。以在上層水體水深100公尺的拖網所採集的有孔蟲標本,與沉積物收集器於2000公尺和3500公尺所取得三種不同深度的浮游性有孔蟲殼體樣本比較面積密度的測量結果:除了G. aequilateralis之外,另外分析的三種浮游性有孔蟲殼體面積密度並未隨採樣深度不同而有明顯變化趨勢,此結果不足以驗證水體中碳酸鈣的溶解效應。
Abstract
The shell area density of planktonic foraminifera, together with seawater parameters, collected from area off southwestern Taiwan and northern South China Sea were measured in this study. Plankton tows were conducted in 2003 summer, 2007 and 2012 autumn, 2013 spring and winter. In addition, shells collected from six sediment trap moorings were also adapted from at the same area. Totally five species of planktonic foraminifera Globigerinoides sacculifer, Globigerinoides ruber, Neogloboquadrina dutertrei, Orbulina universa, Globigerinella aequilateralis were analyzed for this work.
Different shape of chambers between G. aequilateralis and O. universa prove that area density could be affected by shell size. Their silhouette area suggest that area density also is affected by shell thickness. Specimens obtained from sediment traps indicate that area density of G. sacculifer shows same tendency with shell size change, while that of G. ruber has a pattern similar to semi-lunar cycle. Results of EOF statistical analysis prove that area density of G. sacculifer varies as its shell abundance changes. The area density of G. ruber, however doesn’t show any evident pattern that can be correlated with hydrographic parameters.
Comtempoary samples from plankton tows conducted between 13°~22° N in the SCS indicate that planktonic foraminiferal area density doesn’t display any corresponding change along with latitude. The area density of G. sacculifer shows evident waning for the last 10 years. Results of EOF statistical analysis prove that area density of G. sacculifer is directly proportional to pH value and fluorescence in the water column, but that of G. ruber does not have any corresponding change with hydrological parameters. Comparisons among samples collected from water depth at 100 meter and sediment traps deployed at 2000 and 3500 meter indicate that except for G. aequilateralis, other planktonic foraminifera doesn’t show any significant change with different sampling water depth.
目次 Table of Contents
致謝 i
中文摘要 ii
英文摘要 iv
目錄 vi
圖目錄 viii
表目錄 x
壹、前言 1
1.1研究背景 1
1.2前人研究 3
1.3研究區域 5
1.4研究目的 8
貳、材料及方法 9
2.1有孔蟲之採集 13
2.1.1浮游生物拖網 13
2.1.2沉積物收集器 13
2.2有孔蟲之前處理 13
2.2.1浮游生物拖網 13
2.2.2沉積物收集器 13
2.3有孔蟲分析 14
2.3.1鑑種 14
2.3.2殼體大小挑選 14
2.3.3殼體清洗 15
2.3.4殼體面積密度測量 16
2.3.5殼體面積密度EOF分析 17
參、結果與討論 18
3.1有孔蟲殼體面積密度實驗 18
3.1.1殼體有機質去除效果實驗 18
3.1.2殼體面積密度隨殼體大小變化影響 21
3.1.3面積密度與殼體重量之對比 23
3.2沉積物收集器的有孔蟲殼體面積密度之比較 25
3.2.1殼體面積密隨時間變化之趨勢 25
3.2.2殼體面積密度EOF分析 32
3.3浮游生物拖網的有孔蟲面積密度之比較 39
3.3.1殼體面積密度隨緯度之變化 39
3.3.2殼體面積密度隨採樣時間間隔之變化 40
3.3.3殼體面積密度與水文參數之EOF分析 41
3.4浮游生物拖網與沉積物收集器的有孔蟲面積密度之比較 44
肆、結論 47
伍、參考文獻 48
中文部分 48
英文部分 48
參考文獻 References
梁華升,2012,台灣鄰近海域浮游性有孔蟲殼體重量與數量之變化,國立中山大學海洋地質及化學研究所碩士論文,共 58 頁。
陳鎮東,1994,海洋化學,國立編譯館,共551頁。
陳鎮東,2001,南海海洋學,渤海堂出版社,共506頁。
楊仁凱,2010,沖淡水中粒徑結構之時空變化,國立中山大學海洋地質及化學研究所碩士論文,共160頁。
蔡康齡,2002,南沖繩海槽西端顆粒物質中鉛-210 與釙-210 之不平衡現象,國立中山大學海洋地質及化學研究所碩士論文,共57頁。
魏國彥,2003,小化石記錄大氣候,科學發展,369,第6-11 頁。
Aldridge, D., Beer, C., Purdie, D., 2012. Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean. Biogeosciences 9, 1725-1739.
Anand, P., Elderfield, H., Conte, M.H., 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 18.
Bé, A.W., 1965. The influence of depth on shell growth in Globigerinoides sacculifer (Brady). Micropaleontology, 81-97.
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., Hawkesworth, C.J., 2003. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 3181-3199.
Barker, S., Elderfield, H., 2002. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297, 833-836.
Barker, S., Greaves, M., Elderfield, H., 2003. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophysics, Geosystems 4, 8407-8416.
Barker, S., Kiefer, T., Elderfield, H., 2004. Temporal changes in North Atlantic circulation constrained by planktonic foraminiferal shell weights. Paleoceanography 19, 3008-3022
Beer, C., Schiebel, R., Wilson, P., 2010. Technical Note: On methodologies for determining the size-normalised weight of planktic foraminifera. Biogeosciences 7, 2193-2198.
Bemis, E., Spero, H.J., Bijma, J., Lea, D.W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13, 150-160.
Bemis, B.E., Spero, H.J., Lea, D.W., Bijma, J., 2000. Temperature influence on the carbon isotopic composition of Globigerina bulloides and Orbulina universa (planktonic foraminifera). Marine Micropaleontology 38, 213-228.
Berger, W.H., 1968. Planktonic foraminifera: selective solution and paleoclimatic interpretation, Deep Sea Research and Oceanographic Abstracts. Elsevier, 31-43.
Bijma, J., Erez, J., Hemleben, C., 1990. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers. Journal of Foraminiferal Research 20, 117-127.
Bijma, J., Hemleben, C., 1994. Population dynamics of the planktic foraminifer Globigerinoides sacculifer (Brady) from the central Red Sea. Deep Sea Research Part I: Oceanographic Research Papers 41, 485-510.
Bijma, J., Spero, H., Lea, D., 1999. Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results), Use of proxies in paleoceanography. Springer, pp. 489-512.
Bijma, J., Hönisch, B., Zeebe, R.E., 2002. Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on “Carbonate ion concentration in glacial‐age deep waters of the Caribbean Sea” by WS Broecker and E. Clark. Geochemistry, Geophysics, Geosystems 3, 1-7.
Broecker, W., Clark, E., 2001. A dramatic Atlantic dissolution event at the onset of the last glaciation. Geochemistry, Geophysics, Geosystems 2, 1065-1015.
Broecker, W.S., Clark, E., 2002. Carbonate ion concentration in glacial‐age deep waters of the Caribbean Sea. Geochemistry, Geophysics, Geosystems 3, 1-14.
Broecker, W.S., Clark, E., 2003. Holocene atmospheric CO2 increase as viewed from the seafloor. Global Biogeochemical Cycles 17.
Chen, C.-T.A., Huang, T.-H., Fu, Y.-H., Bai, Y., He, X., 2012. Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Current Opinion in Environmental Sustainability 4, 179-185.
De Villiers, S., 2004. Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera. Marine Biology 144, 45-49.
Fairbanks, R.G., Sverdlove, M., Free, R., Wiebe, P.H., Bé, A.W., 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298, 841-844.
Field, D.B., 2004. Variability in vertical distributions of planktonic foraminifera in the California Current: Relationships to vertical ocean structure. Paleoceanography 19.
Gaffey, S.J., Bronnimann, C.E., 1993. Effects of Bleaching on Organic and Mineral Phases in Biogenic Carbonates: Research Method Paper. Journal of Sedimentary Research 63, 752-754.
Gong, C., Wang, Y., Peng, X., Li, W., Qiu, Y., Xu, S., 2012. Sediment waves on the South China Sea Slope off southwestern Taiwan: implications for the intrusion of the Northern Pacific Deep Water into the South China Sea. Marine and Petroleum Geology 32, 95-109.
Gonzalez-Mora, B., Sierro, F., Flores, J., 2008. Controls of shell calcification in planktonic foraminifers. Quaternary Science Reviews 27, 956-961.
Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R.C., Greene, S.E., 2012. The geological record of ocean acidification. science 335, 1058-1063.
Hale, R.P., Nittrouer, C.A., Liu, J.T., Keil, R.G., Ogston, A.S., 2012. Effects of a major typhoon on sediment accumulation in Fangliao Submarine Canyon, SW Taiwan. Marine Geology 326, 116-130.
Hemleben, C., Spindler, M., Anderson, O.R., 2012. Modern planktonic foraminifera. Springer Science & Business Media.
Henehan, M.J., Rae, J.W., Foster, G.L., Erez, J., Prentice, K.C., Kucera, M., Bostock, H.C., Martínez-Botí, M.A., Milton, J.A., Wilson, P.A., 2013. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth and Planetary Science Letters 364, 111-122.
Hsiao, S.-H., Kâ, S., Fang, T.-H., Hwang, J.-S., 2011. Zooplankton assemblages as indicators of seasonal changes in water masses in the boundary waters between the East China Sea and the Taiwan Strait. Hydrobiologia 666, 317-330.
Huang, B., Cheng, X., Jian, Z., Wang, P., 2003. Response of upper ocean structure to the initiation of the North Hemisphere glaciation in the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 305-318.
Jonkers, L., Reynolds, C., Richey, J., Hall, I.R., 2014. Lunar periodicity in the shell flux of some planktonic foraminifera in the Gulf of Mexico. Biogeosciences Discussions 11, 17187-17205.
Jonkers, L., Reynolds, C., Richey, J., Hall, I., 2015. Lunar periodicity in the shell flux of planktonic foraminifera in the Gulf of Mexico. Biogeosciences 12, 3061-3070.
Kennett, J.P., Cannariato, K.G., Hendy, I.L., Behl, R.J., 2000. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288, 128-133.
Kipp, N.G., 1976. New transfer function for estimating past sea-surface conditions from sea-bed distribution of planktonic foraminiferal assemblages in the North Atlantic. Geological Society of America Memoirs 145, 3-42.
Kroeker, K.J., Kordas, R.L., Crim, R., Hendriks, I.E., Ramajo, L., Singh, G.S., Duarte, C.M., Gattuso, J.P., 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global change biology 19, 1884-1896.
Kuroyanagi, A., Kawahata, H., 2004. Vertical distribution of living planktonic foraminifera in the seas around Japan. Marine Micropaleontology 53, 173-196.
Lear, C.H., Rosenthal, Y., Slowey, N., 2002. Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration. Geochimica et Cosmochimica Acta 66, 3375-3387.
Levitus, S., Boyer, T.P., 1994. World Ocean Atlas 1994. Volume 4. Temperature. National Environmental Satellite, Data, and Information Service, Washington, DC (United States).
Liang, W.-D., Jan, J., Tang, T., 2000. Climatological wind and upper ocean heat content in the South China Sea. Acta Oceanographica Taiwanica 38, 91-114.
Liang, W.D., Yang, Y.J., Tang, T.Y., Chuang, W.S., 2008. Kuroshio in the Luzon Strait. Journal of Geophysical Research 113, C08048.
Lin, H.-L., Wang, W.-C., Hung, G.-W., 2004. Seasonal variation of planktonic foraminiferal isotopic composition from sediment traps in the South China Sea. Marine Micropaleontology 53, 447-460.
Lin, H.-L., Sheu, D.D.-D., Yang, Y., Chou, W.-C., Hung, G.-W., 2011. Stable isotopes in modern planktonic foraminifera: Sediment trap and plankton tow results from the South China Sea. Marine Micropaleontology 79, 15-23.
Lin, H.-L., 2014. The seasonal succession of modern planktonic foraminifera: Sediment traps observations from southwest Taiwan waters. Continental Shelf Research 84, 13-22.
Liu, J.T., Huh, C.-A., You, C.-F., 2009. Fate of terrestrial substances in the Gaoping (Kaoping) shelf/slope and in the Gaoping submarine canyon off SW Taiwan. Journal of Marine Systems 76, 367-368.
Liu, J.T., Wang, Y.H., Yang, R.J., Hsu, R.T., Kao, S.J., Lin, H.L., Kuo, F.H., 2012. Cyclone‐induced hyperpycnal turbidity currents in a submarine canyon. Journal of Geophysical Research 117, C04033.
Liu, J., Clift, P.D., Yan, W., Chen, Z., Chen, H., Xiang, R., Wang, D., 2014. Modern transport and deposition of settling particles in the northern South China Sea: Sediment trap evidence adjacent to Xisha Trough. Deep Sea Research Part I: Oceanographic Research Papers 93, 145-155.
Lombard, F., da Rocha, R.E., Bijma, J., Gattuso, J., 2010. Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminifera. Biogeosciences 7, 247-255.
Lui, H.-K., Chen, C.-T.A., 2015. Deducing acidification rates based on short-term time series. Scientific reports 5, 1-8.
Manno, C., Morata, N., Bellerby, R., 2012. Effect of ocean acidification and temperature increase on the planktonic foraminifer Neogloboquadrina pachyderma (sinistral). Polar Biology 35, 1311-1319.
Marshall, B., Thunell, R., Henehan, M., McConnell, M., Astor, Y., 2012. Planktonic foraminiferal shell weight and boron isotopic composition as proxies for carbonate system parameters: Insight from sediment trap studies in the Cariaco Basin, Venezuela, AGU Fall Meeting Abstracts, 1983.
Marshall, B.J., Thunell, R.C., Henehan, M.J., Astor, Y., Wejnert, K.E., 2013. Planktonic foraminiferal area density as a proxy for carbonate ion concentration: A calibration study using the Cariaco Basin ocean time series. Paleoceanography 28, 363-376.
Mortyn, P.G., Charles, C.D., 2003. Planktonic foraminiferal depth habitat and δ18O calibrations: Plankton tow results from the Atlantic sector of the Southern Ocean. Paleoceanography 18, 1037-1051.
Moy, A.D., Howard, W.R., Bray, S.G., Trull, T.W., 2009. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience 2, 276-280.
Pälike, H., Lyle, M.W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609-614.
Parker, F.L., 1962. Planktonic foraminiferal species in Pacific sediments. Micropaleontology, 219-254.
Ren, H., Sigman, D.M., Thunell, R.C., Prokopenko, M.G., 2012. Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments. Limnology and Oceanography 57, 1011-1024.
Retailleau, S., Eynaud, F., Mary, Y., Abdallah, V., Schiebel, R., Howa, H., 2012. Canyon Heads and River Plumes: How Might They Influence Neritic Planktonic Foraminifera Communities In The SE Bay of Biscay? Journal of Foraminiferal Research 42, 257-269.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe, R.E., Morel, F.M., 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364-367.
Rohling, E.J., Cooke, S., 2003. Stable oxygen and carbon isotopes in foraminiferal carbonate shells, Modern foraminifera. Springer, pp. 239-258.
Russell, A.D., Hönisch, B., Spero, H.J., Lea, D.W., 2004. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochimica et Cosmochimica Acta 68, 4347-4361.
Sagawa, T., Kuroyanagi, A., Irino, T., Kuwae, M., Kawahata, H., 2013. Seasonal variations in planktonic foraminiferal flux and oxygen isotopic composition in the western North Pacific: Implications for paleoceanographic reconstruction. Marine Micropaleontology 100, 11-20.
Schiebel, R., Waniek, J., Bork, M., Hemleben, C., 2001. Planktic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients. Deep Sea Research Part I: Oceanographic Research Papers 48, 721-740.
Schiebel, R., 2002. Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochemical Cycles 16, 3-1-3-21.
Schiebel, R., Barker, S., Lendt, R., Thomas, H., Bollmann, J., 2007. Planktic foraminiferal dissolution in the twilight zone. Deep Sea Research Part II: Topical Studies in Oceanography 54, 676-686.
Shaw, P.T., 1989. The intrusion of water masses into the sea southwest of Taiwan. Journal of Geophysical Research: Oceans (1978–2012) 94, 18213-18226.
Spero, H.J., Bijma, J., Lea, D.W., Bemis, B.E., 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390, 497-500.
Wang, B., Zhang, Y., Lu, M., 2004. Definition of South China Sea Monsoon Onset and Commencement of the East Asia Summer Monsoon*. Journal of Climate 17, 699-710.
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., Pflaumann, U., 1999. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology 156, 245-284.
Wolf-Gladrow, D.A., Bijma, J., Zeebe, R.E., 1999. Model simulation of the carbonate chemistry in the microenvironment of symbiont bearing foraminifera. Marine Chemistry 64, 181-198.
Yu, H., Huang, C.S., Ku, J., 1991. Morphology and possible origin of the Kaoping submarine canyon head off southwest Taiwan. Acta Oceanogr. Taiwanica 27, 40-50.
Yu, H.-S., Auster, P.J., Cooper, R.A., 1993. Surface geology and biology at the head of Kaoping Canyon off southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 4, 441-455.
Zamelczyk, K., Rasmussen, T.L., Husum, K., Hald, M., 2013. Marine calcium carbonate preservation vs. climate change over the last two millennia in the Fram Strait: Implications for planktic foraminiferal paleostudies. Marine Micropaleontology 98, 14-27.
Žarić, S., Donner, B., Fischer, G., Mulitza, S., Wefer, G., 2005. Sensitivity of planktic foraminifera to sea surface temperature and export production as derived from sediment trap data. Marine Micropaleontology 55, 75-105.
Zeebe, R.E., 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annual Review of Earth and Planetary Sciences 40, 141-165.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code