Responsive image
博碩士論文 etd-1119116-120916 詳細資訊
Title page for etd-1119116-120916
論文名稱
Title
季節性、傳輸路徑及東亞沙塵暴對台灣南部都市海岸地區大氣微粒化學特徵之影響
Effects of seasonality, transport route, and East Asian dust storms on chemical characteristics of ambient particle matter in southern urban coastal area, Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-24
繳交日期
Date of Submission
2016-12-19
關鍵字
Keywords
粒狀物、過量致癌風險、指標、逆軌跡分析、金屬元素、富集因子
Indicators, Metallic elements, Particulate matter, Excess cancer risk, Enrichment factor, Backward trajectory analysis
統計
Statistics
本論文已被瀏覽 5717 次,被下載 17
The thesis/dissertation has been browsed 5717 times, has been downloaded 17 times.
中文摘要
本論文主要目的是研究季節與傳輸路徑,對大氣中微粒化學特徵的影響及東亞沙塵暴大氣微粒金屬指標。前段部分,探討台灣西部海岸地區PM2.5與PM2.5-10微粒上金屬季節性變化與傳輸路徑之化學特徵。微粒採樣從2009年3月到2010年2月,以ICP及ICP-MS分析PM2.5及PM2.5-10中16個金屬元素。多種方法、逆軌跡分析、富集因子與主成分分析用來鑑定微粒上金屬元素可能來源。PM2.5與PM2.5-10年平均質量濃度分別是34.9±20.6及20.8±11.3 μg m-3。PM2.5及PM2.5-10微量金屬最高值濃度出現在冬季,PM2.5-10上主要金屬元素最高值則出現在秋季。富集因子結果顯示PM2.5及PM2.5-10上的銅、砷、鋅、鉛、鎘及硒為人為來源。主成分分析結果顯示,來自當地及鄰近地區的交通、煤及重油燃燒為研究地區主要的人為來源。逆軌跡分析顯示來自大陸的東北季風 (冬季) 展現與來自東南亞地區的西南季風 (夏季) 有不同的化學特徵。值得注意,即時在相同季節,不同的長程傳輸路徑,會影響微粒上金屬濃度及與金屬相關的總過量致癌風險。
2010年2月至3月東亞沙塵暴期間,在台灣南部研究大氣中粒狀物及18種金屬元素,在四種顆粒相的變異性。PM2.5、PM2.5-10、PM10及TSP四種顆粒相平均質量濃度變化,在亞洲沙塵暴期間以PM2.5-10為主,非沙塵暴期間則以PM2.5 為主。地殼元素 (鐵、鎂、鍶、鈷、鋇及錳)於亞洲沙塵暴及非沙塵暴期間展現明顯的差異,故這些元素可用來當作沙塵暴入侵指標;除了鈣及鋁元素外。在微粒質量及金屬濃度變化,PM2.5-10顆粒相可以清楚區分出亞洲沙塵暴及非沙塵暴。富集因子顯示大部分人為金屬元素,在沙塵暴期間明顯低於非沙塵暴期間。此外,粗顆粒相的人為金屬元素富集因子也可做為沙塵暴入侵指標。除了傳輸路徑外,沙塵暴對受體影響的程度和滯留時間也有相關。
Abstract
The main goal of this dissertation was to investigate the effect of seasonality and transport route on chemical characteristics and marks of East Asian dust storms in ambient particulate matter. In first part, this study investigated seasonal variations and transport route in PM2.5 and PM2.5-10 associated metallic elements in the western coastal area of southern Taiwan. Particle sampling was conducted from March 2009 to February 2010. Sixteen metallic elements in PM2.5 and PM2.5-10 were determined by ICP and ICP-MS. Multiple approaches, backward trajectory analysis, enrichment factor (EFc), and principal component analysis (PCA), were used to identify the potential sources of the metallic elements. The annual mean concentrations of PM2.5 and PM2.5-10 were 34.9±20.6 and 20.8±11.3 μg m-3, respectively. Analysis of the temporal distribution revealed seasonal peaks for most of the trace elements in PM2.5 and PM2.5-10 during winter season and the major elements in PM2.5-10 during the autumn season. EFc results confirmed that the main contributors of Cu, As, Zn, Pb, Cd, and Se were anthropogenic sources in PM2.5 and PM2.5-10. PCA identified traffic emissions, coal, and heavy oil combustion from both local and neighboring areas, as the major anthropogenic sourcesin the sampling site. With backward trajectory analysis, northeast monsoon (winter) originated from China demonstrated different chemical characteristics from those of southwest monsoon (summer) from the Southeast Asian countries. It is noted that even in the same season, route-dependent effects of long-range transport in metallic concentrations and total excess cancer risk (ECR) of health-related metals were observed.
In the mark study of East Asian dust storms, the variationsin particulate matter (PM) and in eighteen metallic elements in four different particle sizes in the air of southern Taiwan were investigated from February to March 2010. The variation inmean mass concentrations of PM2.5, PM2.5-10, PM10, and TSP between Asian dust storm (ADS) and non-dust storm (NDS) periods suggested that the dominant fractions were PM2.5-10 and PM2.5, respectively. The obvious differences in metallic element concentrations between ADS and NDS periods suggested that crustal elements (Fe, Mg, Sr, Co, Ba and Mn) can be used as dust storm indicators, in addition to Ca and Al. Both mass fractions and metallic concentration ratios indicated that the PM2.5-10 fraction can distinguish between ADS and NDS periods. An enrichment factor (EFc) demonstrated that most anthropogenic elements were significantly lower in ADS periods than in NDS periods. The EFc values for anthropogenic elements in coarse particles may be used as indicators of dust storm invasion as well. An association was found between the extent of dust storm effects on receptors and the residence time (duration) of the event, in addition to the transport pathway.
目次 Table of Contents
TABLE OF CONTENTS

ACKNOWLEDGEMENTS…………………………………….……….…… i
摘要……………………………………………………………..………………iii
ABSTRACT………………..………………………………………………...…iv
TABLE OF CONTENTS…………..………………………………….……….vii
LIST OF TABLES……………………..…………………………….….……..x
LIST OF FIGURES………………………..…………………………………..xii

CHAPTER 1 INTRODUCTIONS………………………………………...….1

1.1 Background of the study………………………………………………….…1

1.2 The aim of this dissertation……………………………………………....…3

CHAPTER 2 LITERATURE REVIEW………………………….……..……5

2.1 Particle characteristics…………………………………………….…..…….5

2.1.1 Particle size distributions…..……………………………..…….……....5

2.1.2 Particles and human health……………..……………………….……....6

2.2 Source identification……………………………………………….…….…..7

2.3 Previous studies in Taiwan……………………………………………...…...7

2.4 Dust storm……………………………………………………………..…..…8

2.4.1 Dust storm sources…..………………………………………………..…9

2.4.2The effects of dust storm on human health and the environment…....….10

2.4.3Dust storm chemical characteristics……….…………..…………..….11

Chapter 3 MATERIALS AND METHODS……………….……………..…16

3.1 Sampling site………………………………………………………………16

3.2 Sampling and analytical procedures…………………………………..…..16

3.3 Enrichment factors…………………………………….…………………..19

3.4 Principal component analysis…………………....…..….…………….......20

3.5 Excess cancer risk…….…………………………….….………….……....20

3.6 Quality control and quality assurance…………………….…………….....21

Chapter 4 RESULTS AND DISCUSSION………………………………..…26

4.1The effects of seasonality and transport route…………………….…….….26

4.1.1 Meteorological conditions……………………………………..….......26

4.1.2 Particle mass concentrations and size fraction ratios………….……...26

4.1.3 Concentration of metallic elements……………………………….…...29

4.1.4 Source identification by enrichment factors……….……………….....32

4.1.5 Source apportionment by principal component analysis .……….....…33

4.1.6 Backward trajectory analysis………………………………….…….....35

4.1.7 Excess cancer risk assessment in PM2.5 and PM2.5-10……………...…..40

4.2 Markers of East Asian dust storms……………………………………....….56

4.2.1 Identification of dust storm events………………………………….….56

4.2.2 Aluminum element in PM10…………………………………………….56

4.2.3 Temporal variations of PM10 concentrations…………………………...57

4.2.4 Particle mass concentrations and size fraction ratios…………………..60

4.2.5 Concentration of metallic elements……………………………..……...62

4.2.6 Enrichment factors assessment..…………………………..……….…...64

4.2.7 Spatial variations during a severe dust storm event……………….……65

Chapter 5 CONCLUSIONS AND RECOMMENDATIONS……………......79

5.1 Conclusions……………………………………………….……………..…..79

5.1.1The effects of seasonality and transport route…………….………….....79

5.1.2 Markers of East Asian dust storms…………………………….….…….80

5.2 Recommendations…………………………………….…………….….....81

REFERENCES………………………………………………..…………….….84

APPENDIX A SRM 1648a analytical result and seasonalconcentrations of
PM2.5 and PM2.5-10 in the air……………………………........108

APPENDIX B The results of quality samples and elemental
concentration (ng m-3) in all PM2.5, PM2.5-10, PM10,
and TSP samples during the NDS and ADS periods………...113

LIST OF PUBLICATION…………………………...………………..………..118

CONFERENCE…………………………………………………………..…….118



LIST OF TABLES
Table 3-1. Results of accuracy and precision of duplicate, quality control,
spike samples, SRM1648a recovery, and method detection limits
in seasonal study………...........................................................25

Table 4-1. Atmospheric particulate mass concentrations (μgm-3) in this study….49

Table 4-2. Seasonal concentrations of PM2.5 and PM2.5-10 metallic elements in air
at the sampling site…………………………………………….50

Table 4-3. PCA factor loadings for metallic elements in PM2.5 and PM2.5-10 during
the sampling period…………………………………………...51

Table 4-4. The mean concentrations (ng m-3) of PM2.5 and PM2.5-10 in the sampling
site under different air masses…………………………………..52

Table 4-5. Comparison of selected PM2.5-bounded metallic elements average concentrations in the Southeast Asian countries…………………..53

Table 4-6. The mean (SD) EFc of PM2.5 in the sampling site under different air masses………………………………………….…………....54

Table 4-7.Seasonal excess cancer risk of carcinogenic metals in PM2.5 and
PM2.5-10……………………………………………………..…55

Table 4-8. Ambient PM concentrations (µg m-3) and ratios in the southern coastal
area of Taiwan during the sampling periods…………………..…..75

Table 4-9. Elemental concentrations (ng m-3) in PM2.5, PM2.5-10, PM10, and
TSP during the NDS and ADS periods………………………..….76

Table 4-10. Calcium concentrations obtained from routes of northeastern (NE)
and north (N) China in PM2.5, PM2.5-10, PM10 and TSP during
ADS periods……………………………………………….....77

Table.4-11.Comparison of metallic concentrations in aerosol collected in
Kaohsiung, Hengchun, Xiamen and Gwangju during the severe
ADS period(March 19-23), 2010…………………………….....78


















LIST OF FIGURES
Figure 2-1.Typical PM mass showing the multimodal nature of the ambient
aerosol. Figure extracted from Lighty (2000)………………….14

Figure 2-2.Primary sources of desert dust and their atmospheric pathways
around the world. (1) African desert dust is transportedacross
the Atlantic to the northern Caribbean and North America.
(2) African desert dust is transported across the Atlantic to the
southern Caribbeanand South America. (3) The Asian dust
season typically lasts from late February to late April. (4)
Large Asian dust events can travel significantdistances in
the Northern Hemisphere. Yellow lines show Asian desert
dust atmospheric routes, orange lines show African dust routes,
brown linesshow routes of other desert dust sources, and broken
black lines depict wind patterns. Figure extracted from
Griffin (2007)………………………………………………15

Figure 3-1.Map of the sampling site, located on the campus of National
Sun Yat-sen University, Kaohsiung…………………………….23

Figure 3-2. The ambient aerosol samplers in this study……………………...24

Figure 4-1. Wind rose during the study period……………………………...42

Figure 4-2. Correlation between PM2.5 and PM10 in the sampling site…………43

Figure 4-3. Seasonal metallic element distributions of PM2.5 (F) and PM2.5-10 (C)
in PM10…………………………………………………..…44

Figure 4-4. Seasonal enrichment factors of elements in PM2.5 and PM2.5-10……..45

Figure 4-5. Principle component score plot of PM2.5 size for metallic elements in
thesampling site……………………………………………..46

Figure 4-6. Backward trajectories of air masses during summer (SR1 and SR2)
and winter (WR1, WR2 and WR3) (a) originated from the sea and
passed through the Philippines,(b) originated from the sea, (c) north
and northeast regions through the inland areas and coastal China, (d) northeast regions through theShandong Peninsula and outflowed to
the sea, and (e) through the Philippines and marine regions………47

Figure 4-7. Excess cancer risk of carcinogenic metals in PM2.5 and PM2.5-10
arising from different transport routes………………………….48

Figure 4-8. The filter samplers during East Asian dust storm (left) and
Non-dust storm (right) periods………………………………….69

Figure 4-9. Aluminum concentration in PM10 during the sampling campaign…...70

Figure 4-10. Daily variations of PM10 concentrations at different air monitoring
stations in (a) Eastern Asia and (b) Taiwan during the period of a
severe dust storm (March 2010)………………………………..71

Figure 4-11. ADS/NDS elemental concentration ratios in PM2.5, PM2.5-10, PM10, and TSP…………………………………………………………72

Figure 4-12. Asian Dust Storm backward trajectories on March 16 (a)
(northeastern China) and March 21 (b) (north China) in 2010……...73

Figure 4-13. Average enrichment factors of metallic elements in (a) PM2.5,
(b) PM2.5-10, (c) PM10 and (d) TSP during NDS and ADS periods.
(Blank on the top of bar : no significant difference; *: t-test, P<0.05;
**: t-test, P<0.01)……………………………………………..74
參考文獻 References
REFERENCES

Abdalmogith, S.S., Harrison, R.M., 2005. The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK. Atmos. Environ. 39, 6686-6695.
Abdi, H., Williams, L. J., 2010. Principal component analysis. Wiley Interdisciplinary Reviews: Comput. Stat.2, 433-459.
Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A., 2005. Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmos. Environ. 39, 3127-3138.
Andreae, T.W., Andreae, M.O., Ichoku, C., Maenhaut, W., Cafmeyer, J., Karnieli, A., Orlovsky, L., 2002. Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel. J. Geophys. Res. Atmos. (1984–2012), 107(D2), AAC-3.
Becker, S., Dailey, L.A., Soukup, J.M., Grambow, S.C., Devlin, R.B., Huang, Y.C.T., 2005. Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environ. Health Perspect. 113, 1032-1038.
Bian, H., Tie, X., Cao, J., Ying, Z., Han, S., Xue, Y., 2011. Analysis of a severe dust stormevent over China: application of the WRF-dust model. Aerosol Air Qual. Res. 11,419-428.
Bishop, J.K., Davis, R.E., Sherman, J.T., 2002. Robotic observations of dust storm
enhancement of carbon biomass in the North Pacific. Science 298, 817-821.
Callén, M.S., De La Cruz, M.T., López, J.M., Navarro, M.V., Mastral, A.M., 2009. Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Chemosphere, 76, 1120-1129.
Cao, J.J., Lee, S.C., Zhang, X.Y., Chow, J.C., An, Z.S., Ho, K.F., Watson, J.G., Fung, K.,Wang, Y.Q., Shen, Z.X., 2005. Characterization of airborne carbonate over a sitenear Asian dust source regions during spring 2002 and its climatic and environmentalsignificance. J. Geophys. Res. Atmos. (1984-2012) 110 (D3).
Cao, J., Xu, H., Xu, Q., Chen, B., Kan, H., 2012. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ. Health Perspect. 120, 373-378.
Chan, C.C., Chuang, K.J., Chen, W.J., Chang, W.T., Lee, C.T., Peng, C.M., 2008.
Increasing cardiopulmonary emergency visits by long-range transported Asian
dust storms in Taiwan. Environ. Res. 106, 393-400.
Chan, C.C., Ng, H.C., 2011. A case-crossover analysis of Asian dust storms and
mortality in the downwind areas using 14-year data in Taipei. Sci. Total Environ.
410, 47-52.
Chan, L.Y., Kwok, W.S., 2001. Roadside suspended particulates at heavily trafficked urban sites of Hong Kong–Seasonal variation and dependence on meteorological conditions. Atmos. Environ. 35, 3177-3182.
Chen, M.L., Mao, I.F., Lin, I.K., 1999. The PM2.5 and PM10 particles in urban areas of Taiwan. Sci. Total Environ. 226, 227-235.
Chen, R., Peng, R.D., Meng, X., Zhou, Z., Chen, B., Kan, H., 2013. Seasonal variation in the acute effect of particulate air pollution on mortality in the China Air Pollution and Health Effects Study (CAPES). Sci. Total Environ. 450, 259-265.
Chen, S.J., Hsieh, L.T., Kao, M.J., Lin, W.Y., Huang, K.L., Lin, C.C., 2004a. Characteristicsof particles sampled in southern Taiwan during the Asian dust storm periods in2000 and 2001. Atmos. Environ. 38, 5925-5934.
Chen, S.J., Hsieh, L.T., Tsai, C.C., Fang, G.C., 2003. Characterization of atmospheric PM10 and related chemical species in southern Taiwan during the episode days. Chemosphere 53, 29-41.
Chen, Y.C., Hsu, C.Y., Lin, S.L., Chang-Chien, G.P., Chen, M.J., Fang, G.C., Chiang, H.C., 2015. Characteristics of Concentrations and Metal Compositions for PM2.5 and PM2.5–10 in Yunlin County, Taiwan during Air Quality Deterioration. Aerosol Air Qual. Res. 15, 2571-2583.
Chen, Y.S., Sheen, P.C., Chen, E.R., Liu, Y.K., Wu, T.N., Yang, C.Y., 2004b. Effects ofAsian dust storm events on daily mortality in Taipei, Taiwan. Environ. Res. 95,
151-155.
Chester, R., Nimmo, M., Fones, G.R., Keyse, S., Zhang, Z., 2000. Trace metal
chemistry of particulate aerosols from the UK mainland coastal rim of the NE Irish sea. Atmos. Environ. 34, 949-958.
Chi, K.H., Chou, C.C.K., Peng, C.M., Chang, M.B., Lin, C.Y., Li, C.T., 2014. Increase of ambient PCDD/F concentrations in Northern Taiwan during Asian Dust Storm and Winter Monsoon Episodes. Aerosol Air Qual. Res. 14, 1279–1291.
Chow, J.C., Watson, J.G., 1998. Guideline on speciated particulate monitoring. US Environmental Protection Agency, Research Triangle Park, NC.
Chow, J.C., Watson, J.G., Fujita, E.M., Lu, Z., Lawson, D.R., Ashbaugh, L.L., 1994. Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmos. Environ. 28, 2061-2080.
Chuang, M.T., Chang, S.C., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, Y.J., Lee, C.T., 2013.Aerosol chemical properties and related pollutants measured in Dongsha Island in the northern South China Sea during 7-SEAS/Dongsha Experiment. Atmos.Environ. 78, 82-92.
Chuang, M.T., Chen, Y.C., Lee, C.T., Cheng, C.H., Tsai, Y.J., Chang, S.Y., Su, Z.S., 2016. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropol is in Taoyuan, Taiwan. Environ. Pollut. 214, 273-281.
Cohen, D.D., Crawford, J., Stelcer, E., Bac, V. T., 2010. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmos. Environ. 44, 320-328.
Englert, N., 2004. Fine particles and human health—a review of epidemiological studies. Toxicol. Lett. 149, 235-242.
EPA, 1996. Method 1669 Sampling Ambient Water for Trace Metals at EPA Water
Quality Criteria Levels. EPA/821/R-96-008.
Espinosa, A.J.F., Rodrı́guez, M.T., de la Rosa, F.J.B., Sánchez, J.C.J., 2001. Size distribution of metals in urban aerosols in Seville (Spain). Atmos. Environ. 35, 2595-2601.
Fung, Y.S., Wong, L.W.Y., 1995. Apportionment of air pollution sources by receptor models in Hong Kong. Atmos. Environ. 29, 2041-2048.
Gao, J., Tian, H., Cheng, K., Lu, L., Wang, Y., Wu, Y., Zhu, C., Liu, K., Zhou, J., Liu, X., Chen, J., Hao, J., 2014. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmos. Environ. 99, 257-265.
Graff, D.W., Cascio, W.E., Rappold, A., Zhou, H., Huang, Y.C.T., Devlin, R.B., 2009. Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults. Environ. Health Perspect.117, 1089.
Griffin, D.W., 2007. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 20, 459-477.
Guo, L., Chen, Y., Wang, F., Meng, X., Xu, Z., Zhuang, G., 2014.Effects of Asian dust on the atmospheric input of trace elements to the East China Sea.Mar. Chem.163, 19-27.
Hao, Y., Guo, Z., Yang, Z., Fang, M., Feng, J., 2007. Seasonal variations and sources of various elements in the atmospheric aerosols in Qingdao, China. Atmos. Res.
85, 27-37.
Harrison, R.M., Yin, J., 2000. Particulate matter in the atmosphere: which particle properties are important for its effects on health?.Sci.Total Environ.249, 85-101.
He, M., Ichinose, T., Yoshida, S., Nishikawa, M., Mori, I., Yanagisawa, R., Takano, H., Inoue, K. I., Sun, G., Shibamoto, T., 2010. Urban particulate matter in Beijing, China, enhances allergen-induced murine lung eosinophilia. Inhal. Toxicol. 22, 709-718.
Ho, K. F., Lee, S. C., Cao, J. J., Chow, J. C., Watson, J. G., Chan, C. K., 2006. Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Sci. Total Environ. 355, 276-287.
Ho, K.F., Lee, S.C., Chan, C.K., Jimmy, C.Y., Chow, J.C., Yao, X.H., 2003. Characterization of chemical species in PM 2.5 and PM 10 aerosols in Hong Kong. Atmos. Environ. 37, 31-39.
Hong, Y.C., Pan, X.C., Kim, S.Y., Park, K., Park, E.J., Jin, X., Kim, H., 2010. Asian duststorm and pulmonary function of school children in Seoul. Sci. total Environ.
408, 754-759.
Hsu, C.Y., Chiang, H.C., Lin, S.L., Chen, M.J., Lin, T.Y., Chen, Y.C., 2016. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Sci. Total Environ.541, 1139-1150.
Hsu, S. C., Liu, S. C., Huang, Y. T., Lung, S. C. C., Tsai, F., Tu, J. Y., Kao, S. J., 2008a. A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007. Journal of Geophys. Res. Atmos. (1984–2012), 113(D18).
Hsu, S.C., Liu, S.C., Jeng, W.L., Chou, C.C., Hsu, R.T., Huang, Y.T., Chen, Y.W., 2006. Lead isotope ratios in ambient aerosols from Taipei, Taiwan: Identifying long-range transport of airborne Pb from the Yangtze Delta. Atmos. Environ. 40, 5393-5404.
Hsu, S.C., Liu, S.C., Jeng, W.L., Lin, F.J., Huang, Y.T., Lung, S.C.C., Liu, T.H., Tu, J.Y., 2005. Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions. Sci. Total Environ. 347, 111-121.
Hsu, S.C., Liu, S.C., Lin, C.Y., Hsu, R.T., Huang, Y.T., Chen, Y.W., 2004.Metal compositionsof PM10 and PM2.5 aerosols in Taipei during spring, 2002.Terr. Atmos. Ocean. Sci. 15, 925-948.
Hsu, S.C., Tsai, F., Lin, F.J., Chen, W.N., Shiah, F.K., Huang Jr., C., Huang, Y.T., 2013.A super Asian dust storm over the East and South China Seas: disproportionatedust deposition. J. Geophys. Res. Atmos. 118, 7169-7181.
Hsu, Y.C., Lai, M.H., Wang, W.C., Chiang, H.L., Shieh, Z.X., 2008. Characteristics of water-soluble ionic species in Fine (PM2.5) and Coarse Particulate Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. J. Air Waste Manage. Assoc. 58, 1579-1589.
Hu, X., Ding, Z., Zhang, Y., Sun, Y.,Wu, J., Chen, Y., Lian, H., 2013. Size distribution andsource apportionment of airborne metallic elements in Nanjing, China. AerosolAir Qual. Res. 13, 1796-1806.
Huang, H. C., Lee, C. L., Lai, C. H., Fang, M. D., Lai, I. C., 2012. Transboundary movement of polycyclic aromatic hydrocarbons (PAHs) in the Kuroshio Sphere of the western Pacific Ocean. Atmos. Environ. 54, 470-479.
Huang, K., Zhuang, G., Li, J., Wang, Q., Sun, Y., Lin, Y., Fu, J.S., 2010b. Mixing of Asiandust with pollution aerosol and the transformation of aerosol components
during the dust storm over China in spring 2007. J. Geophys. Res. Atmos.
(1984-2012) 115 (D7).
Huang, L., Wang, K., Yuan, C.S., Wang, G., 2010a. Study on the seasonal variation and source apportionment of PM10 in Harbin, China. Aerosol Air Qual. Res. 10, 86-93.
Kanayama, S., Yabuki, S., Yanagisawa, F., Motoyama, R., 2002. The chemical and
strontium isotope composition of atmospheric aerosols over Japan: the
contribution of long-range-transported Asian dust (Kosa). Atmos. Environ. 36,
5159-5175.
Kang, C.H., Kim, W.H., Ko, H.J., Hong, S.B., 2009. Asian dust effects on total suspendedparticulate (TSP) compositions at Gosan in Jeju Island, Korea. Atmos.
Res. 94, 345-355.
Khan, M.F., Latif, M.T., Saw, W.H., Amil, N., Nadzir, M.S.M., Sahani, M., Tahir, N.M., Chung, J.X., 2016. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment.Atmos. Chem. Phy. 16, 597-617.
Kim, J., Jung, C.H., Choi, B.C., Oh, S.N., Brechtel, F.J., Yoon, S.C., Kim, S.W., 2007. Number size distribution of atmospheric aerosols during ACE-Asia dust and
precipitation events. Atmos. Environ. 41 (23), 4841-4855.
Kim, K.H., Choi, G.H., Kang, C.H., Lee, J.H., Kim, J.Y., Youn, Y.H., Lee, S.R., 2003. Thechemical composition of fine and coarse particles in relation with the Asian
Dust events. Atmos. Environ. 37, 753-765.
Koçak, M., Mihalopoulos, N., Kubilay, N., 2007. Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean. Atmos. Environ. 41, 7351-7368.
Kong, S., Han, B., Bai, Z., Chen, L., Shi, J., Xu, Z., 2010. Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China. Sci. Total Environ.408, 4681-4694.
Kubilay, N.N., Saydam, A.C., Yemenicioglu, S., Kelling, G., Kapur, S., Karaman, C., Akça, E., 1997. Seasonal chemical and mineralogical variability of atmospheric particles in the coastal region of the Northeast Mediterranean. Catena, 28, 313-328.
Kulshrestha, A., Satsangi, P. G., Masih, J., Taneja, A., 2009. Metal concentration of PM 2.5 and PM 10 particles and seasonal variations in urban and rural environment of Agra, India. Sci. Total Environ. 407, 6196-6204.
Kwak, J.H., Kim, G., Kim, Y.J., Park, K., 2012. Determination of heavy metal distributionin PM10 during Asian dust and local pollution events using Laser
Induced Breakdown Spectroscopy (LIBS). Aerosol Sci. Technol. 46, 1079-1089.
Laden, F., Neas, L.M., Dockery, D.W., Schwartz, J., 2000. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ. Health Perspect.108, 941.
Laden, F., Schwartz, J., Speizer, F. E., Dockery, D. W., 2006. Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am. J. Respir. Crit. Care Med. 173, 667-672.
Lai, I.C.,Lee, C.L., Huang, H.C., 2016. A new conceptual model for quantifying transboundary contribution of atmospheric pollutants in the East Asian Pacific rim region. Environ. Int. 88, 160-168.
Lee, B.K., Hieu, N.T., 2011. Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea. Aerosol Air Qual. Res. 11, 679-688.
Lee, B., Zhu, L., Tang, J., Zhang, F., Zhang, Y., 2009. Seasonal variations in elemental composition of aerosols in Xiamen, China. Geochem. J. 43, 423-440.
Lee, C.L., Huang, H.C., Wang, C.C., Sheu, C.C., Wu, C.C., Leung, S.Y., Lin, C.C., Lai, I.C., Jiang, H., Chou, W.L., Chung, W.Y., Huang, M.S., Huang, S.K., 2016. A new grid-scale model simulating the spatiotemporal distribution of
PM2. 5-PAHs for exposure assessment. J. Hazard. Mater.314, 286-294.
Lee, C.S., Li, X.D., Zhang, G., Li, J., Ding, A.J., Wang, T., 2007. Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—evidence of the long-range transport of air contaminants. Atmos. Environ. 41, 432-447.
Lee, Y.C., Wenig, M., Zhang, Z., Sugimoto, N., Larko, D., Diehl, T., 2012. Dust episodesin Hong Kong (South China) and their relationship with the Sharav and Mongolian cyclones and jet streams. Air quality. Atmos. Health 5, 413-424.
Lee, Y. C., Yang, X., Wenig, M., 2010. Transport of dusts from East Asian and non-East Asian sources to Hong Kong during dust storm related events 1996–2007. Atmos. Environ. 44, 3728-3738.
Li, T.C., Yuan, C.S., Huang, H.C., Lee, C.L., Wu, S.P., Tong, C., 2016. Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait. Sci. Rep. 6.
Li, G., Chen, J., Chen, Y., Yang, J., Ji, J., Liu, L., 2007. Dolomite as a tracer for the sourceregions of Asian dust. J. Geophys. Res. Atmos. (1984-2012) 112 (D17).
Li, J., Han, Z., Zhang, R., 2011. Model study of atmospheric particulates during dust
storm period in March 2010 over East Asia. Atmos. Environ. 45, 3954-3964.
Li, T.C., Wu, C.Y., Chen, W.H., Yuan, C.S., Wu, S.P., Wang, X.H., Du, K., 2013. Diurnalvariation and chemical characteristics of atmospheric aerosol particles and
their source fingerprints at Xiamen Bay. Aerosol Air Qual. Res. 13, 596-607.
Liang, C.S., Yu, T.Y., Chang, Y.Y., Syu, J.Y., Lin, W.Y., 2013. Source apportionment ofPM2.5 particle composition and submicrometer size distribution during anAsian dust storm and non-dust storm in Taipei. Aerosol Air Qual. Res. 13,545-554.
Lighty, J.S., Veranth, J.M., Sarofim, A.F., 2000. Combustion aerosols: factors governing their size and composition and implications to human health. J. Air Waste Manage. Assoc.50, 1565-1618.
Lin, C.C., Chen, S.J., Huang, K.L., Hwang, W.I., Chang-Chien, G.P., Lin, W.Y., 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ. Sci. Technol. 39, 8113-8122.
Lin, J.J., 2002. Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan. Atmos. Environ. 36, 1911-1920.
Lin, Y.C., Hsu, S.C., Chou, C.C.K., Zhang, R., Wu, Y., Kao, S.J., Luo, L., Huang, C.H., Lin, S.H., Huang, Y.T., 2016. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals. Environ. Pollut. 208, 284-293.
Liu, T.H., Tsai, F., Hsu, S.C., Hsu, C.W., Shiu, C.J., Chen, W.N., Tu, J.Y., 2009. Southeastward transport of Asian dust: source, transport and its contributions to
Taiwan. Atmos. Environ. 43, 458-467.
Ma, C.J., Tohno, S., Kasahara, M., Hayakawa, S., 2004. Properties of individual Asiandust storm particles collected at Kosan, Korea during ACE-Asia. Atmos. Environ.38, 1133-1143.
Mamane, Y., Perrino, C., Yossef, O., Catrambone, M., 2008. Source characterization of fine and coarse particles at the East Mediterranean coast. Atmos. Environ. 42, 6114-6130.
Manoli, E., Voutsa, D., Samara, C., 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos. Environ., 36, 949-961.
Marcazzan, G.M., Vaccaro, S., Valli, G., Vecchi, R., 2001. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ.
35, 4639-4650.
Mazzei, F., D’Alessandro, A., Lucarelli, F., Marenco, F., Nava, S., Prati, P., Valli, G.,
Vecchi, R., 2006. Elemental composition and source apportionment of
particulate matter near a steel plant in Genoa (Italy). Nucl. Instrum. Methods
Phys. Res. Sect. B 249, 548-551.
Mueller, D., Uibel, S., Takemura, M., Klingelhoefer, D., Groneberg, D.A., 2011. Ships, ports and particulate air pollution–an analysis of recent studies. J. Occup. Med. Toxicol. 6, 1-6.
Ny, M.T., Lee, B.K., 2011. Size distribution of airborne particulate matter and associated metallic elements in an urban area of an industrial city in Korea. Aerosol Air Qual. Res. 11, 643-653.
Ostro, B.D., Feng, W.Y., Broadwin, R., Malig, B.J., Green, R.S., Lipsett, M.J., 2008. The impact of components of fine particulate matter on cardiovascular mortality in susceptible subpopulations. Occup. Environ. Med. 65, 750-756.
Park, E.J., Kim, D.S., Park, K., 2008. Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environ. Monit. Assess. 137, 441-449.
Park, S.H., Song, C.B., Kim, M.C., Kwon, S.B., Lee, K.W., 2004. Study on size distributionof total aerosol and water-soluble ions during an Asian dust storm event at Jeju Island, Korea. Environ. Monit. Assess. 93, 157-183.
Park, S.S., Cho, S.Y., 2013. Characterization of organic aerosol particles observed
during Asian dust events in spring 2010. Aerosol Air Qual. Res. 13, 1019-1033.
Parkhurst, W.J., Tanner, R.L., Weatherford, F.P., Valente, R.J., Meagher, J.F., 1999. Historic PM2.5/PM10 concentrations in the southeastern United States—Potential implications of the revised particulate matter standard. J. Air Waste Manage. Assoc. 49, 1060-1067.
Pabroa, P.C.B., Santos, F.L., Morco, R.P., Racho, J.M.D., Bautista VII, A.T., Bucal, C.G.D., 2011. Receptor modeling studies for the characterization of air particulate lead pollution sources in Valenzuela sampling site (Philippines). Atmos. Pollut. Res. 2, 213-218.
Paode, R.D., Shahin, U.M., Sivadechathep, J., Holsen, T.M., Franek, W.J., 1999. Source apportionment of dry deposited and airborne coarse particles collected in the Chicago area. Aerosol Sci. Technol. 31, 473-486.
Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 287, 1132-1141.
Querol, X., Pey, J., Pandolfi, M., Alastuey, A., Cusack, M., P_erez, N., Moreno, T.,
Viana, M., Mihalopoulos, N., Kallos, G., Kleanthous, S., 2009. African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin.
Atmos. Environ. 43 (28), 4266-4277.
Rodríguez, S., Cuevas, E., González, Y., Ramos, R., Romero, P. M., Pérez, N., Querol, , X., Alastuey, A., 2008. Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5–10 concentrations in a coastal city. Atmos. Environ. 42, 6523-6534.
Santoso, M., Lestiani, D.D., Mukhtar, R., Hamonangan, E., Syafrul, H., Markwitz, A., Hopke, P.K., 2011. Preliminary study of the sources of ambient air pollution in Serpong, Indonesia. Atmos. Pollut. Res. 2, 190-196.
Seinfeld, J.H., Carmichael, G.R., Arimoto, R., Conant, W.C., Brechtel, F.J., Bates, T.S.,Cahill, T.A., Clarke, A.D., Doherty, S.J., Flatau, P.J., Huebert, B.J., Kim, J.,
Markowicz, K.M., Quinn, P.K., Russell, L.M., Russell, P.B., Shimizu, A.,
Shinozuka, Y., Song, C.H., Tang, Y., Uno, I., Vogelmann, A.M., Weber, R.J.,
Woo, J.H., Zhang, X.Y., 2004. Regional climatic and atmospheric chemical effectsof Asian dust and pollution. Bull. Am. Meteorol. Soc. 85, 367-380.
Sokolik, I.N., Toon, O.B., 1996. Direct reactive forcing by anthropogenic airborne
mineral aerosols. Nature 381, 681-683.
Son, S.C., Park, S.S., 2015. Evaluating the applicability of a semi-continuous aerosol
sampler to measure Asian dust particles. Environ. Sci. Process. Impacts 17,
561-569.
Stohl, A., 1998. Computation, accuracy and applications of trajectories—a review and bibliography. Atmos. Environ. 32, 947-966.
Sun, Y., Zhuang, G., Wang, Y., Zhao, X., Li, J., Wang, Z., An, Z., 2005. Chemical
composition of dust storms in Beijing and implications for the mixing of mineral
aerosol with pollution aerosol on the pathway. J. Geophys. Res. Atmos.
(1984-2012) 110 (D24).
Sun, Y.L., Zhuang, G.S., Wang, Z.F., Wang, Y., Zhang, W.J., Tang, A.H., Jia, L., 2006.Regional characteristics of spring Asian dust and its impact on aerosol chemistryover northern China. Atmos. Chem. Phys. Discuss. 6, 12825-12864.
Tan, J.H., Duan, J.C., Ma, Y.L., Yang, F.M., Cheng, Y., He, K.B., Yu, Y.C., Wang, J.W., 2014. Source of atmospheric heavy metals in winter in Foshan, China. Sci. Total Environ. 493, 262-270.
Tao, J., Shen, Z., Zhu, C., Yue, J., Cao, J., Liu, S., Zhu, L., Zhang, R., 2012. Seasonal variations and chemical characteristics of sub-micrometer particles (PM1) in Guangzhou, China. Atmos. Res. 118, 222-231.
Tatarov, B., Müller, D., Noh, Y.M., Lee, K.H., Shin, D.H., Shin, S.K., Kim, Y.J., 2012.Record heavy mineral dust outbreaks over Korea in 2010: two cases observed with multiwavelength aerosol/depolarization/Raman-quartz lidar. Geophys. Res. Lett. 39 (14).
Tsai, F.J., Fang, Y.S., Huang, S.J., 2013. Case Study of Asian Dust Event on March 19-25, 2010 and Its Impact on the Marginal Sea of China. J. Mar. Sci. Technol. 21, 353-360.
Tsai, H.H., Yuan, C.S., Hung, C.H., Lin, C., 2011. Physicochemical properties of PM2.5 and PM2.5–10 at Inland and offshore sites over Southeastern Coastal Region of Taiwan Strait. Aerosol Air Qual. Res. 11, 664-678.
Tsai, H.H., Yuan, C.S., Hung, C.H., Lin, Y.C., 2010. Comparing physicochemical properties of ambient particulate matter of hot spots in a highly polluted air quality zone. Aerosol Air Qual. Res. 10, 331-344.
Tsai, J.H., Huang, K.L., Lin, N.H., Chen, S.J., Lin, T.C., Chen, S.C., Lin, W.Y., 2012. Influenceof an Asian dust storm and Southeast Asian biomass burning on the
characteristics of seashore atmospheric aerosols in southern Taiwan. Aerosol
Air Qual. Res. 12, 1105-1115.
Tsai, Y.I., Chen, C.L., 2006. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan. Atmos. Environ.40, 4751-4763.
Ueda, K., Nitta, H., Odajima, H., 2010. The effects of weather, air pollutants, and Asian dust on hospitalization for asthma in Fukuoka. Environ. Health Prev.Med.15, 350-357.
Valdés, A., Zanobetti, A., Halonen, J. I., Cifuentes, L., Morata, D., Schwartz, J., 2012. Elemental concentrations of ambient particles and cause specific mortality in Santiago, Chile: a time series study. Environ. Health. 11, 82.
Viana, M., Kuhlbusch, T.A.J., Querol, X., Alastuey, A., Harrison, R.M., Hopke, P. K., Winiwarter, W., Vallius, M., Szidat, S., Prévôti, A.S.H. Hueglin, C., Bloemen, H., Wåhlinl, P., Vecchi, R., Miranda, A.I. Kasper-Giebl, A., Maenhaut, W., Hitzenberger, R., Hitzenberger, R., 2008. Source apportionment of particulate matter in Europe: a review of methods and results. J. Aerosol Sci. 39, 827-849.
Wang, Q., Zhuang, G., Li, J., Huang, K., Zhang, R., Jiang, Y., Fu, J.S., 2011. Mixing of dustwith pollution on the transport path of Asian dust-Revealed from the aerosol over Yulin, the north edge of Loess Plateau. Sci. Total Environ. 409, 573-581.
Wang, L., Du, H., Chen, J., Zhang, M., Huang, X., Tan, H., Geng, F., 2013. Consecutivetransport of anthropogenic air masses and dust storm plume: two case eventsat Shanghai, China. Atmos. Res. 127, 22-33.
Wang S., Wang J., Zhou Z., Shang K., 2005. Regional characteristics of three kinds of dust storm events in China. Atmos. Environ. 39, 509–520.
Wang, X., Bi, X., Sheng, G., Fu, J., 2006a. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ. Monit. Assess. 119, 425-439.
Wang, X., Xia, D., Wang, T., Xue, X., Li, J., 2008. Dust sources in arid and semiarid
China and southern Mongolia: impacts of geomorphological setting and surface
materials. Geomorphology 97 (3), 583-600.
Wang, Y., Zhuang, G., Tang, A., Zhang, W., Sun, Y., Wang, Z., An, Z., 2007. The evolutionof chemical components of aerosols at five monitoring sites of China
during dust storms. Atmos. Environ. 41, 1091-1106.
Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J., An, Z., 2006b. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos. Environ. 40, 2935-2952.
Wedepohl, K. H., 1995. The composition of the continental crust. Geochimica Cosmochimica Acta. 59, 1217-1232.
Wimolwattanapun, W., Hopke, P.K., Pongkiatkul, P., 2011.Source apportionment and potential source locations of PM 2.5 and PM 2.5–10 at residential sites in metropolitan Bangkok. Atmos. Pollut. Res. 2, 172-181.
Windom, H. L., Byrd, J. T., Smith Jr, R. G., Huan, F., 1991. Inadequacy of NASQAN data for assessing metal trends in the nation's rivers. Environ. Sci. Technol. 25, 1137-1142.
Wu, Y. S., Fang, G. C., Lee, W. J., Lee, J. F., Chang, C. C., Lee, C. Z., 2007. A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995–2005. J. Hazard. Mater. 143, 511-515.
Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., Yin, L., 2012. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos. Res. 104, 264-272.
Yang, J., Fu, Q., Guo, X., Chu, B., Yao, Y., Teng, Y., Wang, Y., 2015. Concentrations and Seasonal Variation of Ambient PM2.5 and Associated Metals at a Typical Residential Area in Beijing, China. Bull. Environ. Contam. Toxicol. 94, 232-239.
Yatkin, S., Bayram, A., 2008. Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Sci. Total Environ. 390, 109-123.
Yeatts, K., Svendsen, E., Creason, J., Alexis, N., Herbst, M., Scott, J., 2007. Coarse particulate matter (PM2.5–10) affects heart rate variability, blood lipids, and circulating eosinophils in adults with asthma. Environ. Health Perspect. 115, 709–714.
Yeh, C. F., Lee, C. L., Brimblecombe, P., Lai, I. C., 2015. Markers of East Asian dust storms in March 2010. Atmos. Environ. 118, 219-226.
Yu, L., Wang, G., Zhang, R., Zhang, L., Song, Y., Wu, B., Li, X., an, K., Chu, J., 2013. Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol Air Qual. Res. 13, 574-583.
Yuan, C.S., Hai, C.X., Zhao, M., 2006. Source profiles and fingerprints of fine and coarse sands resuspended from soils sampled in central inner Mongolia. China Particuology, 4, 304-311.
Yuan, C.S., Sau, C.C., Chen, M.C., Huang, M.H., Chang, S.W., Lin, Y.C., Lee, C.G., 2004. Mass Concentration and Size-Resolved Chemical Composition of Atmospheric Aerosols Sampled at the Pescadores Islands during Asian Dust Storm Periods in the Years of 2001 and 2002. Terr. Atmos. Ocean. Sci. 15, 857-879.
Zhang, K., Chai, F., Zhang, R., Xue, Z., 2010a. Source, route and effect of Asian sand
dust on environment and the oceans. Particuology, 8, 319-324.
Zhang, R., Shen, Z., Cheng, T., Zhang, M., Liu, Y., 2010b.The elemental composition of atmospheric particles at Beijing during Asian dust events in spring 2004.
Aerosol Air Qual. Res. 10, 67-75.
Zhao, J., Zhang, F., Xu, Y., Chen, J., Yin, L., Shang, X., Xu, L., 2011. Chemical characteristicsof particulate matter during a heavy dust episode in a coastal city,
Xiamen, 2010. Aerosol Air Qual. Res. 11, 299-308.
Zhao, M., Zhang, Y., Ma, W., Fu, Q., Yang, X., Li, C., Zhou, B., Yu, Q., Chen, L., 2013. Characteristics and ship traffic source identification of air pollutants in China's largest port. Atmos. Environ. 64, 277-286.
Zhao, T.L., Gong, S.L., Zhang, X.Y., Jaffe, D.A., 2008. Asian dust storm influence on
North American ambient PM levels: observational evidence and controlling
factors. Atmos. Chem. Phys. 8, 2717-2728.
Zhao, X., Zhuang, G., Wang, Z., Sun, Y., Wang, Y., Yuan, H., 2007.Variation of sourcesand mixing mechanism of mineral dust with pollution aerosol-revealed by thetwo peaks of a super dust storm in Beijing. Atmos. Res. 84, 265-279.
Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L., Kiang, C.S., Zhang, Y., Cass, G.R., 2005. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos. Environ. 39, 3967-3976.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code