Responsive image
博碩士論文 etd-1120117-084637 詳細資訊
Title page for etd-1120117-084637
論文名稱
Title
電腦計算之研究在含磷酸根物質中的質子傳遞
Computational studies of proton transport in phosphate-containing materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-12-14
繳交日期
Date of Submission
2017-12-21
關鍵字
Keywords
網絡系統、配位數、配對相關函數、氫鍵、分子動力模擬
coordination number, pair correlation function, hydrogen bond, molecular dynamics simulation, network
統計
Statistics
本論文已被瀏覽 5765 次,被下載 3
The thesis/dissertation has been browsed 5765 times, has been downloaded 3 times.
中文摘要
Polybenzimidazole摻雜無水磷酸的系統以及poly(vinylphosphonic acid) 摻雜無水吡唑的系統可藉由分子動力模擬來進行研究。兩系統所計算出的質子導電度都相當接近實驗上所量測的值,顯示出建立的模型在條件的設定上是相當成功的。再者,也可利用模擬體系給予的相關資訊來進行實驗上無法提供的分析結果。其中,在兩個模擬體系的配對相關函數就顯示不同種類的氫鍵的存在。而這些氫鍵可建構出一個網絡系統。此外,配位數則顯示出氫鍵主導粒子分布的因素,尤其是質子的分布。質子軌跡也指出了氫鍵的形成與斷裂的發生。因此,質子軌跡提供一個有利的證據說明質子可利用氫鍵網絡在系統中進行流動。
Abstract
Molecular dynamics (MD) simulations are excuted to investigate that the conductive properties of anhydrous phosphoric acid doped polybenzimidazole system and anhydrous pyrazole doped poly(vinylphosphonic acid) system. The proton conductivities which are calculated by both simulation systems quite approach the values which are measured in real experiments. These results can show the simulation models built are quite successful in the setting of simulation conditions. Furthermore, the relative data of simulation systems can provide an insightful observation that real experiments can not attain.
Pair correlation function of both simulation systems shows that different kinds of hydrogen bonds exist. The hydrogen bonds can form a network in the systems. Further, coordination number indicates the interaction of hydrogen bonds dominate the location of particles population, especially for protons. The results of proton trajectory point out that the formation of hydrogen bond happen and the break of hydrogen bond happen. Hence, it provide a powerful evidence that the proton can use the network of hydrogen bonds to mobilize in the systems.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌 謝 iii
摘 要 iv
關鍵詞:分子動力模擬、氫鍵、配對相關函數、配位數。 iv
Abstract v
List of Figures ix
List of Tables xiii
Chapter 1. Introduction 1
1.1 Fuel cell 1
1.2 Polybenzimidazole(poly[2,2′-(m-phenylene)-5,5′-bibenzimidazole], (PBI). 4
1.3 Poly(vinylphosphonic acid) 7
Chapter 2. Computer Simulation Method 9
2.1 Computer Simulation introduction 9
2.2 Calculation Principle of Molecular Dynamics 12
2.3 Newton's Law of Motion and Equations of Verlet Algorithm 15
2.4 Force Field 17
2.5 Thermodynamics Ensembles 21
2.6 Periodic boundary conditions 23
2.7 Analysis of Dynamics Properties 24
Chapter 3. Anhydrous phosphoric acid doped polybenzimidazole system 27
3.1 Introduction 27
3.2 Simulation Methods 30
3.3 The Interactive Relationship between Particles 33
3.3.1 Pair Correlation Function and Coordination Number Study in o1–h Pair, o2–h Pair, n2a–h Pair and n3a–h Pair 33
3.3.2 Pair Correlation Function and Coordination Number Study in o1–h1o Pair, o2–h1o Pair, n2a–h1o Pair and n3a–h1o Pair 34
3.3.3 Pair Correlation Function and Coordination Number Study in o1–h1n Pair and o2–h1n Pair 35
3.4 Dynamical Property of Proton and Polybenzimidazole 37
3.4.1 Diffusion Coefficient and Conductivity of Proton 37
3.4.2 Analysis of Proton Trajectory 38
3.4.3 Path of Proton Transfer 41
3.5 Dihedral Angle Distribution 45
3.6 Conclusion 47
Chapter 4. Anhydrous pyrazole doped poly(vinylphosphonic acid) system 48
4.1 Introduction 48
4.2 Simulation Methods 51
4.3 The Interactive Relationship between Particles 53
4.3.1 Pair Correlation Function and Coordination Number Study in o1–h1 Pair, n1–h1 Pair, n2–h1 Pair. 53
4.4 Dynamical Property of Proton 57
4.4.1 Diffusion Coefficient and Conductivity of Proton 57
4.4.2 Analysis of Proton Trajectory 58
4.5 Conclusion 65
Chapter 5. Summary 66
References 68
參考文獻 References
References
1. Steele, B. C. H. &Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).
2. Dresselhaus, M.S.; Thomas, I. . Alternative energy technologies. Nature 414, 332–337 (2001).
3. Rikukawa, M. &Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25, 1463–1502 (2000).
4. Lobato, J., Cañizares, P., Rodrigo, M. A., Linares, J. J. &Manjavacas, G. Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J. Memb. Sci. 280, 351–362 (2006).
5. Xing, B. &Savadogo, O. The effect of acid doping on the conductivity of polybenzimidazole (PBI). J. New Mater. Electrochem. Syst. (1999).
6. Mader, J., Xiao, L., Schmidt, T. J. &Benicewicz, B. C. Polybenzimidazole / Acid Complexes as High-Temperature Membranes A New Approach : Adv. Polym. Sci. 216, 63–124 (2008).
7. Li, S., Fried, J. R., Colebrook, J. &Burkhardt, J. Molecular simulations of neat, hydrated, and phosphoric acid-doped polybenzimidazoles. Part 1: Poly(2,2′-m-phenylene-5,5′-bibenzimidazole) (PBI), poly(2,5-benzimidazole) (ABPBI), and poly(p-phenylene benzobisimidazole) (PBDI). Polymer (Guildf). 51, 5640–5648 (2010).
8. Asensio, J. A., Sánchez, E. M. &Gómez-Romero, P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem. Soc. Rev. 39, 3210 (2010).
9. Greenwood, N. N. &Thompson, A. 701. The mechanism of electrical conduction in fused phosphoric and trideuterophosphoric acids. J. Chem. Soc. 0, 3485 (1959).
10. Schechter, A. &Savinell, R. F. Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ionics 147, 181–187 (2002).
11. Greenwood, N. N. &Thompson, A. 779. Anomalous conduction in phosphoric acid hemihydrate, 2H3PO4,H2O. J. Chem. Soc. 0, 3864 (1959).
12. Asensio, J. A., Borrós, S. &Gómez-Romero, P. Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-benzimidazole) Membranes. J. Electrochem. Soc. 151, A304 (2004).
13. Bingöl, B., Meyer, W. H., Wagner, M. &Wegner, G. Synthesis, microstructure, and acidity of poly(vinylphosphonic acid). Macromol. Rapid Commun. 27, 1719–1724 (2006).
14. Yamada, M. &Honma, I. Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material. Polymer (Guildf). 46, 2986–2992 (2005).
15. Allen, M. P. &Tildesley, D. J. Computer simulation of liquids.
16. Allen, M. Introduction to molecular dynamics simulation. Comput. Soft Matter From Synth. Polym. to … 23, 1–28 (2004).
17. Calais, J.-L. Theory of molecular fluids. Volume 1: Fundamentals. By C. G. Gray and K. E. Gubbins, The Clarendon Press, Oxford University Press, New York, 1984. Int. J. Quantum Chem. 38, 497–497 (1990).
18. Maitland, G. C. Intermolecular forces : their origin and determination. (Clarendon Press, 1987).
19. VERLET, L. Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions. Phys. Rev. 165, 201–214 (1968).
20. Hockney, R. W. &Eastwood, J. W. Computer simulation using particles. (A. Hilger, 1988).
21. Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 102, 7338–7364 (1998).
22. Mayo, S., Olafson, B. &Goddard, W. DREIDING: a generic force field for molecular simulations. J. Phys. … 101, 8897–8909 (1990).
23. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).
24. Brown, D. &Clarke, J. H. R. A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids. Mol. Phys. 51, 1243–1252 (1984).
25. Steinhauser, M. O. Introduction to Molecular Dynamics Simulations : Applications in Hard and Soft Condensed Matter Physics. 385, (2012).
26. Ennari, J. Modelling of transport properties and state of water of polyelectrolytes containing various amounts of water. Polymer (Guildf). 49, 2373–2380 (2008).
27. Pozuelo, J., Riande, E., Saiz, E. &Compañ, V. Molecular dynamics simulations of proton conduction in sulfonated poly(phenyl sulfone)s. Macromolecules 39, 8862–8866 (2006).
28. Chuang, P. H., Gu, Q., Tseng, Y. H. &Chen, C. L. Estimation of electron transfer properties of ferrocenyl-dicholesteryl-peptide in liquid and gel. J. Colloid Interface Sci. 417, 310–316 (2014).
29. Chuang, P.-H., Tseng, Y.-H., Gu, Q. &Chen, C.-L. Phase behavior and electron transfer properties of ferrocenyl cholesteryl N-formanidoformamide gelator: a computational study. Colloid Polym. Sci. 293, 2113–2119 (2015).
30. Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R. &McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4611 (2004).
31. Costamagna, P. &Srinivasan, S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects. J. Power Sources 102, 242–252 (2001).
32. Wainright, J. S., Wang, J. T., Weng, D., Savinell, R. F. &Litt, M. Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte. J. Electrochem. Soc. 142, L121–L123 (1995).
33. Li, Q. F., Hjuler, H. A. &Bjerrum, N. J. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. J. Appl. Electrochem. 31, 773–779 (2001).
34. Kawahara, M., Rikukawa, M., Sanui, K. &Ogata, N. Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films. Solid State Ionics 136, 1193–1196 (2000).
35. Bae, J. M. et al. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ionics 147, 189–194 (2002).
36. Antonio Asensio, J., Sanchez, E. M. &Gomez-Romero, P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem. Soc. Rev. 39, 3210–3239 (2010).
37. Kumbharkar, S. C., Karadkar, P. B. &Kharul, U. K. Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. J. Memb. Sci. 286, 161–169 (2006).
38. Sannigrahi, A., Arunbabu, D., Sankar, R. M. &Jana, T. Tuning the molecular properties of polybenzimidazole by copolymerization. J. Phys. Chem. B 111, 12124–12132 (2007).
39. Pohl, H. A. &Chartoff, R. P. Carriers and unpaired spins in some organic semiconductors. J. Polym. Sci. Part a-General Pap. 2, 2787- (1964).
40. He, R. H., Li, Q. F., Bach, A., Jensen, J. O. &Bjerrum, N. J. Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. J. Memb. Sci. 277, 38–45 (2006).
41. Stonehart, P. Electrocatalyst advances for hydrogen oxidation in phosohoric acid fuel cells. Int. J. Hydrogen Energy 9, 921–928 (1984).
42. Kawahara, M., Morita, J., Rikukawa, M., Sanui, K. &Ogata, N. Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules. Electrochim. Acta 45, 1395–1398 (2000).
43. Zhu, S., Yan, L., Zhang, D. &Feng, Q. Molecular dynamics simulation of microscopic structure and hydrogen bond network of the pristine and phosphoric acid doped polybenzimidazole. Polymer (Guildf). 52, 881–892 (2011).
44. Ma, Y. L., Wainright, J. S., Litt, M. H. &Savinell, R. F. Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J. Electrochem. Soc. 151, A8–A16 (2004).
45. Sun, H., Ren, P. &Fried, J. R. The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 8, 229–246 (1998).
46. Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998).
47. Hu, N., Chen, R. &Hsu, A. Molecular simulation of the glass transition and proton conductivity of 2,2’-benzidinedisulfonic acid and 4,4’-diaminodiphenylether-2,2’-disulfonic acid-based copolyimides as polyelectrolytes for fuel cell applications. Polym. Int. 55, 872–882 (2006).
48. Srinophakun, T. &Martkumchan, S. Ionic conductivity in a chitosan membrane for a PEM fuel cell using molecular dynamics simulation. Carbohydr. Polym. 88, 194–200 (2012).
49. Mecerreyes, D. et al. Porous polybenzimidazole membranes doped with phosphoric acid: Highly proton-conducting solid electrolytes. Chem. Mater. 16, 604–607 (2004).
50. Ewald, P. P. No Title. Ann Phys(Leipzing) 60, 253 (1921).
51. Pu, H. T., Meyer, W. H. &Wegner, G. Proton transport in polybenzimidazole blended with H3PO4 or H2SO4. J. Polym. Sci. Part B-Polymer Phys. 40, 663–669 (2002).
52. Yamada, M. &Honma, I. Anhydrous Protonic Conductivity of a Self-Assembled Acid−Base Composite Material. J. Phys. Chem. B 108, 5522–5526 (2004).
53. Narayanan, S. R., Yen, S. P., Liu, L. &Greenbaum, S. G. Anhydrous Proton-Conducting Polymeric Electrolytes for Fuel Cells. J. Phys. Chem. B 110, 3942–3948 (2006).
54. Chandan, A. et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review. J. Power Sources 231, 264–278 (2013).
55. Bozkurt, A. &Meyer, W. H. Proton-conducting poly(vinylpyrrolidon)-polyphosphoric acid blends. J. Polym. Sci. Part B Polym. Phys. 39, 1987–1994 (2001).
56. Guo, Z., Xu, X., Xiang, Y., Lu, S. &Jiang, S. P. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF–PVP blended polymers. J. Mater. Chem. A 3, 148–155 (2015).
57. Padmavathi, R. &Sangeetha, D. Design of novel SPEEK-based proton exchange membranes by self-assembly method for fuel cells. Ionics (Kiel). 19, 1423–1436 (2013).
58. Transactions, E. C. S. &Society, T. E. Imidazolium Trifluoromethanesulfonate sPEEK Composites for Anhydrous High Temperature Proton Exchange Membrane Fuel Cells N.E. De Almeida. 64, 425–432 (2014).
59. Bouchet, R. Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118, 287–299 (1999).
60. He, R., Li, Q., Xiao, G. &Bjerrum, N. J. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J. Memb. Sci. 226, 169–184 (2003).
61. Li, Q. F., He, R. H., Jensen, J. O. &Bjerrum, N. J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 degrees C. Chem. Mater. 15, 4896–4915 (2003).
62. Francisco, S. &Ca-, A. Advances in Polymer Science,. Colloid & Polymer Science (2006).
63. Qingfeng, L., Hjuler, H. A. &Bjerrum, N. J. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. J. Appl. Electrochem. 31, 773–779 (2001).
64. Li, Q., He, R., Jensen, J. O. &Bjerrum, N. J. PBI-Based Polymer Membranes for High Temperature Fuel Cells - Preparation, Characterization and Fuel Cell Demonstration. Fuel Cells 4, 147–159 (2004).
65. Kreuer, K. D. Proton conductivity: Materials and applications. Chem. Mater. 8, 610–641 (1996).
66. Hogarth, W. H. J., daCosta, J. C. D. &Lu, G. Q. Solid acid membranes for high temperature (> 140 degrees C) proton exchange membrane fuel cells. J. Power Sources 142, 223–237 (2005).
67. Kreuer, K. D., Fuchs, a., Ise, M., Spaeth, M. &Maier, J. Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim. Acta 43, 1281–1288 (1998).
68. Erkartal, M. et al. Anhydrous proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/1,2,4-triazole composite membrane. Int. J. Hydrogen Energy 41, 11321–11330 (2016).
69. Yan, L. &Xie, L. Molecular Dynamics Simulations of Proton Transport in Proton Exchange Membranes Based on Acid - Base Complexes. Mol. Interact. (2012). doi:10.5772/36194
70. Greish, Y. E. &Brown, P. W. Chemically formed HAp-Ca poly(vinyl phosphonate) composites. Biomaterials 22, 807–816 (2001).
71. Greish, Y. E. &Brown, P. W. Formation and Properties of Hydroxyapatite - Calcium Poly (vinyl phosphonate) Composites. J. Am. Ceram. Soc. 85, 1738–1744 (2002).
72. Bozkurt, A., Meyer, W. H., Gutmann, J. &Wegner, G. Proton conducting copolymers on the basis of vinylphosphonic acid and 4-vinylimidazole. Solid State Ionics 164, 169–176 (2003).
73. Bozkurt, A. &Meyer, W. H. Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid. Solid State Ionics 138, 259–265 (2001).
74. Devanathan, R., Venkatnathan, A. &Dupuis, M. Atomistic simulation of nafion membrane: I. Effect of hydration on membrane nanostructure. J. Phys. Chem. B 111, 8069–8079 (2007).
75. Choe, Y.-K., Tsuchida, E., Ikeshoji, T., Yamakawa, S. &Hyodo, S. Nature of proton dynamics in a polymer electrolyte membrane, nafion: a first-principles molecular dynamics study. Phys. Chem. Chem. Phys. 11, 3892 (2009).
76. Nymand, T. M. &Linse, P. Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities. J. Chem. Phys. 112, 6152–6160 (2000).
77. Zadoks, J. C. This Week ’ s Citation Classic ®. 1985 (1985).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code