Responsive image
博碩士論文 etd-1117116-232044 詳細資訊
Title page for etd-1117116-232044
論文名稱
Title
微渠道中具表面粗糙物之熱傳增強研究
Heat transfer Enhancement in Microchannels with Roughened Surfaces
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-08-15
關鍵字
Keywords
低雷諾數、方形阻塊、微渠道的熱傳增強、不具相變化的流動、微結構阻塊
heat transfer enhancement, square micro-pin fin, microstructured roughened surface, micro-channels
統計
Statistics
本論文已被瀏覽 5704 次,被下載 29
The thesis/dissertation has been browsed 5704 times, has been downloaded 29 times.
中文摘要
在微渠道內加入微結構阻塊並以週期排列,來探討微結構的幾何形狀對其熱場的影響,並以平行交排列的方式從中找到最佳提升熱傳增強的相關設計參數。藉由實驗所得知結果發現在微 渠道中加入微結構阻塊確實能提升熱傳能力,而熱傳量提升效率由大到小分別為 方形、橢圓、圓形、六邊形以及三角形的微形結構阻塊 ,其中方形阻塊的熱傳 增強至 7-8%。而從實驗中可得知在低雷諾數下其微渠道的熱傳增強主要以熱傳 導為主,所以經由熱對流在阻塊所造成的熱傳增強效益並不顯著。
Abstract
The main task of study to two parts: Adding to the micro-structure in micro-channels investigates geometry of the micro-pin fins, and making use of the periodic arrangement in parallel .With this to results, one can effectively enhance the heat transfer rate of system, and find a suitable roughened surface to enhance the heat transfer rate. The present study shows that the addition of microstructured roughened surface in microchannels can improve the heat transfer performance, in which the heat transfer rate superiority can be found in a descending order such as square, elliptical, circular, hexagonal and triangular structural block. It is found that the heat transfer enhancement of the square micro pin fin is up to 7-8 %. Furthermore, it was also found that the heat transfer enhancement of the microchannel in the low Reynolds number of the study is mainly due to heat conduction. Therefore, the effect of the convective enhancement due to the present surface roughness / block seems insignificant.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figure vii
List of Table ix
CHAPTER 1 1
1.1 Literature review 3
1.1.1 Single-Phase Liquid Flow Historical Development Timeline—Single-Phase Liquid Flow 6
1.1.2 Historical Perspective—Single-Phase Liquid Flow. 7
1.1.3 Roughness Effect 10
1.2 The objective of this study 13
1.3 Thesis scope 15
CHAPTER 2 19
2.1 Equipment of micro-channel fabrication 19
2.2 The related experimental equipment 22
CHAPTER 3 27
3.1 Process of microchannel fabrication 27
3.2 Heating system 31
3.3 Single-Phase Flow Loop and Test section for Temperature Measurement 32
CHAPTER 4 40
4.1 The theoretical analysis of temperature filed 40
4.1.1 Heat transfer 40
CHAPTER 5 45
CHAPTER 6 50
6-1 Local heat transfer coefficient distribution 51
6-2 Average single-phase Heat transfer Coefficient 51
6-3 Heat transfer Enhancement Ratio 52
CHAPTER 7 59
7-1 Conclusion 59
7-2 Recommendation 60
References: 61
PPENDIX A (UNCERTAINLY ANALYSIS) 72
參考文獻 References
[1] Tuckerman, D. B., and Pease, R. F. W., 1981, “High-Performance Heat Sinking for Vlsi,” IEEE Electron Device Lett., ELD-2(5), pp. 126–129.
[2] S. G. Kandlikar, “History,Advnces,and Challenges in Liquid Flow and Flow Boiling Heat Transfe in Microchannels:A Critical Review”,2012, ASME.,134 ,pp. 0340011-03400115.
[3] Goodling, J. S., 1993, “Microchannel Heat Exchangers: A Review,” Proc. High Heat Flux Engineering II, July 12–13, 1993, San Diego, CA, 1997, pp.66–82.
[4] Mehendale, S. S., Jacobi, A. M., and Shah, R. K., 2000, “Fluid Flow and Heat Transfer at Micro and Meso Scales With Application to Heat Exchanger Design.,” Appl. Mech. Rev., 53(7), pp. 175–193.
[5] Palm, B., 2001, “Heat Transfer in Microchannels,” Microscale Thermophys. Eng., 5(3), pp. 155–175.
[6] Kandlikar, S. G., 2001, “Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannel Flow Passages of Compact Evaporators,”Compact Heat Exchangers and Enhancement Technology for the Process Industries, pp. 319–334.
[7] Sobhan, C. B., and Garimella, S. V., 2001, “A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels,” Microscale Thermophys. Eng., 5(4), pp. 293–311.
[8] Kandlikar, S. G., 2002, “Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannel Flow Passages of Compact Evaporators,” Heat Transfer Eng., 23(1), pp. 5–23.
[9] Kandlikar, S. G., 2002, “Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels,” Exp. Therm. Fluid Sci., 26(2–4), pp. 389–407.
[10] Watel, B., 2003, “Review of Standard Flow Boiling in Small Passages of Compact Heat-Exchangers,” Int. J. Therm. Sci., 42(2), pp. 107–140.
[11] Bergles, A. E., Lienhard, J. H. V., Kendall, G. E., and Griffith, P., 2003,“Boiling and Evaporation in Small Diameter Channels,” Heat Transfer Eng.,24(1), pp. 18–40.
[12] Thome, J. R., 2004, “Boiling in Microchannels: A Review of Experiment and Theory,” Int. J. Heat Fluid Flow, 25(2), pp. 128–139.
[13] Morini, G. L., 2004, “Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results,” Int. J. Therm. Sci., 43(7), pp.631–651.
[14] Hassan, I., Phutthavong, P., and Abdelgawad, M., 2004, “Microchannel Heat Sinks: An Overview of the State-of-the-Art,” Microscale Thermophys. Eng.,8(3), pp. 183–205.
[15] Bergles, A. E., and Kandlikar, S. G., 2005, “On the Nature of Critical Heat Flux in Microchannels,” ASME J. Heat Transfer, 127(1), pp. 101–107.
[16] Royne, A., Dey, C. J., and Mills, D. R., 2005, “Cooling of Photo Voltaic Cells under Concentrated Illumination: A Critical Review,” Sol. Energy Mater. Sol.Cells, 86(4), pp. 451–483.
[17] Ohta, H., 2005, “Boiling and Two-Phase Flow in Channels With Extremely Small Dimensions: A Review of Japanese Research,” Microfluid. Nanofluid.,1(2), pp. 94–107.
[18] Bayraktar, T., and Pidugu, S. B., 2006, “Characterization of Liquid Flows in Microfluidic Systems,” Int. J. Heat Mass Transfer, 49(5), pp. 815–824.
[19] Tardist, L., 2007, “Review on Two-Phase Instabilities in Narrow Spaces,” Int.J. Heat Fluid Flow, 28(1), pp. 54–62.
[20] Agostini, B., Fabbri, M., and Park, J. E., 2007, “State of the Art of High Heat Flux Cooling Technologies,” Heat Transfer Eng., 28(4), pp. 258–281.
[21] Kandlikar, S. G., and Bapat, A. V., 2007, “Evaluation of Jet Impingement,Spray and Microchannel Chip Cooling Options for High Heat Flux Removal,”Heat Transfer Eng., 28(11), pp. 911–923.
[22] Saisorn, S., and Wongwises, S., 2008, “A Review of Two-Phase Gas-Liquid Adiabatic Flow Characteristics in Micro-Channels,” Renewable Sustainable Energy Rev., 12(3), pp. 824–838.
[23] Kandlikar, S. G., 2008, “Exploring Roughness Effect on Laminar Internal Flow—Are We Ready for Change?” Nanoscale Microscale Thermophys. Eng., 12(1), pp. 61–82.
[24] Fan, Y., and Luo, L. G., 2008, “Recent Applications of Advances in Microchannel Heat Exchangers and Multi-Scale Design Optimization,” Heat Transfer Eng., 29(5), pp. 461–474.
[25] Bertsch, S. S., Groll, E. A., and Garimella, S. V., 2008, “Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels,”Nanoscale Microscale Thermophys. Eng., 12(2), pp. 187–227.
[26] Roday, A. P., and Jensen, M. K., 2009, “A Review of the Critical Heat Flux Condition in Mini- and Microchannels,” J. Mech. Sci. Technol., 23(9), pp.2529–2547.
[27] Rosa, P., Karayiannis, T. G., and Collins, M. W., 2009, “Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects,” Appl. Therm. Eng., 29(17–18), pp. 3447–3468.
[28] Saha, S. K., Zummo, G., and Celata, G. P., 2010, “Review on Flow Boiling in Microchannels,” Int. J. Microscale, Nanoscale, Therm. Fluid Transport Phenomena,1(2), pp. 111–178.
[29] Obot, N. T., 2002, “Toward a Better Understanding of Friction and Heat/Mass Transfer in Microchannels—a Literature Review,” Microscale Thermophys.Eng., 6(3), pp. 155–173.
[30] Sasaki, S., and Kishimoto, T., 1986, “Optimal Structure for Microgrooved Cooling Fin for High-Power Lsi Devices,” Electron. Lett., 22(25), pp.1332–1334.
[31] Kishimoto, T., and Sasaki, S., 1987, “Cooling Characteristics of Diamond-Shaped Interrupted Cooling Fin for High-Power LSI Devices,” Electron. Lett.,23(9), pp. 456–457.
[32] Phillips, R. J., Glicksman, L., and Larson, R., 1987, “Forced-Convection,Liquid-Cooled, Microchannel Heat Sinks for High-Power-Density Microelectronics,”Proc. Cooling Technology for Electronic Equipment, W. Aung,ed., Honolulu, HI, pp. 295–316.
[33] Walpole, J. N., Liau, Z. L., Diadiuk, V., and Missaggia, L. J., 1988,
“Microchannel Heat Sinks and Microlens Arrays for High Average-Power
Diode Laser Arrays,” Proc. LEOS ‘88—Lasers and Electro-Optics SocietyAnnual Meeting, November 2–4, 1988, Santa Clara, CA, pp. 447–448.
[34] Knight, R. W., Hall, D. J., Goodling, J. S., and Jaeger, R. C., 1992, “Heat Sink Optimization With Application to Microchannels,” IEEE Trans. Compon.,Hybrids, Manuf. Technol., 15(5), pp. 832–842.
[35] Peng, X. F., Peterson, G. P., and Wang, B. X., 1994, “Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels,” Exp. Heat Transfer, 7(4), pp. 249–264.
[36] Peng, X. F., Peterson, G. P., and Wang, B. X., 1994, “Heat Transfer Characteristics of Water Flowing Through Microchannels,” Exp. Heat Transfer, 7(4),pp. 265–283.
[37] Harris, C., Despa, M., and Kelly, K., 2000, “Design and Fabrication of a Cross Flow Micro Heat Exchanger,” J. Microelectromech. Syst., 9(4), pp. 502–508.
[38] Fedorov, A. G., and Viskanta, R., 2000, “Three-Dimensional Conjugate HeatTransfer in the Microchannel Heat Sink for Electronic Packaging,” Int. J. Heat Mass Transfer, 43(3), pp. 399–415.
[39] Judy, J., Maynes, D., and Webb, B. W., 2002, “Characterization of Frictional Pressure Drop for Liquid Flows through Microchannels,” Int. J. Heat Mass Transfer, 45(17), pp. 3477–3489.
[40] Qu, W. L., and Mudawar, I., 2002, “Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink,”Int. J. Heat Mass Transfer, 45(12), pp. 2549–2565.
[41] Kandlikar, S. G., and Grande, W. J., 2003, “Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology,” Heat Transfer Eng., 24(1), pp. 3–17.
[42] Wu, H. Y., and Cheng, P., 2003, “An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions,” Int. J.Heat Mass Transfer, 46(14), pp. 2547–2556.
[43] Kandlikar, S. G., Joshi, S., and Tian, S., 2003, “Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes,” Heat Transfer Eng., 24(3), pp. 4–16.
[44] Guo, Z.-Y., and Li, Z.-X., 2003, “Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale,” Int. J. Heat Fluid Flow, 24(3), pp. 284–298.
[45] Kandlikar, S. G., and Grande, W. J., 2004, “Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling-Thermohydraulic Performance Enhancement and Fabrication Technology,” Int. J. Therm. Sci.,45(11), pp. 1073–1083.
[46] Steinke, M. E., and Kandlikar, S. G., 2004, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows,” Proc.Proceedings of the Second International Conference on Microchannels and Minichannels (ICMM2004), June 17–19, 2004, Rochester, NY, pp.141–148.
[47] Lelea, D., Nishio, S., and Takano, K., 2004, “The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water,” Int. J. Heat Mass Transfer, 47(12–13), pp. 2817–2830.
[48] Sharp, K. V., and Adrian, R. J., 2004, “Transition from Laminar to Turbulent Flow in Liquid Filled Microtubes,” Exp. Fluids, 36(5), pp. 741–747.
[49] Koo, J., and Kleinstreuer, C., 2005, “Laminar Nanofluid Flow in Microheat-Sinks,” Int. J. Heat Mass Transfer, 48(13), pp. 2652–2661.
[50] Lee, P.-S., Garimella, V., and Dong, L., 2005, “Investigation of Heat Transfer in Rectangular Microchannels,” Int. J. Heat Mass Transfer, 48(9), pp.1688–1704.
[51] Colgan, E. G., Furman, B., Gaynes, M., Graham, W., Labianca, N., Magerlein,J. H., Polastre, R. J., Rothwell, M. B., Bezama, R. J., Choudhary, R., Marston,K., Toy, H., Wakil, J., Zitz, J., and Schmidt, R., 2005, “A Practical Implementation of Silicon Microchannel Coolers for High Power Chips,” Proc. 21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium, March 15–17, 2005, San Jose, CA, pp. 1–7.
[52] Kandlikar, S. G., Schmitt, D., Carrano, A. L., and Taylor, J. B., 2005,
“Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels,” Phys. Fluids, 17(10), 100606.
[53] Celata, G. P., Cumo, M., Mcphail, S., and Zummo, G., 2006,
“Characterization of Fluid Dynamic Behavior and Channel Wall Effects in Microtube,” Int. J. Heat Fluid Flow, 27(1), pp. 135–143.
[54] Tuckerman, D. B., 1984, Heat-Transfer Microstructures for Integrated Circuits,Stanford University, Stanford, CA.
[55] Mundinger, D., Beach, R., Benett, W., Solarz, R., Krupke, W., Staver, R., and Tuckerman, D., 1988, “Demonstration of High-Performance Silicon Microchannel Heat Exchangers for Laser Diode Array Cooling,” Appl. Phys. Lett.,53(12), pp. 1030–1032.
[56] Phillips, R. J., 1987, Forced-Convection, Liquid-Cooled, Microchannel Heat Sinks, MSME Massachusetts Institute of Technology, Cambridge, MA.
[57] Phillips, R. J., 1990, Advances in Thermal Modeling of Electronic Components and Systems, ASME, New York, Chap. 3.
[58] Missaggia, L. J., Walpole, J. N., Liau, Z. L., and Phillips, R. J., 1989,
“Microchannel Heat Sinks for Two-Dimensional High-Power-Density Diode
Laser Arrays,” IEEE J. Quantum Electron., 25(9), pp. 1988–1992.
[59] Turlik, I., Reisman, A., Darveaux, R., and Hwang, L. T., 1989, “Multichip Packaging for Supercomputers,” Proc. Proceedings of the Technical Program.NEPCON West ‘89, 13–15 June 1989, Anaheim, CA, pp. 37–58.
[60] Peng, X. F., and Wang, B. X., 1993, “Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels,” Int. J. Heat MassTransfer, 36(14), pp. 3421–3427.
[61] Wang, B. X., and Peng, X. F., 1994, “Experimental Investigation on Liquid Forced Convection Heat Transfer Through Microchannels,” Int. J. Heat Mass Transfer, 37(Suppl. 1), pp. 73–82.
[62] Kandlikar, S. G., 2005, “Roughness Effects at Microscale—Reassessing Nikuradse’s Experiments on Liquid Flow in Rough Tubes,” Bull. Pol. Acad.Sci.: Tech. Sci., 53(4), pp. 343–349.
[63] Taylor, J. B., Carrano, A. L., and Kandlikar, S. G., 2006, “Characterization of the Effect of Surface Roughness and Texture on Fluid Flow—Past, Present, and Future,” Int. J. Therm. Sci., 45(10), pp. 962–968.
[64] Brackbill, T. P., and Kandlikar, S. G., 2010, “Application of Lubrication Theory and Study of Roughness Pitch During Laminar, Transition, and Low Reynolds Number Turbulent Flow at Microscale,” Heat Transfer Eng., 31(8),pp. 635–645.
[65] Rawool, A. S., Mitra, S. K., and Kandlikar, S. G., 2006, “Numerical Simulation of Flow Through Microchannels With Designed Roughness,” Microfluid. Nanofluid., 2(3), pp. 215–221.
[66] Croce, G., D’agaro, P., and Nonino, C., 2007, “Three-Dimensional Roughness Effect on Microchannel Heat Transfer and Pressure Drop,” Int. J. Heat Mass Transfer, 50(25–26), pp. 5249–5259.
[67] Kleinstreuer, C., and Koo, J., 2004, “Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits,” J. Fluids Eng., 126(1), pp.1–9.
[68] Bahrami, M., Yovanovich, M. M., and Culham, J. R., 2006, “Pressure Drop of Fully-Developed, Laminar Flow in Microchannel of Arbitrary Cross-Section,”J. Fluids Eng., 128(3), pp. 632–637.
[69] Qu, W., Mala, G. M., and Li, D., 2000, “Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels,” Int. J. Heat Mass Transfer, 43(3), pp. 353–364.
[70] Qu, W., Mala, G. M., and Li, D., 2000, “Heat Transfer for Water Flow inTrapezoidal Silicon Microchannels,” Int. J. Heat Mass Transfer, 43(21), pp.3925–3936.
[71] Xu, J. L., Gan, Y. H., Zhang, D. C., and Li, X. H., 2005, “Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept,” Int. J. Heat Mass Transfer, 48(9), pp. 1662–1674.
[72] Chang, S. W., Liou, T.-M., and Juan, W.-C., 2005, “Influence of Channel Height on Heat Transfer Augmentation in Rectangular Channels With Two Opposite Rib-Roughened Walls,” Int. J. Heat Mass Transfer, 48(13), pp.2806–2813.
[73] Wei, X. J., Joshi, Y. K., and Ligrani, P. M., 2007, “Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface,” J. Electron. Packag., 129(1), pp. 63–70.
[74] Kosar, A., and Peles, Y., 2006, “Thermal-Hydraulic Performance of Mems-Based Pin Fin Heat Sink,” ASME J. Heat Transfer, 128(2), pp. 121–131.
[75] Taylor,J.R.,1997, ”An introduction to error analysis”,Unversity Science Books, Sausalito.
[76] Hsieh, S.S., Li, S.Y., and Hsieh, Y.C., 2017, “Nominvasive temperature measurements of RLIF and nPIT in DI water flow microchannels,”Appl. Therm. Eng.,117, pp. 30-38.
[77] Choi, S.B., Barren, R.R., and Warrington, R.Q.,1991, “Fluid flow and heat transfer in micro-tubes, ”ASME Stud. Profess. Dev. Conf., 40, pp. 89-93.
[78] Qu, W., Mala, G.M., and Li, D.,2000, “ Heat transfer for water flow in trapezoidal silicon microchannels, ”Int. J. Heat Mass Transfer, 43, pp.3925-3936.
[79] Steinke, M. E., and Kandlikar, S. G.,2004, “ Heat transfer for water flow in trapezoidal silicon microchannels, ”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code