Responsive image
博碩士論文 etd-1120115-160914 詳細資訊
Title page for etd-1120115-160914
論文名稱
Title
半自動處理多音束水層資料-以永安魚礁區為例
Semiautomatic Data Processing of Multibeam Water Column Data - A Case Study of Artificial Reefs at Yungan, Kaohsiung
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-12-02
繳交日期
Date of Submission
2015-12-20
關鍵字
Keywords
漁業聲學、多音束回聲測深儀、魚跡偵測程序
fishery acoustics, multibeam echo sounder, fish detection and tracking procedure
統計
Statistics
本論文已被瀏覽 5983 次,被下載 37
The thesis/dissertation has been browsed 5983 times, has been downloaded 37 times.
中文摘要
現今水下聲學之應用十分廣泛,包括底質探勘、水下定位、海底地形測量與魚類豐度評估等。隨著研究目標與研究區的不同,實驗所採用的聲學儀器也各有差異,主要系統包含:單音束回聲測深儀、雙音束回聲測深儀、側掃聲納與多音束回聲測深儀等。
回顧人工魚礁投放歷程,漁業署在1972-1991年間大量投放人工魚礁,而為了規劃及管理台灣漁業資源,政府於1987年發表「漁業發展方案(1990-2000)」,並於2000年公布「漁業多元化經營建設計畫(2001-2016)」,用以改善漁場環境並進行漁業資源復育。本論文研究區位於高雄市永安區外海,為漁業署以堆疊方式投放的傳統型水泥礁及改良型水泥礁,以期保育該區漁業資源。
傳統漁業聲學研究常利用科學魚探機收集水層訊號,並常以網具來捕獲目標源魚種,然後即可藉由聲學閾值辨識魚種或進行豐度評估等。不同於傳統漁業聲學調查方式,本論文採用多音束回聲測深儀,該儀器原本用於海底地形測繪作業,但近年來新型的多音束回聲測深儀系統已經可以收集水層資料,因此具有魚群探測的功能。
本論文透過Reson SeaBat 7125所提供的「高解析度水層影像」作為研究材料,經文獻回顧可知,高強度回波訊號的來源常為海床、魚礁或魚體魚鰾。但是在資料收集過程當中,多音束儀器皆會記錄環境所回饋的雜訊,因此每條水層測段資料均需濾除雜訊後才能萃取其魚訊。
在本論文中,透過下列兩種資料處理方式進行魚訊的萃取:(1)採用Fledermaus FMMidwater軟體初步辨識回聲訊號類型,並藉由人為框選方式篩選測段魚訊,(2)利用Echoview軟體的魚跡偵測程序萃取水層魚訊,再藉由魚跡篩選以及正確性辨識等方法,設法從高值訊號回聲圖像當中取得有效的目標物訊號。在取得有效的目標物訊號後,再藉由ArcGIS軟體展示水層魚訊的空間分布狀態。
由於兩個年度(2014-2015)水層訊號所含的背景雜訊量不盡相同,因此必須設定不同的偵測參數數值。在資料處理過程中,透過標準化作業程序(濾除背景雜訊俾凸顯影像當中的目標物訊號),又本論文著重於探討多音束水層資料之使用(魚訊偵測及視覺化展示),並不涉及魚礁區資源現存量之估計
本論文研究區位於高雄市永安區外海,研究焦點為四個魚礁區(茄萣二、三、四人工魚礁區及永安人工魚礁區),資料收集時期橫跨兩個年度及三個天次,透過標準化作業流程處理資料取得各測段之魚隻數量,經資料整併後,再利用SPSS軟體進行數值統計及分析探討水層魚訊的變化,獲得下述三點結論:(1)黃昏及午夜時段所測得的魚訊高於黎明及中午時段,推測魚群有比較高的機率於兩個時段活動。(2)根據各航次魚隻尾數數量統計表顯示,本研究在茄萣三魚礁區可以測得最多的魚隻數量,推估其原因可能是本魚礁區所囊括的範圍最為廣泛,再加上營養鹽的濃度較高,使該區域的基礎生產力高於另外三個人工魚礁區。(3)又本研究測得之魚訊大多位於較深的水域環境(70%實測水深),該水深分布結果顯示,魚群與魚礁區相對距離極為接近(10-15%之實測水深),因此推估魚群的活動範圍幾乎圍繞於魚礁區周遭環境,意即人工魚礁的設置的確可以提供覓食、棲息及魚群保護等功能。
Abstract
Nowadays, under water acoustic research applications have been developed widely such as seabed mining, positioning, seafloor geodesy, and stock estimation. According to the research purposes, researchers need to select a suitable acoustic device, such as a single beam echo sounder, a dual beam echo sounder, a side scan sonar, a multi beam echo sounder.
For the purpose of protecting, preserving and restoring the marine resources, the Fisheries Agency, Council of Agriculture, Executive Yuan have deployed the artificial reefs around Taiwan coasts over 40 years(1970-2015).
Traditionally, most scientists of the fishery acoustics used a scientific echo sounder to investigate the fish stocks, and examing the samples by trawling. But we attempt to use the instrument called Reson SeaBat 7125(which is major used to acquire water depth information in survey area) to record data on acoustic backscatter at Yungan, Kaohsiung. The purpose of this study is to extract the acoustic backscattering strength from fish schools, using the high-resolution and high quality scenes provided by the device.
Because the environmental acoustics factors such as fish biological factors, artificial reefs, or reverberation, so we need to exclude the acoustic interferences and extract the signals from fish schools.
There are two methodologies could help us extract the signals:(1) we use Fledermaus FMMidwater software to distinguish the types of signal, and then selecting the area of the fish signals, (2) we use the data processing procedure provided by Echoview software to extract the signals of fish. In order to pick up the correct signals, not only examining but confirming is needed. Finally, we capture the acceptable signals of fish, and the results also used to display be displayed in the software calledArcGIS.
Because copper calibration test isn’t a suitable method to correct the impulse electrical strength of the Seabat 7125 multi-beam echo sounder, when the device was used to collect water column data, the volume backscattering strength may have some uncertainty. Picking the proper threshold value up is not only an important issue, but also a limitation of this research.
The different parameter settings were applied simultaneously, the results demonstrate distinct numbers of fish by the four artificial reefs, which were named right, left, middle and downward. When we use SPSS Statistical Software to analyze data collected from three days, the trending phenomena we found seem to be the identical, most of the fish were detected at the artificial reefs called right, and the summation of the whole day fish numbers has the peak roughly corresponding with dusk and night. Based on the depth depending results, the strong volume backscattering strength signals we extracted, the elevation between these fish schools and artificial reefs is contiguous, and we could find most fish schools around reefs. According to our analyzing results, the elevation was strongly corresponding to the reality water depth, presenting in this study is often 10-15% of the reality water depth. Because “the relationships between schools and reefs” are mentioned, our aim in terms of the demonstration of the linear fish appearing rates was to investigate the schools’ spatial and temporal distribution and the capability of the reefs. Because the fish numbers we detected have the highest values at the right one, although all of the four artificial reefs can keep alive for the fish species, we thought the artificial reef could provide a great deal of shelter than other reefs. Moreover, perhaps the method can’t be a substitution despite against quantification purpose, I assume it can provide a better way of acquire the data around artificial-reef environments.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract vi
目錄 ix
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法與論文架構 3
第二章 文獻回顧 6
2-1 漁業聲學概論 6
2-2 漁業聲學儀器簡介 14
2-3 漁業資源量概述 20
第三章 聲學資料處理方法 22
3-1 漁業聲學資料處理軟體概述 22
3-2 Fledermaus FMMidwater軟體之魚訊偵測 26
3-3 Echoview軟體之魚跡偵測 36
3-4 軟體Fledermaus與軟體Echoview之魚跡偵測結果之差異性 54
第四章 實驗說明及魚跡偵測結果討論 55
4-1 實驗說明 55
4-2 魚訊偵測結果之呈現 62
4-3 數值統計 87
第五章 結論與建議 103
5-1 結論 103
5-2 建議 105
參考文獻 106
中文 106
英文 108
其它語言 113
附錄 114
附錄一 魚跡偵測流程之變數功能說明 114
附錄二 輸出表格參數項說明 122
附錄三 中華民國100年動物生態評估技術規範:(二)水域生態系6. 魚類 124
附錄四 中華民國103年臺灣地區拖網漁船禁漁區位置及有關限制事宜,漁業法第四十四條第四款 126
參考文獻 References
中文
中文文獻
1. 邵廣昭(1979)「化滄海為良田的人工魚礁」,科學月刊114期。
2. 薛憲文(1998)「多音束測深儀之校正與施測人工魚礁之應用」,第二十屆海洋工程研討會論文集。
3. 歐榮昌(2002)「人工魚礁工程行為與箱網錨碇裝置之研究」,國立中山大學海洋環境及工程學系碩士論文。
4. 宋國士(2003)「海上緊急救難與水下偵搜」,海洋技術季刊,13(2):3-7。
5. 黃維裕(2005)「以群體生物量模型(Biomass model)對箱網養殖魚種選擇及可能運作型態進行分析」,國立中山大學海洋生物研究所碩士在職專班。
6. 黃明揚(2005)「光強度及水質因子對藻類成長之試驗研究-以麟山鼻漁港之人工潮池為例「國立交通大學土木工程學系碩士論文。
7. 郭東泰(2008)「屏東縣枋寮第二人工魚礁區魚群現存量評估與日周行為模式之研究」,國立高雄海洋科技大學漁業生產與管理研究所碩士論文。
8. 郭孟維(2008)「應用側掃聲納影像進行海床靜態目標物自動化辨識與分析之研究」,國立中山大學海洋環境及工程學系碩士論文。
9. 曹士亮(2008)「墾丁現生珊瑚礁自動化辨識與分類之研究」,國立中山大學海洋環境及工程學系碩士論文。
10. 張海濤、唐秋華、周興華、丁繼勝、劉建立(2009)「多波束測深系統換能器的安裝校準分析」,海洋通報第28卷第1期。
11. 譚細暢、史建全、張宏、陶江平、楊建新、祁洪芳、李新輝(2009)「EY60回聲測深儀在青海湖魚類資源量評估中的應用」,Journal of Lake Sciences, 21(6):865-872。
12. 趙憲勇、倪漢華、劉永利、李嬌、石曉天、欒楊、徐皓、王魯民、關長濤、湯濤林、黃健(2009)「滸苔聲反射特徵的實驗測定」,中國水產科學第16卷第6期。
13. 蘇東濤(2009)「人工底魚礁流場之數值模擬分析」,國立台灣海洋大學環境生物與漁業科學學系博士論文。
14. 廖正信、李民安、李國添(2010)「聲光遙測-海洋科學中的順風耳與千里眼」,科學發展452期第14-25頁。
15. 郭展瑋(2010)「應用UHF RFID系統於LED照明燈具之節能研究」,國立台北科技大學機電整合研究所碩士論文。
16. 陳郁凱、吳繼倫、劉燈城、蘇偉成(2010)「海洋與漁業科技:滄海良田-海洋營養鹽與基礎生產力」,科學發展452期,6 -13頁。
17. 林芸如(2011)「淺水多音束聲納資料之誤差檢核分析研究」,國立台灣大學理學院海洋研究所碩士論文。
18. 林其穎(2011)「台灣周圍海域人工魚礁區魚類群聚結構之探討」,國立臺灣大學理學院海洋研究所碩士論文。
19. 謝昀融(2011)「印度洋黃鰭鮪之體長別單位加入生產量和單位加入產卵群生物評估量分析」,國立台灣大學理學院海洋研究所碩士論文。
20. 林暐尊、史天元、張智安(2012)「測深光達波形與水深、底質關係觀察」,航測及遙測學刊,16(3):219-228。
21. 洪于珊、嚴國維、呂學榮、朱達仁(2012)「GIS及聲探調查技術評估石門水庫魚類資源之豐度與分佈」,地理資訊系統季刊6(1):21-25。
22. 洪于珊(2013)「應用聲探監控石門水庫魚類豐度與變動之研究」,國立台灣海洋大學環境生物與漁業科學學系碩士論文。
23. 黃星翰、賴繼昌、楊清閔、呂學榮、吳龍靜(2013)「應用水槽型實驗解析大眼鯛之聲學反射特性」,水產試驗所沿近海資源研究中心水試專訊044期4-8頁。
24. 賴繼昌、黃星翰、楊清閔、吳龍靜、呂學榮(2013)「不同體型刺鯧單體標物反射強度之研究」,水產試驗所沿近海資源研究中心水試專訊043期3-7頁。
25. 鐘金水、冼宜樂、黃文卿、林綉美、歐麗榛、鄭靜怡、林金榮(2014)「澎湖東南海域底拖魚類群聚結構之研究」,Journal of Taiwan Fisheries Research, 22(1): 43-62。
26. 武智(2014)「基於聲探結果的西江梧州江段魚類資源保護策略研究」,大連海洋大學捕撈學碩士論文。
中文專書
27. 呂學榮(2005)「台灣農家要覽-漁業篇- 魚探、聲納」,財團法人豐年社, 133-138頁。
28. 馬玉芳(2007)「科學漁探儀系統(SIMRAD EK500)應用實務」,臺灣大學理學院貴重儀器中心海洋探勘組。
29. 邱永芳、薛憲文、蔡金吉、張功武(2008)「淺水域多音束量測水深技術研究(3/4)」,交通部運輸研究所。
30. 邱永芳、李賢華、薛憲文、蔡金吉(2009)「淺水域多音束量測水深技術研究(4/4)」,交通部運輸研究所。
31. 王正芳、王茂城、洪國堯、洪慶宏、鄭又華(2012)「以海為田闢建魚家 : 人工魚礁完全手冊初版」,行政院農業委員會漁業署。
32. 交通部中央氣象局(2014)「潮汐表 Tide Tables 2015」,交通部中央氣象局。
法規
33. 環境保護署(2011)「動物生態評估技術規範」,行政院環境保護署。
34. 農委會(2014)「臺灣地區拖網漁船禁漁區位置及有關限制事宜」,行政院農委會。
中文網路資訊
35. 台灣漁業資料庫。http://fishdb.sinica.edu.tw/chi/home.php
36. 台灣底拖漁業資源資料庫。http://coatbp.sinica.edu.tw/homepage.htm
37. 漁業署人工魚礁、保護礁區資訊。人工魚礁區公告。2013。http://www.fa.gov.tw/cht/ResourceOtherZones/content.aspx?id=7&chk=67f6e751-66f9-4233-bf2a-91e3b7e158a1&param=pn=1
38. 漁業署各縣市人工魚礁、保護礁區相關資訊。高雄市礁區詳細資訊。2013。http://www.fa.gov.tw/cht/ResourceOtherZonesData/content.aspx?id=10&chk=9E523E8C-F82A-4AC9-91A3-F4E67AEF586E&param
39. 呂學榮課程網站。科學魚探EK60教學。2015。摘自http://140.121.160.124/
英文
英文文獻
40. Arnaya, I.N., Sano, N., and Iida, K. (1988) “Studies on Acoustic Target Strength of Squid:Ⅰ. Intensity and energy target strength,” Bull. Fac. Fish. Hokkaido Univ. 39(3), 187-200.
41. Arnaya, I.N., Sano, N., and Iida, K. (1989) “Studies on Acoustic Target Strength of Squid:Ⅱ. Effect of behavior on averaged dorsal aspect target strength,” Bull. Fac. Fish. Hokkaido Univ. 40(2), 83-99.
42. Bal, A., and Alam, M. S. (2005) ” Automatic target tracking in FLIR image sequences using intensity variation function and template modeling,” IEEE.
43. Balk, H. (2001) “Development of hydroacoustic methods for fish detection in shallow water,” Department of physics, Faculty of Mathematics and Natural Science University of Oslo, Thesis for the degree of Doctor Scientiarum, Norway.
44. Balk, H., and Lindem, T. (2003) “A new method for single target detection,” poster, 6th ICES Symposiom Acoustics in fisheries and aquatic ecology.
45. Balk, H., Lindem, T., and Kubečka, J. (2009) “New Cubic Cross filter detector for multi beam data recorded with DIDSON acoustic camera,” In: Papadakis JS, Bjorno L (eds) Underwater acoustic measurements, Technologies and Results, June, Heraklion, Greece, pp 1461-1467.
46. Benoit-Bird, K. J., and Au, W. W. L. (2001) “Target strength measurements of Hawaiian mesopelagic boundary community animals,” The Journal of the Acoustical Society of America, 100(2), 812-819.
47. Boswell, K. M., Wells, R. J., Cowan Jr., J. H., and Wilson, C. A. (2010) “Biomass, density, and size distributions of fishes associated with a large-scale artificial reef complex in the gulf of Mexico,” Bulletin of Marine science, 86(4):879-889.
48. Brierley, A. S., Axelsen, B. E., Boyer, D. C., Lynam, C. P., Didcock, C. A., Boyer, H. J., Sparks, C. A. J., Purcell, J. E., and Gibbons, M. J. (2004) “Single-target echo detections of jellyfish,” ICES Journal of Marine Science, 61: 383-393.
49. Burgos, J. M., and Horne, J. K. (2007) “Sensitivity analysis and parameter selection for detecting aggregations in acoustic data,” ICES Journal of Marine Science, 64: 160-168.
50. Chu, D. (2011) “Technology evolution and advances in fisheries acoustics,” Journal of Marine Science and Technology, Vol. 19, No. 3.
51. Clarke, H. (2006) “Applications of multibeam water column imaging for hydrographic survey,” The hydrographic Journal, 120:3-15.
52. Colbo, K., Ross, T., Brown, C., and Weber, T. (2014) “A review of oceanographic applications of water column data from multibeam echosounders,” stuarine, Coastal and Shelf Science, vol. 145. pp. 41-56.
53. Diner, N., Weill, A., Coail, J., and Coudeville, J. (1990) “INES MOVIES : A new acoustic data acquisition and processing system,” Journal de Physique Colloques, 51(C2), pp.C2-939-C2-942.
54. Fablet, R., Lefort, R., Karoui, I., Berger, L., Masse, J., Scalabrin, C., and Boucher, J. M. (2009) “Classifying fish school and estimating their species propertions in fishery-acoustic surveys,” ICES Journal of Marine Science, 66: 1136-1142.
55. Foote, K.G. (1980) “Importance of the swimbladder in acoustic scattering by fish: a comparison of gadoid and mackerel target strength,” The Journal of the Acoustical Society of America, 67:2084-2089.
56. Foote, K.G., Aglen, A., and Nakken, O. (1986) “Measurement of fish target strength with a split-beam echo sounder,” The Journal of the Acoustical Society of America, Volume 80, Issue 2, pp. 612-621.
57. Foote, K.G., Chu, D., Hammar, T.R., Baldwin, K.C., Mayer, L.A., Hufnagle, L.C. Jr., and Jech, J.M. (2005) “Protocols for calibrating multibeam sonar, ” The Journal of the Acoustical Society of America, 117(4).
58. Gauthier, S., and Horne, J. K. (2004) “Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-approximation models,” Can. J. Fish. Aquat. Sci. 61:1839-1850.
59. Gerlotto, F., Castillo, J., Saavedra, A., Barbieri, M. A., Espejo, M., and Cotel, P. (2004) “Three-dimensional structure and avoidance behaviour of anchovy and common sardine schools in central southern Chile,” ICES Journal of Marine Science, 61: 1120-1126.
60. Handegard, N. O., Patel, R., and Hjellvik, V. (2005) “Tracking individual fiah from a moving platform using a split-beam transducer,” The Journal of the Acoustical Society of America, 118(4).
61. Haslett, R. W. G. (1965) “Acoustic backscattering cross sections of fish at three frequencies and their representation on a universal graph,” British Journal of Applied Physics, Volume 16, Number 8.
62. Kang, D., Mukai, T., Hwang, D., and Myoung, J-G. (2005) “The influence of tilt angle on the acoustic target strength of the Japanese common squid (Todarodes pacificus),” ICES Journal of Marine Science, 62: 779-789.
63. Kang, M. (2006) “Current technology of fisheries acoustics based on analyzed acoustic data using SonarData’s Echoview,” Proceedings of Acoustics 2006.
64. Kang, M. (2011A) “Analysis of the ME70 multibeam echosounder data in echoview current capability and future directions,” Journal of Marine Science and Technology, Vol. 19, No. 3, pp. 312-321.
65. Kang, M. (2011B) “Semiautomated Analysis of Data from an Imaging Sonar for Fish Counting, Sizing, and Tracking in a Post-Processing Application,” Fisheries and Aquatic Sciences, 14(3):218–225.
66. Kang, M., Nakamura, T., and Hamano, A. (2011) “A methodology for acoustic and geospatial analysis of diverse artificial-reef datasets,” ICES Journal of Marine Science, 68:2210-2221.
67. Kloser, R.J., Williams, A., and Koslow, J.A. (1997) “Problems with acoustic target strength measurements of a deepwater fish, orange roughy (Hoplostethus atlanticus, Collett),” ICES Journal of Marine Science, 54:60-71.
68. Korneliussen, R.J. and Ona, E. (2003) “Synthetic echograms generated from the relative frequency response,” ICES Journal of Marine Science, 60: 636-640.
69. Lanzoni, J.C., and Weber, T.C. (2011) “A method for Field Calibration of a Multibeam Echo Sounder,” OCEANS 2011, Page(s):1-7.
70. Lanzoni, J.C., and Weber, T.C. (2012) “Calibration of multibeam echo sounders:a comparison between two methodogies,” Proceedings of Meetings on Acoustics, Vol. 17, 070040.
71. Love, R.H. (1971) “Dorsal-Aspect Target Strength of an Individual Fish,” Journal of Acoustical Society of America, Volume 49, Issue 3B, pp. 816-823.
72. Mayer, L., Li, Y., and Melvin, G. (2002) “3D visualization for pelagic fisheries research and assessment,” ICES Journal of Marine Science, 59: 216-225.
73. McQuinn, I.H., and Winger, P.D. (2003) “Tilt angle and target strength: target tracking of Atlantic cod (Gadus morhua) during trawling,” ICES Journal of Marine Science, 60:575-583.
74. Moursund, R. A., Carlson, T. J., and Peters, R. D. (2003) “A fisheries application of a dualfrequency identification sonar acoustic camera,” ICES Journal of Marine Science, 60:678–683.
75. Mueller, A. M., Mulligan, T., and Withler P. K. (2008) “Classifying Sonar Images:Can a Computer-Driven Process Identify Eels?,” North American Journal of Fisheries Management, 28:1876–1886.
76. Ona, E., Mazauric, V., and Andersen, L.N.(2009) “Calibration methods for two scientific multibeam systems,” ICES Journal of Marine Science, 66: 1326–1334.
77. O’Neill, F. G., Simmons, S. M., Parsons, D. R., Best, J. L., Copland, P. J., Armstrong, F., Breen, M., et al. (2013) “Monitoring the generation and evolution of the sediment plume behind towed fishing gears using a multibeam echosounder,” ICES Journal of Marine Science, 70: 892–903.
78. Parsons, M.J.G., Parnum, I.M., and McCauley, R.D. (2013A) ” Visualizing Samsonfish (Seriola hippos) with a Reson 7125 Seabt multibeam sonar,“ ICES Journal of Marine Science, 70(3), 665-774.
79. Parsons, M.J.G., Parnum, I.M., and McCauley, R.D. (2013B) ” Quantifying the acoustic packing density of fish schools with a multibeam sonar,” Acoustic Australia, Vol. 41 Issue 1, 107-112.
80. Rose, GA. (2009) “Variations in the target strength of Atlantic cod during vertical migration, ICES Journal of Marine Science, 66: 1205-1211.
81. Weber, T. C., Peña, H., and Jech, J. M. (2009) “Consecutive acoustic observations of an Atlantic herring school in the Northwest Atlantic,” ICES Journal of Marine Science, 66: 1270-1277.
82. Weill, A., Scalabrin, C., and Diner, N. (1993) “MOVIES-B:an acoustic detection description software. Application to shoal species’ classification,” Aquatic Living Resources, 6, 255-267.
83. Welton, B., Beaudoin, J., Weber, T., and Armstrong A. (2014)”A method for a relative sonar field calibration using Reson 7125 multibeam echo-sounders,” Canadian Hydrographic Conference.
英文專書
84. ACOUSTICS UNPACKED- A General Guide for Deriving Abundance Estimates from Hydroacoustic Data, eBooks, Great Lakes Fishery Commission, New York Sea Grant, Cornell University. http://www.acousticsunpacked.org/acoustics/AcousticsUnpacked.asp
85. Balk, H., and Lindem, T., (2014). “Sonar4 and Sonar5-Pro Post processing systems Operator manual version 6.0.3.” Taken from http://folk.uio.no/hbalk/sonar4_5/1_downloads/SonarX-Manual_v603-2014-12-30.pdf
86. Blackman, S. S., (1986). “Multiple-target tracking with radar applications,” Artech House, Dedham, MA, US.
87. Georgakarakos, S., Trygonis, V., and Haralabous, J. (2011) Sonar Systems- Chapter13:Accuracy of Acoustic Methods in Fish Stock Assessment Surveys, eBooks, INTECH. http://www.intechopen.com/books/sonar-systems/accuracy-of-acoustic-methods-in-fish-stock-assessment-surveys
88. Johannesson, K. A. and Mitson, R. B. (1983) Fisheries Acoustics - A Practical Manual for Aquatic Biomass Estimation, Italy.
89. Simmonds, J. and MacLennan, D. N. (2005) Fisheries Acoustics: Theory and Practice, 2nd Edition, Wiley-Blackwell
90. Webb, J. F., Fay, R. R., and Popper, P. (2008) Fish Bioacoustics, eBooks, Springer Verlag.
英文網路資訊
91. Biological and Chemical Oceanography Data Management Office, (2015). “Split-Beam Echosounder Description.” http://osprey.bco-dmo.org/instrument.cfm?id=290&flag=view
92. International Hydrograhic Qrganization, (2015). https://www.iho.int/srv1/index.php?lang=en
93. Kongsberg Maritime AS, (2012). “Simrad EK60 Scientific echo sounder Reference manual.” Taken from http://ntuio.oc.ntu.edu.tw/ocean2012/wp-content/uploads/2013/06/164692ad_ek60_reference_manual_english_lores.pdf
94. Kongsberg Maritime AS, (2015A). “Simrad EK60 – EK60 Sales Multifrequency operation.” http://www.simrad.com/www/01/nokbg0397.nsf/AllWeb/62D6EBE0D8EEB97CC125718E004B41C7?OpenDocument
95. Kongsberg Maritime AS, (2015B) “Simrad ES380 Instruction Manual (English).” http://www.simrad.com/www/01/nokbg0397.nsf/AllWeb/758E42C591B26CADC12573E50023D5AC?OpenDocument
96. Kongsberg Maritime AS, (2015C) “Simrad ME70 Scientific multibeam echo sounder.” Taken from http://www.simrad.com/me70
97. Kongsberg Maritime AS, (2015D) “Simrad MS70 Scientific multibeam sonar.” Taken from http://www.simrad.com/www/01/nokbg0240.nsf/AllWeb/9B25BC17DD827468C125719A003A6341?OpenDocument
98. RESON A/S, (2006). “SeaBat 7125 Operator’s Manual.” Taken from http://wiki.neptunecanada.ca/download/attachments/23756860/SeaBat_7125_Operator_Manual_300.pdf?version=1&modificationDate=1295395879000
99. Simrad, (2006). “The Simrad history in Fishery Research.” Taken from
http://www.simrad.com/www/01/nokbg0397.nsf/AllWeb/B425EF8219B8B51BC12570EC00422329/$file/164811ac_g_o_sars_description_english.pdf?OpenElement
100. Simrad, (2009). “Simrad ES70 Split beam fish finder.” Taken from http://www.wnl.nl/wp-content/uploads/2013/11/337869aa_es70_data_sheet_splitbeam_english.pdf
101. Sound Metrics Corp, (2015). “DIDSON SONARS.” http://www.seatronics-group.com/equipment-rental/rov-sensors-19/multibeam-sonars-105/sound-metrics-didson-300-149
102. UAF is an affirmative action/equal opportunity employer and educational institution, (2015). “EK60 Description.” https://www.sikuliaq.alaska.edu/ops/?q=node/50
其它語言
103. 三宅博哉(2012)「音響学的手法を用いたスケトウダラ北部日本海系群の資源動態評価と産卵」,北海道立總合研究機構釧路水產試驗場,Sci. Rep. Hokkaido Fish. Res. Inst。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code