Responsive image
博碩士論文 etd-1120108-183121 詳細資訊
Title page for etd-1120108-183121
論文名稱
Title
光合作用電子傳遞鏈訊息調節大型綠藻裂片石蓴(Ulva fasciata Delile )光誘導之methionine sulfoxide reductase (MSR) 基因表現
Signal derived from photosynthic electron transport regulates the expression of methionine sulfoxide reductase (Msr) gene in the green macroalga Ulva fasciata Delile
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-11-13
繳交日期
Date of Submission
2008-11-20
關鍵字
Keywords
裂片石蓴、甲硫胺酸、硫氧還原酵素、光、電子傳遞鍊胲鹽酸鹽、二氯酚二甲基脲、抗霉素、6-二氯酚靛酚
DCMU, Ulva fasciata, methionine sulfoxide reductase, electron transport chain, Antimycin A, hydroxylamine, Light, stigmatellin, SHAM, DCPIP, DBMIB
統計
Statistics
本論文已被瀏覽 5683 次,被下載 24
The thesis/dissertation has been browsed 5683 times, has been downloaded 24 times.
中文摘要
本論文探討光如何調控大型綠藻裂片石蓴 (Ulva fasciata Delile ) MSR基因表現。由裂片石蓴methionine sulfoxide reductase A (MSRA)由銅逆境獲得,UfMSRB由高鹽逆境獲得。與阿拉伯芥 (Arabidopsis thaliana) AtMSR4與UfMSRA較相似,UfMSRB則與AtMSRB1較相似。Methionine (Met) 氧化後會產生methionine sulfoxide S-enantiomer (MetSO S-enantiomer) 及 methionine sulfoxide R-enantiomer (MetSO R-enantiomer),植物以MSRA負責還原MetSO S-enantiomer為Met,MSRB負責還原MetSO R-enantiomer 為Met。與黑暗比較,UfMSRA及UfMSRB基因表現受白光、藍光及紅光之誘導,並在1小時達最高點後下降,兩個基因之表現量與白光光照強度呈正相關。在光照 300 uE.m^(-2).s^(-1)
下,外加光合作用非循環電子傳遞鏈抑制劑 (hydroxylamine、3-(3,4–dichloroph
-enyl)-1,1-dimethylurea (DCMU)、2,5-dibromo-3-methyl-6-isopropyl-pbenzoquinone
(DBMIB) 及stigmatellin),發現DBMIB 及stigmatellin 促進光照下
之UfMSRA 基因表現而 2,6-dichlorophenolindophenol (DCPIP, PSI electron donor)
會降低DBMIB 及stigmatellin 促進之基因表現推測光照誘導UfMSRA 基因表現
與細胞色素b6f (cytochrome b6f) 後之電子傳遞鏈受阻為相對氧化態有關。光照
誘導UfMSRB 基因受hydroxylamine、DCMU、DBMIB 抑制而卻受stigmatellin
促進,DCPIP 不影響抑制劑對UfMSRB 基因表現,所以推測UfMSRB 基因表現
與細胞色素b6f 之Qo site 為相對還原態有關。抑制光合作用循環電子傳遞鏈之
細胞色素b 抑制劑antimycin A 抑制光照下之UfMSRA 及UfMSRB 基因表現,
證明循環電子傳遞鏈也參與調控基因表現。本研究結果證實光合作用電子傳遞鏈
不同位置氧化還原狀態 (redox state) 參與UfMSRA 及UfMSRB 基因表現調控。
Abstract
This study has investigated the involvement of photosynthetic electron transport chain on the regulation of gene expression of methionine sulfoxide reductase (UfMSR) in the marine macroalga Ulva fasciata Delile.UfMSRA is from copper stress and UfMSRB ir from hypersalinity stress. UfMSRA is similar to Arabidopsis AtMSRA4 and UfMSRB is similar to AtMSRB1. UfMSRA is specific to the MetSO S-enantiomer and UfMSRB catalytically reduces the MetSO R-enantiomer. Both enzymes are required, since in the cell oxidation of Met residues at the sulfur atom results in a racemic mixture of the two stereoisomers. UfMSRA and UfMSRB transcripts were increased by white light, blue light and red light with the maximum at 1 h following a decline, but kept constant in the dark. The magnitude of UfMSRA and UfMSRB transcript increase showed a positive linear correlation to increasing light intensity from 0-1200 u mole·m-2·s-1. The treatment with linear electron transport
chain inhibitors, hydroxylamine, 3-(3,4-dichlorophenyl) -1,1-dimethylurea (DCMU),
2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and stigmatellin,
effectively inhibited PS II activity under 300 u mole·m-2·s-1 irradiance. DBMIB and
stigmatellin can increase UfMSRA transcript that was reversed by
2,6-dichlorophenolindophenol (DCPIP), a PS I electron donor. It indicates that the
block of electron transport of the downstream of cytochrome b6f indeuces UfMSRA
gene expression. Hydroxylamine, DCMU and DBMIB decreased UfMSRB transcript
that was not reversed by DCPIP while stigmatellin increased UfMSRB mRNA level,
reflecting a role of reduced state with Qo site located at cytochrome b6f on the
induction of UfMSRB gene expression. The cyclic electron transport chain inhibitors,
antimycin A that inhibited photosynthetic electron transport, can inhibit the increase
of UfMSRA and UfMSRB transcripts by irradiance. UfMSRA and UfMSRB gene
expression were both modulated by cyclic electron transport chain and linear electron
transport chain. These results reveal that photosynthetic electron transport chain
modulates UfMSRA and UfMSRB gene expression by change its redox state.
目次 Table of Contents
謝辭-----------------i
中文摘要----------ii
英文摘要-----------iii
目錄-----------------v
圖目錄---------------vi
表目錄---------------x
附錄目錄------------xii
縮寫字對照----------xiii
一、前言-------------1
二、實驗進行之策略15
三、實驗流程圖-------16
四、材料與方法--------17
五、結果-----------------31
六、討論-----------------101
七、參考文獻-----------108
八、附錄------------------114
參考文獻 References
1. 陳敏華 (1998)。裂片石蓴 (Ulva fasciata Delile) Ulvales, Chlorophyta) 多元胺(polyamines)與低鹽逆境之關係。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。
2. 宋明軒 (2006)。裂片石蓴ubiquitin、20S proteasome beta subunit type 1、ubiquitin-conjugating enzyme e2 及ATP-dependent caseinolytic protease regulatory subunit clpC 基因表現與高鹽誘導氧化逆境及蛋白質氧化之關係。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。
3. Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5: 141-142
4. Avron M, Trebst A (1997) Photosynthesis. Springer-Verlag Berlin Heidelberg,
Germany. pp. 59-88
5. Bechtold U, Murphy DJ, Mullineaux PM (2004) Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights. Plant Cell 16: 908-919
6. Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222: 743-756
7. Bennett J, Shaw EK, Michel H (1988) Cytochrome b6f complex is required for phosphorylation of light-harvesting chlorophyll a/b complex-ii in chloroplast photosynthetic membranes. Eur J Biochem 171: 95-100
8. Borner T. (1981) Enzymes of plastid ribosome-deficient mutants. Ferredoxin -NADP+ reductase. Biochem Physiol Pflanzen 176: 737–743
9. Borner T (1986) Chloroplast control of nuclear gene function. Endocyt Cell Res 3: 265–274
10. Bradbeer JW, Borner T (1978) Activities of glyceraldehyde-phosphate
dehydrogenase (NADP+) and phosphoribulokinase in two barley mutants
deficient in chloroplast ribosomes. In: Akoyunoglou G et al (eds) Chloroplast
development. North-Holland Biomedical Press, Elsevier: 727–732
11. Bradbeer JW, Atkinson YE., Borner T, Hagemann R (1979) Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid-synthesised RNA. Nature 279: 816–817
12. Brot N, Weissbach L, Werth J, Weissbach H (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA 78: 2155–2158
13. Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad
M (2006) Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224: 995–1003.
14. Danon A, Coll, NS, Apel K (2006) Cryptochrome-1-dependent execution of
programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc Natl Acad Sci USA 103: 17036–17041
15. Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703: 249-260
16. El-Assal SE, Alonso-Blanco C, Hanhart CJ, Koornneef M (2004) Pleiotropic
effects of the Arabidopsis cryptochrome 2 allelic variation underlie fruit
trait-related QTL. Plant Biol 6: 370–374
17. Escoubas JM, Lomas M, Laroche J, Falkowski PG (1995) Light-intensity regulation of cab gene-transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237-10241
18. Fey V, Wagner R, Brautigam K., Pfannschmidt T (2005) Photosynthetic redox control of nuclear gene expression. J Exp Bot 56: 1491-1498
19. Finazzi G, Furia A, Barbagallo RP, Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413: 117-129
20. Folta KM, Spalding EP (2001) Unexpected roles for cryptochrome 2 and
phototropin revealed by high-resolution analysis of blue light-mediated
hypocotyl growth inhibition. Plant J 26: 471–478
21. Folta KM, Maruhnich SA (2007) Green light: a signal to slow down or stop. J Exp Bot. 58: 3099-3111
22. Gal A, Schuster G, Frid D, Canaani O, Schwieger HG, Ohad I (1988) Role of the cytochrome b6f complex in the redox-controlled activity of Acetabularia thylakoid protein kinase. J Biol Chem 263: 7785-7791
23. Goldschmidt CM (1998) Coordination of nuclear and chloroplast gene
expression in plant cells. Int Rev Cytol 177: 115–180
24. Grimaud R, Ezraty B, Mitchell JK, Lafitte D, Briand C, Derrick PJ, Barras F (2001) Repair of oxidized proteins: Identification of a new methionine sulfoxide reductase. J Biol Chem 276: 48915-48920
25. Hagemann R, Borner T (1978) Plastid ribosome-deficient mutants of higher plants as a tool in studying chloroplast biogenesis. In: Akoyunoglou G et al (eds)
Chloroplast development. North- Holland Biomedical Press, Elsevier: 709–720
26. Hoshi T, Heinemann SH (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531: 1-11
27. Joët T, Cournac L, Horvath EM, Medgyesy P, Peltier G (2001) Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiol 125: 1919-1929
28. Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627-640
29. Kauffmann B, Aubry A, Favier F (2005) The three-dimensional structures of peptide methionine sulfoxide reductases: current knowledge and open questions. Biochim Biophys Acta 1703: 249-260
30. Kim HY, Gladyshev VN (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol Biol Cell 15: 1055-1064
31. Kimura M, Yoshizumi T, Manabe K, Yamamoto YY, Matsui M (2001) Arabidopsis transcriptional regulation by light stress via hydrogen peroxide-dependent and -independent pathways.Gene Cell 6: 607-617
32. Lee TM, Liu CH (1999) Regulation of NaCl-induced proline accumulation by calmodulin via modification of proline dehydrogenase activity in Ulva fasciata (Chlorophyta). Aust J Plant Physiol 26: 595-600
33. Lee WY, Wang WX (2001) Metal accumulation in the green macroalga Ulva fasciata: effects of nitrate, ammonium and phosphate. Sci Total Environ 278: 11-22
34. Lin CT, Yang HY, Guo HW, Mockler T, Chen J, Cashmore AR (1998)
Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light
receptor cryptochrome 2. Proc Natl Acad Sci USA 95: 2686–2690
35. Liu F, Hindupur J, Nguyen JL, Ruf KJ, Zhu J, Schieler JL, Bonham CC, Wood
KV, Davisson VJ, Rochet JC (2008) Methionine sulfoxide reductase A protects dopaminergic cells from Parkinson’s disease-related insults. Free Radic Biol Med 45: 242-255
36. Mao J, Zhang YC, Sang Y, Li Q, Yang HQ (2005) From the cover: a
role for Arabidopsis cryptochromes and COP1 in Protein and mRNA Expression regulation of stomatal opening. Proc Natl Acad Sci USA 102: 2270–12275
37. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and
thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246–12251
38. Maul J E, Lilly JW, Cui L, Pamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid hromosome: islands of genes in a sea of repeats. Plant Cell 14: 2659–2679
39. Novoselov SV, Rao M, Onoshko NV, Zhi HJ, Kryukov GV, Xiang YB, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 21: 3681-3693
40. Parida AK, Das AB (2004) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60: 324-349
41. Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression.. Nature 397: 625-628
42. Provasoli L (1963) Growing marine seaweeds. Proc. 4th Intl. Seaweed Symp. Eds. pp. 9-17. Pergamon Press, New York.
43. Romero HM, Pell EJ, Tien M (2005) Expression profile analysis and biochemical properties of the peptide methionine sulfoxide reductase A (PMSRA) gene family in Arabidopsis. Plant Sci 170: 705-714
44. Rouhier N, Dos Santos CV, Tarrago L, Rey P (2006) Plant methionine sulfoxide reductase A and B multigenic families. Photosynth Res 89: 247-262
45. Rujan T, Martin W (2001) How many genes in Arabidopsis came from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet 17: 113–120
46. Sadanandom A, Poghosyan Z, Fairbairn DJ, Murphy DJ (2000) Differential regulation of plastidial and cytosolic isoforms of peptide methionine sulfoxide reductase in Arabidopsis. Plant Physiol 123: 255-264
47. Shao N, Krieger-Liszkay A, Schroda M, Beck F (2007) A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assay of reactive oxygen species produced in vivo. Plant J 50: 475-487
48. Somers DE, Devlin PF, Kay S (1998) Phytochromes and cryptochromes
in the entrainment of the Arabidopsis circadian clock. Science 282: 1488–1490
49. Tessadori F, Schulkes RK, van Driel R, Fransz P (2007) Light-regulated
large-scale reorganization of chromatin during the floral transition in
Arabidopsis. Plant J 50: 848–857
50. Trebst A (2007) Inhibitors in the functional dissection of the photosynthetic electron transport system. Photosynth Res 92: 217-224
51. Trebitsh T, Danon A (2001) Translation of chloroplast psbA mRNA is regulated
bysignals initiated by both photosystems II and I. Proc Natl Acad Sci USA 98: 12289–12294
52. Wu TM, Lee TM (2008) Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess. Phycologia 47: 346-360
53. Yang DH, Bertil A, Aro EM, Itzhak O (2001) The redox state of the plastoquinone pool controls the level of thelight-harvesting chlorophyll a/b binding protein complex II (LHC II) during photoacclimation. Photosynth Res 68: 163–174
54. Zhang XH , Weissbach H (2008) Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol Rev Camb Philos Soc 83: 249-257
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.9.7
論文開放下載的時間是 校外不公開

Your IP address is 18.118.9.7
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code