Responsive image
博碩士論文 etd-1120108-183839 詳細資訊
Title page for etd-1120108-183839
論文名稱
Title
以變動長度多目標基因演算法為基礎解決多重限制異質性無線傳輸設備佈建之方法
Heterogeneous Wireless Transmitter Placement with Multiple Constraints Based on the Variable-Length Multiobjective Genetic Algorithm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-10-17
繳交日期
Date of Submission
2008-11-20
關鍵字
Keywords
無線傳輸設備佈建、變動長度多目標基因演算法
Wireless Transmitter Placement, Variable-Length Multiobjective Genetic Algorithm
統計
Statistics
本論文已被瀏覽 5689 次,被下載 962
The thesis/dissertation has been browsed 5689 times, has been downloaded 962 times.
中文摘要
這篇論文中我們提出了一個變動長度基因演算法的方式來解決多重限制異質性無線傳輸設備佈建的問題,這是一個NP-hard 的問題。現實中有許多因素會影響到無線傳輸設備佈建的問題,而這篇論文考量了四個主要的佈建需求,分別是:無線傳輸設備涵蓋範圍、總成本、資料傳輸速率的需求以及無線傳輸設備間訊號的重疊。在提出的變動長度多目標基因演算法中,我們解決了現有方法對無線傳輸設備個數的上限的限制以及更佳的達成無線傳輸設備位置佈建,同時對位置及需求做考量。

在實驗部分,我們使用了自由空間傳播模型、考慮遮蔽效應的大尺度傳遞模型及延伸的哈他模型在真實的室內以及室外的地圖上的平面以及立體的無線傳輸設備的佈建。實驗結果顯示提出的演算法對所有測試都能夠找出許多可用的解答。
Abstract
In this thesis we have proposed a variable-length multiobjective genetic algorithm to solve heterogeneous wireless transmitter placement with multiple constraints. Among many factors that may affect the result of placement, we focus on four major requirements, coverage, cost, data rate demand, and overlap. In the proposed algorithm we release the need for the upper bound number of transmitters that is a major constraint in the existing methods and achieve better wireless transmitter placement while considering the transmitter position and design requirement simultaneously.
In experiments, we use the free space propagation model, the large scale propagation model which considers the shadowing effect, and the extended Hata-Okumura model to predict the path loss in a real two dimensional indoor environment, and an outdoor environment and even a real three dimensional outdoor environment. Experimental results show that the proposed algorithm can find many feasible solutions for all test cases under four objectives.
目次 Table of Contents
1 INTRODUCTION……………………………………………......1
2 RELATED WORK.……………………………………………5
2.1 Variable-length multi-objective genetic algorithm.……………………………………………5
2.2 Heterogeneous.……………………………………………6
2.3 Propagation model.……………………………………………6
3 THE PROPOSED ALGORITHM.……………………………………………9
3.1 Problem definition.……………………………………………9
3.1.1 Planning model.……………………………………………9
3.1.1.1 Map M.……………………………………………9
3.1.1.2 Receiver set R……………………………………………10
3.1.1.3 Transmitter set T.……………………………………………10
3.2 Path loss propagation model.……………………………………………11
3.2.1 Path loss model.……………………………………………11
3.2.2 ECC-33 model.……………………………………………13
3.3 Objectives.……………………………………………14
3.3.1 Coverage.……………………………………………14
3.3.2 Cost.……………………………………………16
3.3.3 Data rate demand.……………………………………………16
3.3.4 Overlap.……………………………………………16
3.3.5 Objective function.……………………………………………17
3.4 The proposed variable-length multi-objective genetic algorithm.………18
3.4.1 Individual representation.……………………………………………19
3.4.2 Initialization.……………………………………………20
3.4.3 Examination of the individual placement.……………………………………………21
3.4.4 Ranking and crowding distance.……………………………………………21
3.4.5 Selection.……………………………………………22
3.4.6 Crossover .……………………………………………23
3.4.6.1 Overall crossover.……………………………………………23
3.4.6.2 Uniform crossover.……………………………………………24
3.4.6.3 The variable-length one -point crossover.……………………………………………25
3.4.7 Mutation .……………………………………………26
4 SIMULATION AND RESULTS.……………………………………………27
4.1 Indoor free space model.……………………………………………28
4.2 Indoor path loss model .……………………………………………32
4.3 Outdoor path loss model.……………………………………………35
4.4 Outdoor three dimensional path loss model.……………………………………………42
4.5 Upper bound.……………………………………………52
4.6 Heterogeneous.……………………………………………55
4.7 Discussion.……………………………………………60
5 CONCLUSION.……………………………………………61
REFERENCES.……………………………………………62
參考文獻 References
[1] L. Raisanen, R. Whitaker, and S. Hurley, A Comparison of Randomized and Evolutionary Approaches for Optimizing Base Station Site Selection, Proceedings of Applied Computing, pp. 1159 - 1165, 2004.
[2] V. Rajakumar, M. Smadi, S. Ghosh, Terence Todd, and Steve ranilovic, WLAN Mesh Network Interference Management Using FSO Link Deployment, Proceedings of the Third International Conference on Wireless and Mobile Communications (ICWMC), 2007.
[3] J. Wong, A. Mason, M. Neve and K. Sowerby, Base Station Placement in Indoor Wireless Systems Using Binary Integer Programming, IEE Proceedings Communations, vol. 153, No. 5, pp. 771 - 778, Oct. 2006.
[4] C. Prommak, J. Kabara, and D. Tipper, Demand-based Network Planning for Large Scale Wireless Local Area Networks, Proceedings of the 1st International Conference on Broadband Networks (BROADNETS), 2004.
[5] J. He, A. Verstak, L. Watson, C. Stinson, N. Ramakrishnan, C. Shaffer, T. Rappaport, C. Anderson, K. Bae, J. Jiang, and W. Tranter , Globally Optimal Transmitter Placement for Indoor Wireless Communication Systems, IEEE Trans. on Wireless Communications, vol. 3, pp. 1906 - 1911, Nov. 2004.
[6] K. Runster, E. Jullo, and J-M Gorce, Wireless LAN Planning Using the Multi-resolution “FDPF” Propagation Model, Proceedings of Twelfth International Conference on Antennas and Propagation, vol. 1, pp. 80 - 83, Mar. 2003.
[7] J-M Groce, K. Jaffrès-Runser, and G. Roche, Deterministic Approach for Fast Simulations of Indoor Radio Wave Propagation, IEEE Trans. on Antennas and Propagation, vol. 55, pp. 938 - 948, Mar. 2007.
[8] S. Seidel and T. Rappaport, Site-Specific Propagation Prediction for Wireless In-Building Personal Communication System Design, IEEE Trans. on Vehicular Technology, vol. 43, pp. 879 - 891, Nov. 1994.
[9] M. Coinchon, A-P Salovaara, and J-F Wagen, The Impact of Radio Propagation Predictions on Urban UMTS Planning, Seminar on Broadband Communications, pp.32-1 - 32-6, Feb. 2002.
[10] K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks: A Unified Approach, Prentice Hall 2002.
[11] S. Seidel and T. Rappaport, 914 MHz Path Loss Prediction Model for Indoor Wireless Communication in Multifloored Buildings, IEEE Trans. on Antennas and Propagation, vol. 40(2), pp. 207 - 217, Feb. 1992.
[12] L. Nagy and L. Farkas, Indoor Base Station Location Optimization Using Genetic Algorithms, IEEE Symposium on Personal Indoor and Mobile Radio Communications(PIMRC), pp. 843-846, 2000.
[13] Electronic Communication Committee (ECC) within the European Conference of Postal and Telecommunications Administration (CEPT), The Analysis of The Coexistence of FWA Cells in the 3.4 - 3.8 GHz band, Tech. Report, ECC Report 33, May 2003.
[14] T. Vanhatupa, M. Hännikäinen, and T. Hämäläinen, Genetic Algorithm to Optimize Node Placement and Configuration for WLAN Planning, Symposium on Wireless Communication System, pp. 612-616, Oct. 2007.
[15] C. Lee and H. Kang, Cell Planning with Capacity Expansion in Mobile Communications: A Tabu Search Approach, IEEE Trans. on Vehicular Technology, vol. 49, pp. 1678 - 1691, Sept. 2000.
[16] T. Chan, K. Man, K. Tang, and S. Kwong, A Jumping Gene Algorithm for Multiobjective Resource Management in Wideband CDMA Systems, The Computer Journal, vol. 48, pp. 749 - 768, Nov. 2005.
[17] T. Chan, K. Man, K. Tang, and S. Kwong, A Jumping-Genes Paradigm for Optimizing Factory WLAN Network, IEEE Trans. on Industrial Informatics, vol. 3, pp. 33 - 43, Feb. 2007.
[18] J. Luo and X. Huang, Planning Future Heterogeneous Wireless Networks, Progress in Elextronmagnetics Reaearch Symposium, Aug. 2005.
[19] H-C Chang, Wireless Heterogeneous Transmitter Placement Based on the Variable-Length Genetic Algorithm, MS. thesis NSYSU, Aug. 2006
[20] D. Goldberg, K. Deb, and B. Korb, Messy Genetic Algorithms: Motivation, Analysis, and First Results, Complex Systems, vol. 3, pp. 493 - 530, 1989.
[21] T. Rappaport, Wireless Communications: Principles and Practices, Prentice Hall, Second Edition, 2002.
[22] N. Weicker, G. Szabo, K. Weicker, and P. Widmayer, Evolutionary Multiobjective optimization for Base Station Transmitter Placement with Frequency Assignment, IEEE Trans. on Evolutionary Computation, vol. 7, pp. 189 - 203, Apr. 2003.
[23] C. Prommak, J. Kabara, D. Tipper, and C. Charnsripinyo, Next Generation Wireless LAN System Design, Procedings of the Military Communications Conference (MILCOM’02), vol. 1, pp. 473 – 477, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code