Responsive image
博碩士論文 etd-1118111-163748 詳細資訊
Title page for etd-1118111-163748
論文名稱
Title
定性分析一個參與在乙烯及鹽分逆境誘導甘藷葉片老化的calmodulin
Characterization of a sweet potato calmodulin that participates in ethephon and salt stress-mediated leaf
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-11-17
繳交日期
Date of Submission
2011-11-18
關鍵字
Keywords
乙烯、葉片老化、鹽分逆境、甘藷
Sweet potato, Salt stress, Leaf senescence, Ethylene, Calmodulin
統計
Statistics
本論文已被瀏覽 5678 次,被下載 584
The thesis/dissertation has been browsed 5678 times, has been downloaded 584 times.
中文摘要
乙烯為一氣態植物生長調節物質,在植物生長發育及逆境反應中扮演重要的角色。而在葉片老化過程乙烯也是也是扮演主要的角色。鈣離子是一種二次訊息傳遞因子,參與在植物許多生理反應的訊息傳遞路徑。在本研究中利用ethephon,一種釋放乙烯的化合物誘導甘藷葉片的型態變黃、葉綠素含量減少、光化學Fv/Fm下降、H2O2含量增加及老化相關基因表現,而這些ethephon誘導的老化相關反應在鈣離子螯合劑EGTA前處理下會被延緩或抑制。使用鈣離子攜帶劑A23187處理後也會誘發老化相關基因的表現,且此誘導亦會被EGTA前處理所抑制。鈣離子訊息傳遞通常透過鈣離子感受蛋白質包括calmodulin的轉譯來對生長發育或還境刺激因子作出適當反應,因此外在使用calmodulin抑制劑chlorpromazine (CPZ) 前處理發現也可以延緩或抑制ethephon誘導的葉片老化、H2O2含量增加及老化相關基因表現。利用先前分離的ethephon可誘導的calmodulin SPCAM 外源表現的融合蛋白亦可反轉CPZ延緩或抑制ethephon誘導的甘藷葉片老化、H2O2含量增加及老化相關基因表現。這些結果建議胞外鈣離子的流入與calmodulin SPCAM 與ethephon誘導甘藷葉片老化、H2O2含量增加及老化相關基因表現有關。另外NaCl鹽分逆境下亦會誘導甘藷葉片老化、H2O2含量增加及老化相關基因表現,外加CPZ前處理發現也可以延緩或抑制NaCl鹽分逆境誘導的葉片老化、H2O2含量增加及老化相關基因表現,外加calmodulin SPCAM融合蛋白亦可反轉CPZ延緩或抑制NaCl鹽分逆境誘導的甘藷葉片老化、H2O2含量增加及老化相關基因表現。這些結果建議calmodulin SPCAM 與NaCl鹽分逆境誘導甘藷葉片老化、H2O2含量增加及老化相關基因表現有關。根據這些結果結論ethephon誘導甘藷葉片老化過程與胞外鈣離子的流入有關,另外ethephon可誘導的calmodulin SPCAM 可能參與在生長發育下ethylene及鹽分逆境下NaCl誘導的甘藷葉片老化、H2O2含量增加及老化相關基因表現。
Abstract
Ethylene is a gaseous growth regulator, and plays an important role in response to plant developmental and environmental stimuli. Ethylene also plays a key role in leaf senescence. Calcium is a second message, and participates in the signal transduction pathways of many plant physiological responses. In this research, ethephon, an ethylene-releasing compound, was used to induce sweet potato leaf yellowing, chlorophyll content reduction, photochemical Fv/Fm decrease, H2O2 elevation and senescence-associated gene expression. These ethephon-mediated effects were all delayed or repressed by pretreatment of a calcium ion chelator, EGTA. Treatment with a calcium ionophore A23187 also induced senescence-associated gene expression in sweet potato detached leaves, and the induction was repressed by EGTA pretreatment. Calcium signaling in general is transmitted by calcium sensor proteins, including calmodulin to translate into appropriate responses to developmental and environmental stimuli. Therefore, pretreatment with calmodulin inhibitor chlorpromazine (CPZ) delayed or repressed ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. These CPZ-mediated effects were reversed by the exogenous application of an ethephon-inducible calmodulin SPCAM fusion protein. These results suggest that external Ca2+ influx and calmodulin SPCAM play a role in ethephon signaling leading to leaf senescence, H2O2 elevation and senescence-associated gene expression. In addition, NaCl salt stress also caused sweet potato leaf senescence, H2O2 elevation and senescence-associated gene expression. Pretreatment with CPZ delayed or repressed NaCl salt stress-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. These CPZ-mediated effects were also reversed by the exogenous application of calmodulin SPCAM fusion protein. These results suggest that calmodulin SPCAM may play a role in NaCl salt stress signaling leading to leaf senescence, H2O2 elevation and senescence-associated gene expression. Based on these results, external Ca2+ influx is required for ethephon induced leaf senescence. Ethephon-inducible calmodulin SPCAM likely participates in ethylene and NaCl salt stress signaling leading to leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato in order to cope with different developmental cues or environmental stimuli.
目次 Table of Contents
圖次...........................................................................................................vii
縮寫表......................................................................................................x
中文摘要..................................................................................................xii
英文摘要..................................................................................................xiv
壹、緒論.......................................................................................................1
(一)、葉片老化的生理及生化機制......................................................1
(二)、影響葉片老化的因子..................................................................2
(三)、乙烯與葉片老化及其相關的訊息傳遞路徑..............................2
(四)、植物中鈣離子及calmodulin的相關研究...................................3
(五)、鹽分逆境與葉片老化..................................................................5
(六)、鹽分逆境與calmodulin的相關研究...........................................6
(七)、老化相關基因之研究..................................................................7
(八)、目的與重要性..............................................................................9
貳、材料與方法.......................................................................................10
一、實驗材料…….......................................................................................10
二、實驗方法…….......................................................................................10
鈣離子螯合劑EGTA及ethephon處理...............................................10
鈣離子攜帶劑A23187及EGTA處理...............................................11

Calmodulin抑制劑CPZ及ethephon處理………..............................11
Calmodulin抑制劑CPZ、calmodulin SPCAM融合蛋白及ethephon處理…………………………………………………………………11
Calmodulin SPCAM融合蛋白處理....................................................12
NaCl處理..............................................................................................13
Calmodulin抑制劑及NaCl處理..........................................................13
Calmodulin抑制劑CPZ、calmodulin SPCAM融合蛋白及NaCl處理……………………………………..................................................14
甘藷葉片Total RNA 的抽取...............................................................14
RT-PCR分析.........................................................................................15
葉綠素含量測量..................................................................................17
光合作用效率的測定...........................................................................17
DAB 染色分析....................................................................................18
H2O2含量的測定..................................................................................18
Calmodumlin SPCAM融合蛋白質的誘導表現及純化......................19
蛋白質濃度測定...................................................................................21
SDS-PAGE配制及電泳........................................................................21
統計分析...............................................................................................23
參、結果.....................................................................................................24
I. 胞外鈣離子與calmodulin SPCAM參與ethephon誘導甘藷切離葉片老化、H2O2含量增加及老化相關基因表現.......................................24
鈣離子螯合劑EGTA前處理減緩ethephon誘導甘藷切離葉片老化、H2O2含量增加及老化相關基因表現...........................................24
鈣離子攜帶劑A23187可誘導甘藷切離葉片老化相關基因表現.....25
Calmodulin抑制劑CPZ前處理減緩ethephon誘導甘藷切離葉片老化、H2O2含量增加及老化相關基因表現………...............................25
Calmodulin SPCAM融合蛋白反轉CPZ減緩ethephon誘導甘藷切離葉片老化、H2O2含量增加及老化相關基因表現的影響..........................................................................................................27
II. Calmodulin SPCAM參與在NaCl鹽分逆境誘導的甘藷切離葉片老化、H2O2含量增加及老化相關基因表現............................................29
單獨外加SPCAM融合蛋白對誘導甘藷切離葉片老化及老化相關基因表現無顯著影響..............................................................................29
NaCl處理可暫時性增加甘藷切離葉片SPCAM的表現.....................30
NaCl鹽分逆境可誘導甘藷切離葉片老化、H2O2含量增加及老化相關基因表現..........................................................................................31
Calmodulin抑制劑CPZ前處理減緩NaCl誘導甘藷切離葉片老化、H2O2含量增加及老化相關基因表現..................................................33
Calmodulin SPCAM融合蛋白反轉CPZ減緩NaCl誘導甘藷切離葉片老化、H2O2含量增加及老化相關基因表現的影響............................35
肆、討論...................................................................................................38
參考文獻................................................................................................48





















圖次

圖一、鈣離子螯合劑EGTA前處理對ethephon誘導甘薯切離葉片之影響.................................................................................................................58
圖二、鈣離子螯合劑EGTA前處理對ethephon誘導甘薯切離葉片H2O2含量之影響.................................................................................................59
圖三、鈣離子螯合劑EGTA前處理對ethephon誘導甘薯切離葉片老化相關基因表現之影響.................................................................................60
圖四、鈣離子攜帶劑A23187處理及EGTA前處理對誘導甘薯切離葉片之影響.........................................................................................................61
圖五、鈣離子攜帶劑A23187處理及EGTA前處理對誘導甘薯切離葉片老化相關基因表現之影響.........................................................................62
圖六、Calmodulin抑制劑CPZ前處理對ethephon誘導甘薯切離葉片之影響.............................................................................................................63
圖七、Calmodulin抑制劑CPZ前處理對ethephon誘導甘薯切離葉片H2O2含量之影響........................................................................................64
圖八、Calmodulin抑制劑CPZ前處理對誘導甘薯切離葉片老化相關基因之影響………………………………………………………………….65
圖九、不同時間IPTG處理誘導含重組基因His-Tagged SPCAM pET-30a 載體之BL21大腸桿菌表現融合蛋白質SPCAM.....................................66
圖十、利用外加粗萃取calmodulin SPCAM融合蛋白反轉CaM抑制劑CPZ抑制ethephon誘導甘薯切離葉片之影響.........................................67
圖十一、利用外加粗抽SPCAM融合蛋白反轉CaM拮抗劑CPZ抑制ethephon誘導甘薯切離葉片老化相關基因表現之影響...............................................................................................................68
圖十二、融合蛋白的誘導及純化...............................................................69
圖十三、利用外加純化SPCAM融合蛋白反轉CaM抑制劑CPZ抑制ethephon誘導甘薯切離葉片之影響........................................................70
圖十四、利用外加純化SPCAM融合蛋白反轉CaM抑制劑CPZ抑制ethephon誘導甘薯切離葉片H2O2含量之影響.........................................71
圖十五、利用外加純化SPCAM融合蛋白反轉CaM抑制劑CPZ抑制ethephon誘導甘薯切離葉片老化相關基因表現之影響..........................72
圖十六、外加純化SPCAM融合蛋白對黑暗誘導甘薯切離葉片老化之影響.............................................................................................................73
圖十七、外加純化SPCAM融合蛋白對黑暗誘導甘薯切離葉片老化相關基因表現之影響.....................................................................................74
圖十八、NaCl鹽分逆境對黑暗誘導甘薯切離葉片老化之影響.................................................................................................................75
圖十九、NaCl鹽分逆境對黑暗誘導甘薯切離葉片SPCAM基因表現之影響.............................................................................................................76
圖二十、NaCl鹽分逆境對黑暗誘導甘薯切離葉片老化之影響.................................................................................................................78
圖二十一、NaCl鹽分逆境對黑暗誘導甘薯切離葉片H2O2含量之影響.................................................................................................................79
圖二十二、NaCl鹽分逆境對黑暗誘導甘薯切離葉片老化相關基因表現之影響.........................................................................................................80
圖二十三、Calmodulin抑制劑CPZ前處理對NaCl鹽分逆境誘導甘薯切離葉片老化之影響.................................................................................82
圖二十四、Calmodulin抑制劑CPZ前處理對NaCl鹽分逆境誘導甘薯切離葉片的H2O2含量之影響....................................................................83
圖二十五、Calmodulin抑制劑CPZ前處理對NaCl鹽分逆境誘導甘薯切離葉片的老化相關基因表現之影響.....................................................84
圖二十六、利用外加純化SPCAM融合蛋白反轉CaM抑制劑CPZ抑制NaCl鹽分逆境對甘薯切離葉片之影響....................................................86
圖二十七、可利用外加純化SPCAM融合蛋白反轉CaM抑制劑CPZ抑制NaCl鹽分逆境對甘薯切離葉片H2O2含量之影響..............................87
圖二十八、利用外加純化SPCAM融合蛋白反轉CaM抑制劑CPZ抑制NaCl鹽分逆境對甘薯切離葉片老化相關基因表現之影響....................88
參考文獻 References
參考文獻

Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K.
(2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional
activators in abscisic acid signaling. The Plant Cell Online 15, 63.
AFIYANTI, M. (2011). Characterization of a leaf-type catalase and its enzymatic
regulation in sweet potato (Ipomoea batatas (L.)). In National Sun Yat-sen University
Biological Sciences Master's Thesis.
Alscher, R. G., Donahue, J. L. and Cramer, C. L. (1997). Reactive oxygen
species and antioxidants: relationships in green cells. Physiologia Plantarum 100,
224-233.
Botella, J. R. and Arteca, R. N. (1994). Differential expression of two calmodulin
genes in response to physical and chemical stimuli. Plant Molecular Biology 24,
757-766.
Buchanan-Wollaston, V. (1997). The molecular biology of leaf senescence. J Exp
Bot 48, 181-199.
Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S.,
Page, T. and Pink, D. (2003). The molecular analysis of leaf senescence--a genomics
approach. Plant Biotechnol J 1, 3-22.
Buchananwollaston, V. (1994). ISOLATION OF CDNA CLONES FOR GENES
THAT ARE EXPRESSED DURING LEAF SENESCENCE IN BRASSICA-NAPUS -
IDENTIFICATION OF A GENE ENCODING A SENESCENCE-SPECIFIC
METALLOTHIONEIN-LIKE PROTEIN. Plant Physiology 105, 839-846.
Cheeseman, J. M. (1988). Mechanisms of salinity tolerance in plants. Plant
Physiology 87, 547. 49

Chen, H.-J., Tsai, Y.-J., Chen, W.-S., Huang, G.-J., Huang, S.-S. and Lin, Y.-H.
(2010a). Ethephon-mediated Effects on Leaf Senescence are affected by Reduced
Glutathione and EGTA in Sweet Potato Detached Leaves. Botanical Studies 51,
171-181.
Chen, H., Su, C., Lin, C., Huang, G. and Lin, Y. (2010b). Expression of sweet
potato cysteine protease SPCP2 altered developmental characteristics and stress
responses in transgenic Arabidopsis plants. Journal of plant physiology 167, 838-847.
Chen, H. J., Hou, W. C., Jane, W. N. and Lin, Y. H. (2000). Isolation and
characterization of an isocitrate lyase gene from senescent leaves of sweet potato
(Ipomoea batatas cv. Tainong 57). Journal of plant physiology 157, 669-676.
Chen, H. J., Hou, W. C., Liu, J. S., Yang, C. Y., Huang, D. J. and Lin, Y. H.
(2004). Molecular cloning and characterization of a cDNA encoding asparaginyl
endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. Journal
of Experimental Botany 55, 825-835.
Chen, H. J., Hou, W. C., Yang, C. Y., Huang, D. J., Liu, J. S. and Lin, Y. H.
(2003). Molecular cloning of two metallothionein-like protein genes with differential
expression patterns from sweet potato (Ipomoea batatas) leaves. Journal of plant
physiology 160, 547-555.
Chen, H. J., Huang, D. J., Hou, W. C., Liu, J. S. and Lin, Y. H. (2006).
Molecular cloning and characterization of a granulin-containing cysteine protease
SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. Journal of plant
physiology 163, 863-876.
Chen, H. J., Wen, I. C., Huang, G. J., Hou, W. C. and Lin, Y. H. (2008a).
Expression of sweet potato asparaginyl endopeptidase caused altered phenotypic
characteristics in transgenic Arabidopsis. Botanical Studies 49, 109-117.
Chen, H. J., Wu, S. D., Huang, G. J., Shen, C. Y., Afiyanti, M., Li, W. J. and 50

Lin, Y. H. (2011). Expression of a cloned sweet potato catalase SPCAT1 alleviates
ethephon-mediated leaf senescence and H2O2 elevation. Journal of plant physiology.
Chen, Y. C., Lin, H. H. and Jeng, S. T. (2008b). Calcium influxes and
mitogen-activated protein kinase kinase activation mediate ethylene inducing ipomoelin
gene expression in sweet potato. Plant Cell Environ 31, 62-72.
Clouse, S. D. (1996). Molecular genetic studies confirm the role of
brassinosteroids in plant growth and development. Plant J 10, 1-8.
Dauwalder, M., Roux, S. and Hardison, L. (1986). Distribution of calmodulin in
pea seedlings: immunocytochemical localization in plumules and root apices. Planta
168, 461-470.
de Jong, A. J., Yakimova, E. T., Kapchina, V. M. and Woltering, E. J. (2002). A
critical role for ethylene in hydrogen peroxide release during programmed cell death in
tomato suspension cells. Planta 214, 537-45.
Delumeau, O., Paven, M. C. M. L., Montrichard, F. and Laval Martin, D. L.
(2000). Effects of short term NaCl stress on calmodulin transcript levels and calmodulin
dependent NAD kinase activity in two species of tomato. Plant, Cell & Environment 23,
329-336.
Ellouzi, H., Ben Hamed, K., Cela, J., Munne Bosch, S. and Abdelly, C. (2011).
Early effects of salt stress on the physiological and oxidative status of Cakile maritima
(halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum.
Galon, Y., Aloni, R., Nachmias, D., Snir, O., Feldmesser, E., Scrase-Field, S.,
Boyce, J. M., Bouche, N., Knight, M. R. and Fromm, H. (2010a).
Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to
stresses in Arabidopsis. Planta 232, 165-178.
Galon, Y., Finkler, A. and Fromm, H. (2010b). Calcium-regulated transcription
in plants. Molecular plant 3, 653. 51

Ghanem, M. E., Albacete, A., Martinez-Andujar, C., Acosta, M.,
Romero-Aranda, R., Dodd, I. C., Lutts, S. and Perez-Alfocea, F. (2008). Hormonal
changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.).
Journal of Experimental Botany 59, 3039.
Gong, M. and Li, Z. G. (1995). Calmodulin-binding proteins from Zea mays
germs. Phytochemistry 40, 1335-1339.
Grant, J. J. and Loake, G. J. (2000). Role of reactive oxygen intermediates and
cognate redox signaling in disease resistance. Plant Physiology 124, 21.
Grbic, V. and Bleecker, A. B. (1995). Ethylene regulates the timing of leaf
senescence in Arabidopsis. Plant Journal 8, 595-602.
Greenway, H. and Munns, R. (1980). Mechanisms of salt tolerance in
nonhalophytes. Annual Review of Plant Physiology 31, 149-190.
Hara-Nishimura, I., Inoue, K. and Nishimura, M. (1991). A unique vacuolar
processing enzyme responsible for conversion of several proprotein precursors into the
mature forms. Febs Letters 294, 89-93.
Harding, S. A., Oh, S. H. and Roberts, D. M. (1997). Transgenic tobacco
expressing a foreign calmodulin gene shows an enhanced production of active oxygen
species. The EMBO Journal 16, 1137-1144.
Hepler, P. K. and Wayne, R. O. (1985). Calcium and plant development. Annual
Review of Plant Physiology 36, 397-439.
Hernandez, J., Olmos, E., Corpas, F., Sevilla, F. and Del Rio, L. (1995).
Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science 105, 151-167.
Hoeren, F. U., Dolferus, R., Wu, Y., Peacock, W. J. and Dennis, E. S. (1998).
Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol
dehydrogenase gene (ADH1) low oxygen. Genetics 149, 479.
Hu, X., Jiang, M., Zhang, J., Zhang, A., Lin, F. and Tan, M. (2007). 52

Calcium–calmodulin is required for abscisic acid induced antioxidant defense and
functions both upstream and downstream of H2O2 production in leaves of maize (Zea
mays) plants. New Phytologist 173, 27-38.
Kang, S. M. and Titus, J. S. (1989). Increased proteolysis of senescing rice leaves
in the presence of NaCl and KCl. Plant Physiology 91, 1232.
Keller, T., Damude, H. G., Werner, D., Doerner, P., Dixon, R. A. and Lamb, C.
(1998). A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene
encodes a plasma membrane protein with Ca2+ binding motifs. The Plant Cell Online
10, 255.
Kent, L. and Lauchli, A. (1985). Germination and seedling growth of cotton:
salinity calcium interactions. Plant, Cell & Environment 8, 155-159.
Kim, M. C., Chung, W. S., Yun, D. J. and Cho, M. J. (2009). Calcium and
calmodulin-mediated regulation of gene expression in plants. Molecular plant 2, 13.
Kim, S. H. and Hamada, T. (2005). Rapid and reliable method of extracting DNA
and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotechnology letters 27,
1841-1845.
Knight, H., Trewavas, A. J. and Knight, M. R. (1997). Calcium signalling in
Arabidopsis thaliana responding to drought and salinity. The Plant Journal 12,
1067-1078.
Koehl, J., Djulic, A., Kirner, V., Nguyen, T. T. and Heiser, I. (2007). Ethylene is
required for elicitin-induced oxidative burst but not for cell death induction in tobacco
cell suspension cultures. Journal of plant physiology 164, 1555-1563.
Kushwaha, R., Singh, A. and Chattopadhyay, S. (2008). Calmodulin7 plays an
important role as transcriptional regulator in Arabidopsis seedling development. The
Plant Cell Online 20, 1747.
Lim, P. O., Kim, H. J. and Nam, H. G. (2007). Leaf senescence. Annu Rev Plant 53

Biol 58, 115-36.
Lutts, S., Kinet, J. and Bouharmont, J. (1996). NaCl-induced senescence in
leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of
Botany 78, 389.
Mahajan, S. and Tuteja, N. (2005). Cold, salinity and drought stresses: an
overview. Archives of Biochemistry and Biophysics 444, 139-158.
McCormack, E., Tsai, Y. C. and Braam, J. (2005). Handling calcium signaling:
arabidopsis CaMs and CMLs. Trends in plant science 10, 383-389.
Meneguzzo, S., Navari-Izzo, F. and Izzo, R. (1999). Antioxidative responses of
shoots and roots of wheat to increasing NaCl concentrations. Journal of plant
physiology 155, 274-280.
Moftah, A. E. and Michel, B. E. (1987). The effect of sodium chloride on solute
potential and proline accumulation in soybean leaves. Plant Physiology 83, 238.
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev.
Plant Biol. 59, 651-681.
Nooden, L. D., Guiamet, J. J. and John, I. (1997). Senescence mechanisms.
Physiologia Plantarum 101, 746-753.
Ogren, W. L. (1984). Photorespiration: pathways, regulation, and modification.
Annual Review of Plant Physiology 35, 415-442.
Olsson, P., Yilmaz, J. L., Sommarin, M., Persson, S. and Bulow, L. (2004).
Expression of bovine calmodulin in tobacco plants confers faster germination on saline
media. Plant Science 166, 1595-1604.
Otegui, M. S., Noh, Y. S., Martinez, D. E., Vila Petroff, M. G., Staehelin, L. A.,
Amasino, R. M. and Guiamet, J. J. (2005). Senescence-associated vacuoles with
intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41,
831-44. 54

Petruzzelli, L., Sturaro, M., Mainieri, D. and Leubner-Metzger, G. (2003).
Calcium requirement for ethylene-dependent responses involving
1-aminocyclopropane-1-carboxylic acid oxidase in radicle tissues of germinated pea
seeds. Plant, Cell & Environment 26, 661-671.
Phean-o-pas, S., Punteeranurak, P. and Buaboocha, T. (2005). Calcium
Signaling-mediated and Differential Induction of Calmodulin Gene Expression by
Stress in Oryza sativa L. Journal of Biochemistry and Molecular Biology 38.
Raz, V. and Fluhr, R. (1992). Calcium Requirement for Ethylene-Dependent
Responses. Plant Cell 4, 1123-1130.
Reddy, A., Reddy, V. S. and Golovkin, M. (2000). A calmodulin binding protein
from Arabidopsis is induced by ethylene and contains a DNA-binding motif.
Biochemical and Biophysical Research Communications 279, 762-769.
Reddy, A. S. N., Ali, G. S., Celesnik, H. and Day, I. S. (2011). Coping with
Stresses: Roles of Calcium-and Calcium/Calmodulin-Regulated Gene Expression. The
Plant Cell Online.
Roberts, D. M. and Harmon, A. C. (1992). Calcium-modulated proteins: targets
of intracellular calcium signals in higher plants. Annual Review of Plant Biology 43,
375-414.
Rodriguez-Concepcion, M., Yalovsky, S., Zik, M., Fromm, H. and Gruissem,
W. (1999). The prenylation status of a novel plant calmodulin directs plasma membrane
or nuclear localization of the protein. The EMBO Journal 18, 1996-2007.
Salin, M. L. (1988). Toxic oxygen species and protective systems of the
chloroplast. Physiologia Plantarum 72, 681-689.
Sang, J. R., Zhang, A., Lin, F., Tan, M. P. and Jiang, M. Y. (2008). Cross-talk
between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of
maize plants. Cell Research 18, 577-588. 55

Schuurink, R. C., Chan, P. V. and Jones, R. L. (1996). Modulation of calmodulin
mRNA and protein levels in barley aleurone. Plant Physiology 111, 371.
Shalata, A. and Tal, M. (1998). The effect of salt stress on lipid peroxidation and
antioxidants in the leaf of the cultivated tomato and its wild salt tolerant relative
Lycopersicon pennellii. Physiologia Plantarum 104, 169-174.
Shang, Z. L., Ma, L. G., Zhang, H. L., He, R. R., Wang, X. C., Cui, S. J. and
Sun, D. Y. (2005). Ca2+ influx into lily pollen grains through a
hyperpolarization-activated Ca2+-permeable channel which can be regulated by
extracellular CaM. Plant and Cell Physiology 46, 598-608.
Smart, C. M. (1994). Gene expression during leaf senescence. New Phytologist
126, 419-448.
Smirnoff, N. (1993). Tansley Review No. 52. The role of active oxygen in the
response of plants to water deficit and desiccation. New Phytologist, 27-58.
Snedden, W. A. and Fromm, H. (2001). Calmodulin as a versatile calcium signal
transducer in plants. New Phytologist 151, 35-66.
Steffens, B. and Sauter, M. (2009). Epidermal cell death in rice is confined to
cells with a distinct molecular identity and is mediated by ethylene and H2O2 through
an autoamplified signal pathway. The Plant Cell Online 21, 184.
Takeda, T., Yokota, A. and Shigeoka, S. (1995). Resistance of photosynthesis to
hydrogen peroxide in algae. Plant and Cell Physiology 36, 1089.
Tanou, G., Molassiotis, A. and Diamantidis, G. (2009). Induction of reactive
oxygen species and necrotic death-like destruction in strawberry leaves by salinity.
Environmental and Experimental Botany 65, 270-281.
Tolbert, N. (1981). Metabolic pathways in peroxisomes and glyoxysomes. Annual
review of biochemistry 50, 133-157.
van der Hoorn, R. A. L. (2008). Plant proteases: From phenotypes to molecular 56

mechanisms. Annual Review of Plant Biology 59, 191-223.
Van Der Luit, A. H., Olivari, C., Haley, A., Knight, M. R. and Trewavas, A. J.
(1999). Distinct calcium signaling pathways regulate calmodulin gene expression in
tobacco. Plant Physiology 121, 705.
Wang, K. L. C., Li, H. and Ecker, J. R. (2002). Ethylene biosynthesis and
signaling networks. The Plant Cell Online 14, S131.
Wu, H. (2010a). Cloning and characterization of ethephon-inducible genes from
sweet potato leaves.
Wu, H. (2010b). Cloning and characterization of ethephon-inducible genes from
sweet potato leaves. In National Sun Yat-sen University Biological Sciences Master's
Thesis
Xu, T., Li, T. and Qi, M. (2009). Calcium Requirement for Ethylene-Induced
Abscission. Journal of Plant Nutrition 32, 351-366.
Yang, T. and Poovaiah, B. (2000). An early ethylene up-regulated gene encoding
a calmodulin-binding protein involved in plant senescence and death. Journal of
Biological Chemistry 275, 38467.
Yang, T. and Poovaiah, B. (2002). A calmodulin-binding/CGCG box
DNA-binding protein family involved in multiple signaling pathways in plants. Journal
of Biological Chemistry 277, 45049.
Yang, T. and Poovaiah, B. W. (2003). Calcium/calmodulin-mediated signal
network in plants. Trends Plant Sci 8, 505-12.
Yang, Y., Xu, S., An, L. and Chen, N. (2007). NADPH oxidase-dependent
hydrogen peroxide production, induced by salinity stress, may be involved in the
regulation of total calcium in roots of wheat. Journal of plant physiology 164,
1429-1435.
Yeo, A. (1991). Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany 42, 881.
Yeo, A. and Flowers, T. (1983). Varietal differences in the toxicity of sodium ions
in rice leaves. Physiologia Plantarum 59, 189-195.
Yoo, J. H., Park, C. Y., Kim, J. C., Do Heo, W., Cheong, M. S., Park, H. C.,
Kim, M. C., Moon, B. C., Choi, M. S. and Kang, Y. H. (2005). Direct interaction of a
divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in
Arabidopsis. Journal of Biological Chemistry 280, 3697.
Yoshiba, Y., Nanjo, T., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K.
(1999). Stress-Responsive and Developmental Regulation of [Delta]
1-Pyrroline-5-carboxylate Synthetase 1 (P5CS1) Gene Expression in Arabidopsis
thaliana. Biochemical and Biophysical Research Communications 261, 766-772.
Zhao, M. G., Tian, Q. Y. and Zhang, W. H. (2007). Ethylene activates a plasma
membrane Ca(2+)-permeable channel in tobacco suspension cells. New Phytol 174,
507-15.
Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual
Review of Plant Biology 53, 247-273.
Zielinski, R. E. (2002). Characterization of three new members of the Arabidopsis
thaliana calmodulin gene family: conserved and highly diverged members of the gene
family functionally complement a yeast calmodulin null. Planta 214, 446-455.
Zimmermann, P., Heinlein, C., Orendi, G. and Zentgraf, U. (2006). Senescence
specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant, Cell &
Environment 29, 1049-1060.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code