Responsive image
博碩士論文 etd-1122105-094428 詳細資訊
Title page for etd-1122105-094428
論文名稱
Title
再入射雙鏡式非共平面環形共振腔的理論分析
Theoretical analysis of reentrant two-mirror non-planar ring laser cavity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-11-13
繳交日期
Date of Submission
2005-11-22
關鍵字
Keywords
半導體激發雷射、環形共振腔
diode-pumped lasers, ring laser cavity
統計
Statistics
本論文已被瀏覽 5733 次,被下載 2325
The thesis/dissertation has been browsed 5733 times, has been downloaded 2325 times.
中文摘要
中文摘要

本研究論文是用高斯光束的行進傳輸方式,針對由兩個曲率半徑相同的球面鏡所組成的(Herriott-type multi-pass cell)共振腔,所做的理論分析。由於此非共平面共振腔是一種非正交且非近軸的共振腔,無法用ABCD矩陣的方法來分析,嚴格的分析方法應該考慮高斯光束的行進傳輸方式。今由考慮到高斯光束由於斜角入射的像散性與球面像差以及光束每經一次鏡面反射後須做一個座標變換。當光束在共振腔中走完一整圈時,必須滿足自我協調的條件之下,得到此共振腔的精確解。於其中可發現球面像差的修正是一個很重要的一項,因為如果沒有考慮到此項修正,那麼共振腔是無法得到一個穩定的解。

再入射環形共振腔對於腔長是很敏感的,特別的是當共平面與非共平面的結構具有相同的輸出光點時,因此,精確的分析此共振腔內雷射光束的傳輸極為重要。當考慮到光束經過一次鏡子的反射時需做一次座標變換,由此可發現非共平面立體8字形環形共振腔是可以用類似正交共振腔的做法來分析。以簡單像散性高斯光束的形式在共振腔內行進,可用來分析此非共平面立體8字形環形共振腔,由此並可獲得一個精確的解析解。對於一般情況再入射環形共振腔,則可由設計一個以一般像散性高斯光束在共振腔內行進的程式,來分析此問題。經鏡子反射所產生的相位移動亦使用較為廣泛的形式,由此可得到兩項主要的差別,不同於用ABCD矩陣的做法。其一為腔內光點的形狀一般而言是橢圓形狀,而不一定是圓形,其二為共振腔會產生第二穩定區,其帶寬相較於第一穩定區為窄。
Abstract
Abstract


In this dissertation a rigorous analysis is performed on the reentrant non-planar ring laser cavity constructed by the Herriott-type multi-pass cell. Since the non-planar ring cavity is a non-orthogonal cavity, so the ABCD matrix method used to analyze the beam propagation is not valid. A rigorous method using Gaussian beam propagation is needed. The beam rotation, astigmatism, and spherical aberration are considered to obtain a self-consistent solution of the Gaussian beam. It turns out that spherical aberration is a very important issue for this non-planar resonator. Without taking into account the spherical aberration, a stable resonator would be difficult to realize. By using a self-consistent Gaussian beam propagation method, the characteristic of laser beam was analyzed and compared with that of the ABCD approximation method.

The reentrant ring cavity is very sensitive to cavity length, especially when the planar and non-planar configurations have the same output beams; therefore, it is very important to consider a rigorous method using Gaussian beam propagation. By considering the coordinate transformation of the beam after mirror reflection, a non-planar figure-8 ring cavity can be treated as an orthogonal cavity except for an exchange of tangential and Sagittal planes after each reflection. A simple astigmatic Gaussian beam approach is used to analyze the non-planar figure-8 ring cavity, and an analytic solution is obtained. For the general case of the multi-pass non-planar ring cavity, a general astigmatic Gaussian beam approach is used to treat the problem. The general form of mirror phase shift is used, and two important differences compared to the ABCD method were found. Firstly, the spot size is always elliptical while the spot size is circular using the ABCD approximation. Secondly, a second stable region is found in the cavity, the width of the second stable region is smaller than the first stable regi
目次 Table of Contents
目錄

中文摘要 Ι

英文摘要 II

目錄 III

圖目錄 V

表目錄 IX

第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 本研究論文的貢獻 5
1.4 本研究論文的架構 7

第二章 環形共振腔的介紹 8
2.1 文獻回顧 8
2.2 環形共振腔的優點 12
2.3 環形共振腔的應用 14
2.4 環形共振腔的設計 16

第三章 再入射環形共振腔的腔長公式與近似解 19
3.1 再入射環形共振腔的腔長公式 19
3.2 再入射環形共振腔的近似解 26
3.3 再入射環形共振腔近似解的穩定性分析 33

第四章 立體8字形再入射環形共振腔的分析 39
4.1 非共平面雷射光束的轉動 39
4.2 像散性以及球面像差 48
4.3 格林(J. M. Greene)殘數方法 50
4.4 立體8字形再入射環形共振腔的解析解 56
4.5 立體8字形再入射環形共振腔的穩定度分析 63
4.6 增益介質側移量趨近於零的情況 69

第五章 一般情況的再入射環形共振腔的分析 71
5.1 再入射環形共振腔的分析觀點 71
5.2 再入射環形共振腔的一般情形 72

第六章 再入射環形共振腔的實驗與分析 85
6.1 再入射環形共振腔四能階紅外光雷射 85
6.2 再入射環形共振腔綠光雷射 88
6.3 再入射環形共振腔的腔長驗證 91
6.4 再入射環形共振腔準三能階紅外光雷射 94

第七章 結論 95

附錄A 再入射環形共振腔雷射光束轉動角度的證明 97
附錄B 模態腔長的證明
100
附錄C 共振腔的模擬程式 103

參考文獻 109
中英文對照表 115
參考文獻 References
參 考 文 獻

1. D. R. Herriot and H. J. Schulte, “Folded optical delay lines,” Appl. Opt., vol. 4, pp. 883-889 (1965).
2. W. R. Trutna and R. L. Byer, “Multiple-pass Raman gain cell,” Appl. Opt., vol. 19, pp. 301-312 (1980).
3. A. Sennaroglu and J. G. Fujimoto, “Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers,” Opt. Exp., vol.11, pp. 1106-1113 (2003).
4. K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda,“Proposal of a
Semiconductor Ring Laser Gyroscope,”Opt. and Quantum Electron., vol. 31, pp. 1219-1226 (1999).
5. A. E. Siegman, Lasers, Mill Valley, (University Science Books ,California), chap. 29 (1986).
6. New Focus catalog, vol. 8, pp. 34-35 (1997).
7. R. L. Fork, B. I. Greene and C. V. Shank, “Generation of optical pulse shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett., vol. 38, pp. 671-672 (1981).
8. S. M. Jarrett and J. F. Young, “High-efficiency sing-frequency cw ring dye laser,” Opt. Lett., vol. 4, pp. 176-178 (1979).
9. T. J. Kane and R. L. Byer,“Monolithic unidirectional single-mode Nd:YAG ring laser,”Opt. Lett., vol. 10, pp. 65-67 (1985).
10. J. L. Nightingale and J. K. Johnson,“Single frequency ring laser with two reflecting surface,”U. S. patent 5,052,815 (1991).
11. M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus,“>8.5 watts of single frequency 532 nm light from a diode pumped intracavity doubled ring laser,”Conference on Lasers and Electro-Optics, CPD-21 (1996).
12. S. L. Huang, Y. H. Chen, P. L. Huang, J. Y. Yi, and H. Z. Cheng, “Multi-reentrant nonplanar ring laser cavity,” IEEE J. Quantum Electron., vol. 38, pp. 1301-1308 (2002).
13. A. Yariv, Optical Electronics in Modern Communication, 5th ed. (Oxford University Press, Inc., New York), chap. 2 (1997).
14. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt., vol. 3, pp. 523-526 (1964).
15. H. Z. Cheng, P. L. Huang, S. L. Huang, and F. J. Kao, “Reentrant 2-mirror ring resonator for generation of a single frequency green laser,” Opt. Lett., vol. 25, pp. 542-544 (2000).
16. J. A. Arnaud, “Degenerate optical cavities,” Appl. Opt., vol. 8, pp. 189-195 (1969).
17. J. A. Arnaud, “Degenerate optical cavities. Ⅱ. Effect of misalignments, ” Appl. Opt., vol. 8, pp. 1909-1917 (1969).
18. J. A. Arnaud, “Non-orthogonal optical waveguides and resonators,” Bell Sys. Tech. J., vol. 49, pp. 2311-2347 (1970).
19. R. K. Luneburg, Mathematical Theory of Optics , (University of California Press, Los Angeles ), pp. 216-226 (1964).
20. Y. K. Danileiko and V. A. Lobachev, “ New rotating field resonator for lasers,” Sov. J. Quantum Electron., vol. 1, pp. 389-390 (1974).
21. M. M. Popov, “Resonators for lasers with rotated directions of principal curvatures,” Opt. and Spectrosc., vol. 25, pp. 170-171 (1968).
22. L. A. Belousova, “Theory of nonorthogonal resonators,” J. Appl. Spectrosc., (USSR) , vol. 30 , pp. 172-175 (1979).
23. S. I. Zavgorodnava,V. I. Kuprenyuk, and V. E. Sherstobitov, “ Unstable resonator with field rotation,” Sov. J. Quantum Electron, vol. 7,pp. 787-788 (1977).
24. A. H. Paxton and W. P. Latham, Jr., “ Unstable resonator with 90 degree beam rotation ,” Appl. Opt., vol. 25, pp. 2939-2945 (1986).
25. W. P. Latham, Jr., A. H. Paxton and G. C. Dente, “ Laser with 90 degree beam rotation ,” in Optical Resonators : Proc. SPIE., vol. 1224 (1990).
26. T. J. Kane and R. L. Byer,“Monolithic unidirectional single-mode Nd:YAG ring laser,”Opt. Lett., vol. 10, pp. 65-67 (1985).
27. G. B. Jacobs, “CO2 laser gyro,” Appl. Opt., vol. 10, pp. 219-220 (1971).
28. G. B. Jacobs, “CO2 laser gyro using polarizationally isotropic cavity,” Appl. Opt., vol. 10, pp. 220-221 (1971).
29. V. E. Sanders and D. Z. Anderson, “ Isotropic nonplanar ring laser,” U. S. Patent 4,247,832 (1981).
30. S. P. Smyshlyaev , L. N. Kaptsov , K. N. Evtyukhov , and Y. D. Golyaev, “Rotationing beams in a solid-state laser with a nonplanar ring cavity,” Sov. Tech. Phys. Lett., vol. 5, pp. 631-63 (1979).
31. Y. D. Golyaev, K. N. Evtyukhov, and L. N. Kaptsov , “Uniaxial generation in YAG:Nd+3 continuous ring laser with nonplanar resonator,” Moscow Univ. Phys. Bulletin., vol. 34, pp. 95-99 (1979).
32. O. E. Nanii and A. N. Shelaev, “Magnetooptic effects in a YAG:Nd +3 ring laser with a nonplanar resonator,” Soc. J. Quantum Electron., vol. 14 , pp. 638-642 (1984).
33. J. A. Arnaud and H. Kogelnik, “Gaussian light beams with general astigmatism,” Appl. Opt., vol. 8, pp. 1687-1693 (1969).
34. A. C. Nisson, “Eigenpolarization theory of a monolithic nonplanar oscillator,” IEEE J. Quantum Electron., vol. 25, pp. 767-790 (1989).
35. Y. Zhao, M. G.. Sceats, and A.D. Stokes, “ Application of ray tracing to the design of a monolithic nonplanar ring laser,” Appl. Opt., vol. 30, pp. 5235-5238 (1991).
36. A. E. Siegman, Lasers (University Science Books, Mill Valley, California), chap. 15 (1986).
37. A. Sharma and A. Agrawal, “New method for nonparaxial beam propagation,” J. Opt. Soc. Am. A ,vol. 21, pp. 1082-1087 (2004).
38. J. A. Arnaud, “Nonorthogonal optical waveguides and resonators,” Bell Sys. Tech., vol. 49, pp. 2311-2347 (1970).
39. E. D. Isyanova, A. L. Levit, and V. M. Ovchinnikov, “Traveling-wave ring cavity with a nonplanar axis contour,” J. Appl. Spectrosc. (USSR), vol. 36, pp. 287-291 (1982).
40. S. C. Sheng, “Optical-axis perturbation singularity in an out-of-plane ring resonator,” Opt. Lett., vol. 19, pp. 683-685 (1994).
41. A. A. Tovar and L. W. Casperson, “Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems,” J. Opt. Soc. Am. A ,vol. 12, pp. 1522-1533 (1995).
42. R. L. Byer, “Diode laser-pumped solid-state lasers, ” Science, vol. 239, pp. 742-747 (1988).
43. D. W. Anthon, D. L. Sipes, T. J. Pier ,and M. R. Ressel, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron., vol. 28, pp. 1148-1157 (1992).
44. G. E. James and E. M. Harrell, “Elimination of chaos in an intracavity-doubled Nd:YAG laser, ” Opt. Lett., vol. 15, pp. 1141-1143 (1990).
45 G. E. James and E. M. Harrell, and R. Roy, “Intermittency and chaos in intracavity doubled lasers,” Phys. Rev. A, vol. 41, pp. 2778-2790 (1990).
46. T. Baer, “large-ampltitude fluctuations due to longitudinal mode coupling in diode-pumped intracaity-doubled Nd:YAG, “ J. Opt. Soc., vol. 3 (1986).
47. V. Magni, G.. Cerullo, S. D Silvestri, O. Svelto, L. J. Qian, and M. Danailov,“Intracavity frequency doubling of a cw high-power TEM00 Nd:YLF laser,“ Opt. Lett., vol. 18, pp. 2111-2113 (1993).
48. M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarizaed modes in diode-pumped Nd:YAG lasers”, Opt. Lett., vol. 13, pp. 805-807 (1988).
49. D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron., vol. 8, p 235-239 (1972).
50. T. J. Kane and R. L. Byer, “Monolithic unidirectional single-mode Nd:YAG ring laser”, Opt. Lett., vol. 10, pp. 65-67 (1985).
51. W. Culshaw, J. Kannelaud,and J. E. Peterson, “Efficient frequency-doubled single-frequency Nd:YAG laser,“ IEEE J. Quantum Electron., vol. 10, pp. 253-263, (1974).
52. H. Nagai, M. Kume,I. Ohta, H. Shimizu, and M. Kazumura, “ Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron., vol. 28, pp. 1165-1167 (1992).
53. V. Evtuhov and A. E. Siegman, “A 'twisted-mode' technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt., vol. 4, pp. 142-143 (1965).
54. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode pumped Nd:YVO4 microchip lasers,” Opt. Lett., vol. 16, pp. 1955-1957 ( 1991).
55. http://www.spie.org/webs/abstracts/3100/3187.html

56. P. L. Huang, C. R. Weng, H. Z. Cheng, and S. L. Huang, “A passively Q-switched laser constructed by a two-mirror reentrant ring cavity,” Jpn. J. Appl. Phys., Part 2, vol. 40, L508-L510 (2001).
57. J. Y. Yi and S. L. Huang, “Planar Multi-pass Ring Laser Cavity,” Jap. J. Appl. Phys., vol. 44, pp. 1272-1277 (2005).
58. P. L. Huang, “The study and application of multi-reentrant two-spherical-mirror ring lasers,” Ph. D. Dissertation, Institute of Electro-Optical Engineering National Sun Yat-sen University, Kaohsiung, Taiwan, R. O. C. (2003).
59.
P. W. Milonni, and J. H. Eberly, Lasers, (John Wiley and Sons, Inc., New York), chap.14 (1988).
60.
C. C. Davis, Lasers and Electro-Optics, (Cambridge University Press), chap.15 (1996).
61.
O. Svelto, Principles of Lasers, (Plenum Press, New York and London), chap.4 (1998).
62 A. E. Siegman, “Laser beams and resonators: Beyond the 1960s,” IEEE J. Select. Quantum Electron., vol. 6, pp. 1389-1399 (2000).
63.
R. K. Luneburg, Mathematical Theory of Optics , (Los Angeles : University of California Press), pp. 240-243 (1964).
64.
A. E. Siegman, Lasers (University Science Books, Mill Valley, California), pp. 616-625 (1986).
65. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, London), chap. 5 (1980).
66
Miles V. Klein, Optics, (John Wiley and Sons, Inc., New York), chap. 4 (1970).
67. G. S. Monk, Light : Principles and Experiments (McGraw-Hill Book Company, New York), pp. 424-426 (1937).
68.
F. A. Jenkins and H. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill Book Company, New York), chap. 6 (1967).
69. 魏光輝編著,矩陣光學,北京,兵器工業出版社,第二章 (1995)。
70.
H. W. Kogelnik, E. P. Ippen, R. Dienes,and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron., vol. 8, pp. 373-379 (1972).
71 C. Palma, “Complex dynamics of a beam in a Gaussian cavity,” J. Opt. Soc. Am. B, vol. 12, pp. 120-133 (1996).
72 M. D. Wei, W. F. Hsieh, and C. C. Sung, “Dynamics of an optical resonator determined by its iterative map of beam parameters,” Opt. Comm., vol. 146, pp 201-207 (1998).
73 R. S. MacKay, Renormalisation in Area-Preserving Maps (World Scientific, Singapore) (1993).
74 A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, 2nd Ed (Springer-Verlag, New York) (1992).
75 S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos (Springer-Verlag, New York) (1990).
76 J. M. Greene, “Two-dimensional measure-preserving mappings,” J. Math. Phys., vol. 9, pp. 760-768 (1968).
77 J. M. Greene, “A method for determining a stochastic transition,” J. Math. Phys., vol. 20, pp. 1183-1201 (1979).
78 L. A. Lugiato, G. L. Tredicce, L. M. Narducci, and M. A. Pernigo, “Instabilities and spatial complexity in a laser,” J. Opt. Soc. Am. B, vol. 7, pp. 1019-1033 (1990).
79 S. Feng and H. G. Winful, “Physical origin of Gouy phase shift,” Opt. Lett., vol. 26, pp. 485-487 (2001).
80 C. H. Chen, M. D. Wei, W. F. Hsieh, “Beam-propagation-dominant instability in an axially pumped solid-state laser near degenerate resonator configuration,” J. Opt. Soc. Am. B, vol. 18, pp. 1076-1083 (2001).
81 R. Poprawe and R. Wester, An applet displaying the transverse mode structure of a Gaussian Beam, (http://www.ilt.fhg.de).
82 J. Y. Yi, H. T. Tuan, K. W. Cheng, C. K. Lee, and S. L. Huang, “Efficient and compact Yb:YAG ring laser,” Conference on Lasers and Electro-Optics , CFO-2 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code