Responsive image
博碩士論文 etd-1122114-150955 詳細資訊
Title page for etd-1122114-150955
論文名稱
Title
典寶溪底泥中鄰苯二甲酸酯類及藥物類流布調查及新穎整治技術開發
Occurrence and distribution of phthalate esters and pharmaceuticals in sediment of Dianbao River and development of a novel in situ remediation technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
201
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-12-02
繳交日期
Date of Submission
2014-12-22
關鍵字
Keywords
超高效液相層析儀/三重串聯四極桿質譜儀、電動力法、奈米級施威特曼石、非抗生素藥物類、抗生素藥物類、鄰苯二甲酸酯類、底泥
Antibiotics, Sediment, Phthalate Esters, Non-Antibiotics, Nano- Schwertmannite, Electrokinetics, LC–ESI-MS/MS
統計
Statistics
本論文已被瀏覽 5665 次,被下載 70
The thesis/dissertation has been browsed 5665 times, has been downloaded 70 times.
中文摘要
本研究旨在調查典寶溪底泥中6種鄰苯二甲酸酯類、18種抗生素藥物類及10種非抗生素藥物類之殘留濃度,並嘗試利用奈米級施威特曼石 (nano-SHM) 催化過氧化氫氧化程序結合電動力法整治鄰苯二甲酸酯類及藥物類污染底泥,期盼未來建立一本土化可行的現地整治技術,以作為後續實場應用。於典寶溪底泥中鄰苯二甲酸酯類及藥物類之殘留濃度調查工作方面,已針對選定之5個採樣點位進行7梯次採集底泥樣品,綜合調查結果發現,於底泥中可檢出6種鄰苯二甲酸酯類、4種抗生素藥物類及4種非抗生素藥物類之化合物,於角宿支流角宿橋處檢出mg/kg (ppm) 濃度等級之鄰苯二甲酸二 (2-乙基己基) 酯 (DEHP) 殘留量,其最高濃度 (5,939 µg/kg) 約為「底泥品質指標之分類管理及用途限制辦法」下限值的3倍。於新穎組合式整治技術試驗方面,利用實驗室規模之新穎組合式整治技術─利用電動力法輔助nano-SHM/H2O2氧化去除鄰苯二甲酸酯類及藥物類污染底泥,於陽極槽液及底泥反應器注入孔添加nano-SHM/H2O2氧化劑,並施加定電壓 (1.5 V/cm) 進行為期 14日及28日期程之6組電動力試驗。試驗結果顯示:(1) nano-SHM藉由電泳移向陰極端,而H2O2則藉由電滲透流移向陰極端,同時藉由反應產生OH‧強氧化劑,可將底泥中鄰苯二甲酸酯類及藥物類予以降解,去除率分別為70-99%及100%;(2) 由於電極極性轉換之緣由,經過28日反應時間後,底泥酸鹼梯度現象並不顯著;(3) 利用電動力法輔助nano-SHM/H2O2氧化去除鄰苯二甲酸酯類及藥物類污染底泥試驗,可將標的污染物主要礦化成CO2及H2O且無二次污染之虞。本工法除具有上述之技術可行性外,其粗估整治費用 (6,639元/噸) 相較其他實驗室規模整治技術較為低廉,亦具經濟可行性。雖然現階段仍屬於實驗室規模之試驗,但未來若能應用於現地整治,不僅具有現階段試驗之優勢外,尚可節省龐大之開挖工程費用,實具有相當大的應用潛勢。
Abstract
The objectives of this study are two-fold: (1) to investigate the residual concentrations of six phthalate esters (PAEs) and 28 pharmaceuticals in sediment samples collected from the Dianbao River; and (2) to develop and establish a localized, feasible in situ remediation technology coupling nano- schwertmannite (nano-SHM)/H2O2 process and electrokinetic process for the removal of PAEs and pharmaceuticals in sediments of the Dianbao River. To meet the first objective, seven batches of sediment sampling were conducted at five sampling sites along the Dianbao River. After analysis of sediment samples, six PAEs and eight pharmaceuticals were detected. The order of parts per million (ppm) of residual di(2-ethylhexyl) phthalate (DEHP) was detected at the sampling site under the Jiaosu Bridge. The highest concentration of DEHP (5,939 µg/kg) is about 3 times greater than the “Regulations for Systematic Management of Quality Indices of Sediments and Their Use Restrictions” promulgated by Taiwan EPA. To meet the second objective, six tests with a remediation time of 14 days or 28 days were carried out using the electrokinetic-assisted nano-SHM/H2O2 process under an electric field of 1.5 V/cm. Test results for the removal of PAEs and pharmaceuticals in the sediment samples collected at the sampling site under the Shengxing Bridge of the Dianbao River are given as follows: (1) injection of nano-SHM and H2O2 into the anode reservoir and the sediment compartment would yield OH• that would be transported by the electrophoresis and electroosmotic flow from the anode end toward the cathode to degrade PAEs and pharmaceuticals if any; (2) as a result of the electrode polarity reversal, the pH gradient of sediment is not significant after 28 days; and (3) 70-100% of the PAEs and pharmaceuticals would be removed, and no secondary pollution would be generated in the sediment compartment. Accordingly, the novel remediation process employed in this study could be considered as a viable remediation technology for the removal of PAEs and pharmaceuticals from sediments. An operating cost analysis has also showed the economic feasibility of the present remediation technology. In summary, the coupling of nano-SHM/H2O2 process and electrokinetic process would be a very competitive process for the treatment of PAEs and pharmaceuticals-contaminated sediment in terms of remediation time and cost.
目次 Table of Contents
論文審定書 i
聲明切結書 ii
誌謝 iii
摘要 iv
Abstract vi
目錄 viii
圖目錄 xii
表目錄 xviii
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 5
1.3 研究項目 5
第二章 文獻回顧 9
2.1 底泥中鄰苯二甲酸酯類及藥物類之流布調查 9
2.1.1 鄰苯二甲酸酯類 9
2.1.2 藥物類 12
2.2 底泥中鄰苯二甲酸酯類及藥物類之整治技術 14
2.2.1 Fenton法 16
2.2.2 類Fenton法 18
2.2.3 新穎的類Fenton法 19
2.2.4 電動力法 21
第三章 材料與方法 29
3.1 化學藥品 29
3.1.1 鄰苯二甲酸酯類之標準品 29
3.1.2 鄰苯二甲酸酯類之內標準品 34
3.1.3 抗生素藥物類之標準品 34
3.1.4 非抗生素藥物類之標準品 34
3.1.5 其他相關藥品 35
3.2 典寶溪底泥調查 35
3.2.1 樣品採集 35
3.2.2 樣品前處理 36
3.2.3 樣品分析 38
3.3 新穎組合式整治技術 52
3.3.1 整治試驗用河川底泥來源及其基本性質 52
3.3.2 奈米級施威特曼石及其懸浮液製備 54
3.3.3 整治試驗用河川底泥與nano-SHM/H2O2反應之瓶杯試驗 56
3.3.4 新穎整治系統建置及其試驗方法 58
3.4 鄰苯二甲酸酯類及藥物類污染去除反應機制探討 64
3.5 組合式整治技術評估 65
第四章 結果與討論 66
4.1 典寶溪底泥調查 66
4.1.1 空間分布調查 66
4.1.2 時間分布調查 68
4.1.3 鄰苯二甲酸酯類及藥物類殘留濃度與其他地區底泥之比較 71
4.1.4 水體環境影響評估 74
4.2 新穎組合式整治技術 77
4.2.1奈米級施威特曼石合成 77
4.2.2 奈米級施威特曼石懸浮液製備 81
4.2.3 整治試驗底泥之nano-SHM/H2O2瓶杯試驗 83
4.2.4 電動力法輔助nano-SHM/H2O2之組合式整治試驗 89
4.2.5 鄰苯二甲酸酯類及藥物類污染去除反應機制探討 124
4.3 標的污染物殘留質量分率及中間產物之評估 131
4.3.1標的污染物殘留質量分率 131
4.3.2 標的污染物降解反應中間產物 136
4.4 操作成本粗估 138
4.5 未來工程應用構想 142
第五章 結論與建議 146
5.1 結論 146
5.2 建議 148
參考文獻 150
附錄 就學期間發表之學術論文 176
圖1-1 研究架構流程圖 6
圖2-1 電動力整治技術原理示意圖 23
圖3-1 河川底泥樣品前處理程序之流程圖 30
圖3-2 典寶溪底泥採樣位置圖 37
圖3-3 實驗室規模新穎組合式整治系統示意圖 59
圖4-1 鄰苯二甲酸酯類殘留濃度與其他地區底泥之比較 72
圖4-2 藥物類殘留濃度與其他國家河川底泥之比較 73
圖4-3 化學合成奈米級施威特曼石之ESEM影像圖 77
圖4-4 化學合成奈米級施威特曼石之TEM影像圖 78
圖4-5 化學合成奈米級施威特曼石之XRD分析圖譜 79
圖4-6 化學合成奈米級施威特曼石之ESEM-EDS圖譜 79
圖4-7 化學合成奈米級施威特曼石在不同pH值水溶液中之界達電位檢測值 80
圖4-8 Nano-SHM/H2O2 瓶杯試驗組別–反應後底泥中標的污染物之殘留濃度:(a) 鄰苯二甲酸酯類;及 (b) 藥物類 84
圖4-9 化學合成奈米級施威特曼石及其重複使用12次之XRD分析圖譜 85
圖4-10 試驗用河川底泥與nano-SHM/H2O2反應之瓶杯試驗,其不同反應時間之底泥ESEM影像圖 (50X):(a) 0日;(b) 0.5日;(c) 1日;(d) 2日;(e) 3日;(f) 4日;及 (g) 5日 87
圖4-11 試驗用河川底泥與nano-SHM/H2O2反應之瓶杯試驗,其不同反應時間之底泥ESEM影像圖 (5000X):(a) 0日;(b) 0.5日;(c) 1日;(d) 2日;(e) 3日;(f) 4日;
及 (g) 5日 88
圖4-12 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第1組試驗組別 (空白試驗)—陰、陽極槽液pH值之變化 90
圖4-13 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第1組試驗組別 (空白試驗)—累積電滲透流流量之變化 91
圖4-14 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第1組試驗組別 (空白試驗)—反應後底泥pH值之分布 92
圖4-15 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第1組試驗組別 (空白試驗)—反應後底泥中標的污染物之殘留濃度:(a) 鄰苯二甲酸酯類;及 (b) 藥物類之殘留濃度 93
圖4-16 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第2組試驗組別—陰、陽極槽液pH值之變化 95
圖4-17 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第2組試驗組別—累積電滲透流流量之變化 96
圖4-18 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第2組試驗組別—反應後底泥pH值之分布 97
圖4-19 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第2組試驗組別—反應後底泥中標的污染物之殘留濃度:(a) 鄰苯二甲酸酯類;及 (b) 藥物類之殘留濃度 98
圖4-20 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第3組試驗組別—陰、陽極槽液pH值之變化 100
圖4-21 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第3組試驗組別—累積電滲透流流量之變化 101
圖4-22 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第3組試驗組別—反應後底泥pH值之分布 102
圖4-23 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第3組試驗組別—反應後底泥中標的污染物之殘留濃度:(a) 鄰苯二甲酸酯類;及 (b) 藥物類之殘留濃度 103
圖4-24 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第4組試驗組別—陰、陽極槽液pH值之變化 105
圖4-25 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第4組試驗組別—累積電滲透流流量之變化 106
圖4-26 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第4組試驗組別—反應後底泥pH值之分布 107
圖4-27 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第4組試驗組別—反應後底泥中標的污染物之殘留濃度:(a) 鄰苯二甲酸酯類;及 (b) 藥物類之殘留濃度 108
圖4-28 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第5組試驗組別—陰、陽極槽液pH值之變化 110
圖4-29 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第5組試驗組別—累積電滲透流流量之變化 111
圖4-30 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第5組試驗組別—反應後底泥pH值之分布 112
圖4-31 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第5組試驗組別—反應後底泥中標的污染物之殘留濃度:(a) 鄰苯二甲酸酯類;及 (b) 藥物類之殘留濃度 113
圖4-32 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第6組試驗組別—陰、陽極槽液pH值之變化 115
圖4-33 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第6組試驗組別—累積電滲透流流量之變化 116
圖4-34 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第6組試驗組別—反應後底泥pH值之分布 117
圖4-35 電動力整治鄰苯二甲酸酯類及藥物類污染典寶溪底泥第6組試驗組別—反應後底泥中標的污染物之殘留濃度:(a) 鄰苯二甲酸酯類;及 (b) 藥物類之殘留濃度 118
圖4-36 河川底泥與nano-SHM/H2O2反應在不同反應系統及反應時間/條件下之ESEM影像圖 (50X):[I] 瓶杯試驗:(a) 0日;及 (b) 3日;與 [II] 電動力試驗組別:
(c) 第1組;(d) 第2組;(e) 第3組;(f) 第4組;(g) 第5組;及 (h) 第6組 122
圖4-37 河川底泥與nano-SHM/H2O2反應在不同反應系統及反應時間/條件下之ESEM影像圖 (5000X):[I] 瓶杯試驗:(a) 0日;及 (b) 3日;與 [II] 電動力試驗組別:(c) 第1組;(d) 第2組;(e) 第3組;(f) 第4組;(g) 第5組;及 (h) 第6組 123
圖4-38 Nano-SHM及H2O2在本研究電動力整治系統之傳輸現象示意圖 125
圖4-39 Nano-SHM於不同pH環境之變化:(a) 化學反應;及 (b) 顆粒表面電荷性 126
圖4-40 Nano-SHM/H2O2氧化鄰苯二甲酸酯類及藥物類化合物之反應機制示意圖 129
圖4-41 電動力輔助nano-SHM/H2O2氧化程序現地整治遭受鄰苯二甲酸酯類及藥物類污染底泥之技術原理示意圖 130
圖4-42 電動力整治鄰苯二甲酸酯類及藥物類污染底泥在負模式掃描下之離子層析質譜圖 (m/z 50-1000):(a) 整治前;及 (b) 整治後 (第6組試驗組別) 137
圖4-43 組合式整治技術工程應用示意圖:(a) 第1階段俯視圖;(b) 第2階段俯視圖;及 (c) 第1階段剖面圖 143
表3-1 鄰苯二甲酸酯類及藥物類化合物資本資料 31
表3-2 河川底泥中鄰苯二甲酸酯類及藥物類經前處理程序之回收率測試 39
表3-3 鄰苯二甲酸酯類及藥物類於超高效液相層析儀之分析條件 41
表3-4 鄰苯二甲酸酯類及藥物類於三重串聯四極桿質譜儀MRM模式之分析條件 42
表3-5 鄰苯二甲酸酯類及藥物類之LC–ESI-MS/MS定性及定量偵測極限 48
表3-6 典寶溪底泥基本性質分析結果 53
表3-7 過氧化氫於整治試驗底泥中反應1日後之殘留濃度 57
表3-8 利用電動力法輔助nano-SHM/H2O2試驗之參數及條件一覽表 61
表4-1 典寶溪底泥中鄰苯二甲酸酯類及藥物類殘留濃度之調查結果 67
表4-2 典寶溪底泥中鄰苯二甲酸酯類及藥物類殘留濃度於豐水期及枯水期之比較 69
表4-3 可見光 (900 nm) 分光光度計量測nano-SHM懸浮液之結果 82
表4-4 電動力試驗組別之鄰苯二甲酸酯類化合物殘留質量分率分析結果一覽表 132
表4-5 電動力試驗組別之藥物類化合物殘留質量分率分析結果一覽表 134
表4-6 電動力試驗之操作費用估算 (分析級及試藥級藥劑) 一覽表 139
表4-7 電動力試驗之操作費用估算 (工業級藥劑) 一覽表 140
表4-8 有機物污染土壤及底泥整治費用之比較 141
參考文獻 References
Acar, Y. B. and A. N. Alshawabkeh, “Principles of electrokinetic remediation,” Environmental Science and Technology, Vol. 23, pp. 2638-2647 (1993).
Antonić, J. and E. Heath, “Determination of NSAIDs in river sediment samples,” Analytical and Bioanalytical Chemistry, Vol. 387, pp. 1337-1342 (2007).
Arnold, S. M., W. J. Hickey, and R. F. Harris, “Degradation of atrazine by Fenton's reagent: Condition optimization and product quantification”, Environmental Science and Technology, Vol. 29, pp. 2083-2089 (1995).
ATSDR, “Toxicological profile for diethylphthalate,” Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, USA (1995).
ATSDR, “Toxicological profile for di-n-octylphthalate,” Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, USA (1997).
ATSDR, “Toxicological profile for di-n-butyl phthalate,” Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, USA (2001).
ATSDR, “Toxicological profile for di(2-ethylhexyl) phthalate (DEHP),” Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, USA (2002).
Balčius, G. and R. Gražulevičienė, “Phthalates in the Lithuanian environment and the need for human biomonitoring,” Environmental Research, Engineering and Management, Vol. 60, pp. 5-11 (2012).
Baldrian, P., V. Merhautová, J. Gabriel, F. Nerud, P. Stopka, M. Hrubý, and M. J. Benes, “Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides”, Applied Catalysis B: Environmental, Vol. 66, pp. 258-264 (2006).
Bauer, M. J. and R. Herrmann, “Estimation of the environmental contamination by phthalic acid esters leaching from household wastes,” Science of the Total Environment, Vol. 208, pp. 49-57 (1997).
Bauer, M. J., R. Herrmann, A. Martin, and H. Zellmann, “Chemodynamics, transport behaviour and treatment of phthalic acid esters in municipal landfill leachates,” Water Science and Technology, Vol. 38, pp. 185-192 (1998).
Baya, A. M., P. R. Brayton, D. J. Grimes, E. Russek-Cohen, and R. R. Colwell, “Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples,” Applied Environmental Microbiology, Vol. 51, pp. 1285-1292 (1986).
Bigham, J. M., L. Carlson, and E. Murad, “Schwertmannite, a new iron oxyhydroxysulfate from Pyhasalmi, Finland and other localities,” Mineralogical Magazine, Vol. 58, pp. 641-648 (1994).
Bigham, J. M., U. Schwertmann, and G. Pfab, “Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage,” Applied Geochemistry, Vol. 11, pp. 845-849 (1996).
Bigham, J. M., U. Schwertmann, L. Carlson, and E. Murad, “A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in aid mine waters,” Geochimica et Cosmochimica Acta, Vol. 54, pp. 2743-2758 (1990).
Bogan, B. W., V. Trbovic, and J. R. Paterek, “Inclusion of vegetable oils in Fenton’s chemistry for remediation of PAH-contaminated soils”, Chemosphere, Vol. 50, pp. 15-21 (2003).
Bokare, A. D. and W. Choi, “Review of iron-free Fenton-Like systems for activating H2O2 in advanced oxidation processes”, Journal of Hazardous Materials, Vol. 275, pp. 121-135 (2014).
Briscoe, B. J., A. U. Khan, and P. F. Luckham, “Optimising the dispersion on an alumina suspension using commercial polyvalent electrolyte dispersants”, Journal of the European Ceramic Society, Vol. 18, pp. 2141-2147 (1998).
Brown, K. D., J. Kulis, B. Thomson, T. H. Chapman, and D. B. Mawhinney, “Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico,” Science of the Total Environment, Vol. 366, pp. 772-783 (2006).
Buchman, M. F., “NOAA Screening Quick Reference Tables,” NOAA OR & R Report 08-1, Seattle WA, Office of Response and Restoriation Division, National Oceanic and Atmospheric Administration, USA (2008).
Casiot, C., S. Lebrun, and G. Morin, “Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage,” Science of the Total Environment, Vol. 347, pp. 122-130 (2005).
Chen, H. C., P. L. Wang, and W. H. Ding, “Using liquid chromatography–ion trap mass spectrometry to determine pharmaceutical residues in Taiwanese rivers and wastewaters,” Chemosphere, Vol. 72, pp. 863-869 (2008).
Chen, X., Y. Dong, L. Fan, and D. Yang, “Fluorescence for the ultrasensitive detection of peptides with functionalized nano-ZnS,” Analytica Chimica Acta, Vol. 582, 281-287 (2007).
Clara, G., G. Windhofer, W. Hartl, K. Braun, M. Simon, O. Gans, C. Scheffknecht, and A. Chovanec, “Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment,” Chemosphere, Vol. 78, pp. 1078-1084 (2010).
Colacicco, A., G. D. Gioannis, A. Muntonic, E. Pettinao, A. Polettini, and R. Pomi, “Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs,” Chemosphere, Vol. 81, pp. 45-56 (2010).
Cox, C. D., M. A. Shoesmith, and M. M. Ghosh, “Electrokinetic remediation of mercry contaminated soils using iodine/iodide lixiviant,” Environmental Science and Technolnology, Vol. 30, pp. 1933-1938 (1996).
da Silva, B. F., A. Jelic, R. López-Serna, A. A. Mozeto, M. Petrovic, and D. Barceló, “Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain,” Chemosphere, Vol. 85, pp. 1311-1339 (2011).
Díaz-Cruz, M. S., M. J. L. de Alda, and D. Barceló, “Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge,” Trends in Analytical Chemistry, Vol. 22, pp. 340-351 (2003).

ECB, “European union risk assessment report for 1,2-benzenedicarboxylic acid, di-C8-10-branched alkyl esters, C9-rich and di-"isononyl" phthalate (DINP),” European Chemical Bureau, Ispra, Italy (2003).
ECB, “European union risk assessment report for bis(2-ethylhexyl) phthalate,” European Chemical Bureau, Ispra, Italy (2004a).
ECB, “European union risk assessment report for dibutyl phthalate,” European Chemical Bureau, Ispra, Italy (2004b).
ECB, “European union risk assessment report for benzyl butyl phthalate,” European Chemical Bureau, Ispra, Italy (2006).
Ellis, J. B., “Pharmaceutical and personal care products (PPCPs) in urban receiving waters,” Environmental Pollution, Vol. 144, pp. 184-189 (2006).
Eskandarpour, A., K. Sassa, Y. Bando, H. Ikuta, K. Iwai, M. Okido, and S. Asai, “Creation of nanomagnetite aggregated iron oxide hydroxide for magnetically removal of fluoride and phosphate from wastewater,” ISIJ International, Vol. 47, pp. 558-562 (2007).
Eskandarpour, A., K. Sassa, Y. Bando, M. Okido, and S. Asai, “Magnetic removal of phosphate from wastewater using schwertmannite,” Materials Transactions, Vol. 47, pp. 1832-1837 (2006).
Eskandarpour, A., M. S. Onyango, A. Ochieng, and S. Asai, “Removal of fluoride ions from aqueous solution at low pH using schwertmannite,” Journal of Hazardous Materials, Vol. 152, pp. 571-579 (2008).
Fatoki, O. S., M. Bornman, L. Ravandhalala, L. Chimuka, B. Genthe, and A. Adeniyi, “Phthalate ester plasticizers in freshwater systems of Venda, South Africa and potential health effects,” Water SA, Vol. 36, pp. 117-125 (2010).
Fenton, H. J. H., “Oxidation of tartaric acid in presence of iron,” Journal of Chemical Society, Vol. 65, pp. 899-910 (1894).
Ferrarese, E., G. Andreottola, and I. A. Oprea, “Remediation of PAH-contaminated sediments by chemical oxidation,” Journal of Hazardous Materials, Vol. 152, pp. 128-139 (2008).
Field, J. A., C. A. Johnson, J. B. Rose, and G. Editorset, “What is “Emerging”?” Environmental Science and Technology, Vol. 40, pp. 7105-7105 (2006).
Flotron, V., C. Delteil, Y. Padellec, and V. Camel, “Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process”, Chemosphere, Vol. 59, pp. 1427-1437 (2005).
Fromme, H., T. Küchler, T. Otto, K. Pilz, J. Müller, and A. Wenzel, “Occurrence of phthalates and bisphenol A and F in the environment,” Water Research, Vol. 36, pp. 1429-1438 (2002).
Fukushi, K., M. Sasaki, and T. Sato, “A naturat attenuation of arsenic in drainage from an abandoned arsenic mine dump,” Applied Geochemistry, Vol. 18, pp. 1267-1278 (2003).
García-Rubio, A., J. M. Rodríguez-Maroto, F. García-Herruzo, C. Vereda-Alonso, C. Gómez-Lahoz, J. M. Esbrí, and P. Higueras, “Implementation of a iodide enhanced EKR to a mercury contaminated soil,” Book of Abstracts, The 6th Symposium on Electrokinetic Remediation (EREM 2007), p. 167, Vigo, Spain, June 12-15 (2007).
Garrido-Ramírez, E. G., B. K. G Theng, and M. L. Mora, “Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review”, Applied Clay Science, Vol. 47, pp. 182-192 (2010).
Gates, D. D., N. E. Korte, and R. L. Siegrist, “In-situ chemical degradation of DNAPLs in contaminated soils and sediments. In: In situ remediation of DNAPLs compounds in low permeability media fate/transport, in situ control technologies, and risk reduction,” Prepared by Oak Ridge National Laboratory for DOE under Contract AC05-96OR22464 (1996).
Genc, A., G. Chase, and A. Foos, “Electrokinetic removal of manganese from river sediment,” Water, Air, and Soil Pollution, Vol. 197, Nos. 1-4, pp. 131-141 (2009).
Ghorpade, N., V. Mehta, M. Khare, P. Sinkar, S. Krishnan, and C. V. Rao, “Toxicity study of diethyl phthalate on freshwater fish cirrhina mrigala,” Ecotoxicology and Environmental Safety, Vol. 53, pp. 255-258 (2002).
Gibbons, S. E., C. Wang, and Y. Ma, “Determination of pharmaceutical and personal care products in wastewater by capillary electrophoresis with UV detection,” Talanta, Vol. 84, pp. 1163-1168 (2001).
Gómez, M. J., M. J. Martínez Bueno, S. Lacorte, A. R. Fernández-Alba, and A. Agüera, “Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast,” Chemosphere, Vol. 66, pp. 993-1002 (2007).
Hamed, J. T. and A. Bhadra, “Influence of current density and pH on electrokinetics,” Journal of Hazardous Materials, Vol. 55, pp. 279-294 (1997).
Hanna, K., T. Kone, and G. Medjahdi, “Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation”, Catalysis Communications, Vol. 9, pp. 955-959 (2008).
Haroun, M., G. V. Chilingar, and S. Pamukcu, “The efficacy of using electrokinetic transport in highly-contaminated offshore sediments,” Journal of Applied Electrochemistry, Vol. 40, pp. 1131-1138 (2010).
Hirai, T., M. Miyamoto, and I. Komasawa, “Composite nano-CdS–polyurethane transparent films,” Journal of Materials, Vol. 9, pp. 1217-1219 (1999).
Hockridge, J. G., F. Jones, M. Loan, and W. R. Richmond, “An electron microscopy study of the crystal growth of schwertmannite needles through oriented aggregation of goethite nanocrystals,” Journal of Crystal Growth, Vol. 311, pp. 3876-3882 (2009).
Huang, H. H., M. C. Lu, and J. N. Chen, “Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides”, Water Research, Vol. 35, pp. 2291-2299 (2001).
Huang, P. C., C. J. Tien, Y. M. Sun, C. Y. Hsieh, and C. C. Lee, “Occurrence of phthalates in sediment and biota: Relationship to aquatic factors and the biota-sediment accumulation factor,” Chemosphere, Vol. 73, pp. 539-544 (2008).
IARC, “Some chemicals present in industrial and consumer products, food and drinking-water,” International Agency for Research on Cancer, IARC Monographs, Vol. 101, pp. 149-284 (2012).
Jacobs, J. A., and S. M. Testa, “Design considerations for in-situ chemical oxidation using high pressure jetting technology,” AEHS Magazine, Sediment and Water, pp. 51-60 (2003).
Jelić, A., M. Petrović, and D. Barceló, “Pharmaceuticals in drinking water”, in: D. Barceló (Ed.), Emerging organic contaminants and human health, Springer-Verlag, Germany, pp. 47-70 (2012).
Jobling, S., T. Reynolds, R. White, M. G. Parker, and J. P. Sumpter, “A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic,” Environmental Health Perspectives, Vol. 103, pp. 582-587 (1995).
Jones, O. A. H., N. Voulvoulis, and J. N. Lester, “Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment,” Critical Reviews in Toxicology, Vol. 34, pp. 335-350 (2004).
Jönsson, J., P. Persson, and S. Sjöberg, “Schwertmannite precipi—tated from acid mi ne drainage: Phase transformation, sulfate release and surface properties,” Applied Geochemistry, Vol. 20, pp. 179-191 (2005).
Jonsson, S., Y. Persson, S. Frankki, B. van Bavel, S. Lundstedt, P. Haglund, and M. Tysklind, “Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’s reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties”, Journal of Hazardous Materials, Vol. 149, pp. 86-96 (2007).
Kaneco, S., H. Katsumata, T. Suzuki, and K. Ohta, “Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution—kinetics, mineralization and reaction mechanism,” Chemical Engineering Journal, Vol. 125, pp. 59-66 (2006).
Kanel, S. R., B. Neppolian, H. Jung, and H. Choi, “Comparative removal of polycyclic aromatic hydrocarbons using iron oxide and hydrogen peroxide in soil slurries”, Environmental Engineering Science, Vol. 21, pp. 741-751 (2004).
Kao, C. M. and M. J. Wu, “Enhanced TCDD degradation by Fenton’s reagent peroxidation”, Journal of Hazardous Materials, Vol. 74, pp. 197-211 (2000).
Kim, E. J., J. W. Kim, and S. K. Lee, “Inhibition of oocyte development in Japanese Medaka (Oryzias Latipes) exposed to di-2-ethylhexyl phthalate,” Environment International, Vol. 28, pp. 359-365 (2002).
Kim, I., N. Yamashita, and H. Tanaka, “Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments,” Chemosphere, Vol. 77, pp. 518-525 (2009).
Kim, J. W., H. S. Jang, J. G. Kim, H. Ishibashi, M. Hirano, K. Nasu, N. Ichikawa, Y. Takao, R. Shinohara, and K. Arizono, “Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from Mankyung River, South Korea,” Journal of Health Science, Vol. 55, pp. 249-258 (2009).
Kwan, W. P. and B. M. Voelker, Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite”, Environmental Science and Technology, Vol. 36, pp. 1467-1476 (2002).
Lageman, R., “Electroreclamation. Applications in netherlands,” Environmental Science and Technology, Vol. 27, pp. 2648-2650 (1993).
Lee, H. H. and J. W. Yang, “A new method to control electrolytes pH by circulation system in electrokinetic soil remediation,” Journal of Hazardous Materials, Vol. 77, pp. 227-240 (2000).
Leinz, R. W., D. B. Hoover, and A. L. Meier, “NEOCHIM: an electrochemical method for environmental application,” Journal of Geochemical Exploration, Vol. 64, pp. 421-434 (1998).
Li, T., S. Yuan, J. Wan, and X. Lu, “Hydroxypropyl-ß-cyclodextrin enhanced electrokinetic remediation of sediment contaminated with HCB and heavy metals,” Journal of Hazardous Materials, Vol. 176, pp. 306-312 (2010).
Li, W., V. Nanaboina, Q. Zhou, and G. V. Korshin, “Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products,” Water Research, Vol. 46, pp. 403-412 (2012).
Li, W., V. Nanaboina, Q. Zhou, and G. V. Korshin, “Changes of excitation/emission matrixes of wastewater caused by Fenton- and Fenton-like treatment and their associations with the generation of hydroxyl radicals, oxidation of effluent organic matter and degradation of trace-level organic pollutants,” Journal of Hazardous Materials, Vols. 244-245, pp. 698-708 (2013).
Li, Z., J. W. Yu, and I. Neretnieks, “Electroremediation: Removal of heavy metals from soils by using cation selective membrane,” Environmental Science and Technology, Vol. 32, pp. 394-397 (1998).
Lin, A. Y. C. and Y. T. Tsai, “Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities,” Science of the Total Environment, Vol. 407, pp. 3793-3802 (2009).
Lin, A. Y. C., S. C. Panchangam, and H. Y. Chen, “Implications of human pharmaceutical occurrence in the Sindian River of Taiwan: A strategic study of risk assessment,” Journal of Environmental Monitoring, Vol. 12, pp. 261-270 (2010).
Lin, C., C. J. Lee, W. M. Mao, and F. Nadim, “Identifying the potential sources of di-(2-ethylhexyl) phthalate contamination in the sediment of the Houjing River in southern Taiwan,” Journal of Hazardous Materials, Vol. 161, pp. 270-275 (2009).
Lin, S. S. and M. D. Gurol, “Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications”, Environmental Science and Technology, Vol. 32, pp. 1417-1423 (1998).
Lin, W. C., H. C. Chen, and W. H. Ding, “Determination of pharmaceutical residues in waters by solid-phase extraction and large-volume on-line derivatization with gas chromatography–mass spectrometry,” Journal of Chromatography A, Vol. 1065, pp. 279-285 (2005).
Lindgren, E. R.; M. W. Kozak; and E. D. Mattson, “Electrokinetic remediation of contaminated soils”, Environmental Remediation Conference, Pasco, Washington State, USA, September 8-11 (1991).
Liou, S. H., G. C. C. Yang, C. L. Wang, and Y. H. Chiu, “Monitoring of PAEMs and beta-agonists in urine for a small group of experimental subjects and PAEs and beta-agonists in drinking water consumed by the same subjects,” Journal of Hazardous Materials, Vol. 277, pp. 169-179 (2014).
Liu, C., V. Nanaboina, and G. Korshin, “Spectroscopic study of the degradation of antibiotics and the generation of representative EfOM oxidation products in ozonated wastewater,” Chemosphere, Vol. 86, pp. 774-782 (2012).
Liu, W. X., J. Hu, J. L. Chen, Y. S. Fan, B. Xing, and S. Tao, “Distribution of persistent toxic substances in benthic bivalves from the inshore areas of the Yellow Sea,” Environmental Toxicology and Chemistry, Vol. 27, pp. 57-66 (2008).
Loan, M., J. M. Cowley, R. Hart, and G. M. Parkinson, “Evidence on the structure of synthetic schwertmannite,” American Mineralogist, Vol. 89, pp. 1735-1742 (2004).
Loan, M., W. R. Richmonda, and G. M. Parkinson, “On the crystal growth of nanoscale schwertmannite,” Journal of Crystal Growth, Vol. 275, pp. e1875-e1881 (2005).
Macdonald, D. D., R. S. Carr, F. D. Calder, E. R. Long, and C. G. Ingersoll, “Development and evaluation of sediment quality guidelines for Florida coastal waters,” Ecotoxicology, Vol. 5, pp. 253-278 (1996).
Mackintosh, C. E., J. Maldonado, J. Hongwu, N. Hoover, A. Chong, M. G. Ikonomou, and F. A. P. C. Gobas, “Distribution of phthalate esters in a marine aquatic food web: Comparison to polychlorinated biphenyls,” Environmental Science and Technology, Vol. 38, pp. 2011-2020 (2004).
Matta, Roger, K. Hanna, and S. Chiron, “Fenton-like oxidation of 2, 4, 6-trinitrotoluene using different iron minerals”, Science of the Total Environment, Vol. 385, pp. 242-251 (2007).
Minten, J., M. Adolfsson-Erici, and T. Alsberg, “Extraction and analysis of pharmaceuticals in polluted sediment using liquid chromatography mass spectrometry,” International Journal of Environmental Analytical Chemistry, Vol. 91, pp. 553-566 (2011).
Neyens, E. and J. Baeyens, “A review of classic Fenton’s peroxidation as an advanced oxidation technique,” Journal of Hazardous Materials, Vol. 98, pp. 35-50 (2003).
Niroumand, H., R. Nazir, and K. A. Kassim, “The performance of electrochemical remediation technologies in soil mechanics”, International Journal of Electrochemical Science, Vol. 7, pp. 5708-5715 (2012).
Nyer, E. K., S. Fam, D. F. Kidd, P. L. Palmcr, G. Bocttcheer, T. L. Crossman, and S. S. Suthersan, “In-situ treatment,” CRC Press, Inc., Boca Raton, Florida, pp. 310-314 (1996).
Ortiz de la Plata, G. B., O. M. Alfano, and A. E. Cassano, “Optical properties of goethite catalyst for heterogeneous photo-Fenton reactions: Comparison with a titanium dioxide catalyst”, Chemical Engineering Journal, Vol. 137, pp. 396-410 (2008).
Peijnenburg, W. J. G. M. and J. Struijs, “Occurrence of phthalate esters in the environment of the Netherlands,” Ecotoxicology and Environmental Safety, Vol. 63, pp. 204-215 (2006).
PLL, “Iodometric titration for hydrogen peroxide,” Peroxide Limited Liability Company, USA, http://www.h2o2.com/technical-library/analytical-methods/default.aspx?pid=70. Accessed 13 March 2014 (2014).
Rahner, D., G. Ludwig, and J. Röhrs, “Electrochemically induced reactions in soils-a new approach to the in-situ remediation of contaminated soils?: Part 1: The microconductor principle,” Electrochimica Acta, Vol. 47, pp. 1395-1043 (2002).
Rastogi, A., S. R. Al-Abed, and D. D. Dionysiou, “Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems,” Applied Catalysis B: Environmental, Vol. 85, pp. 171-179 (2009).
Reddy, K. R. and S. Chinthamreddy, “Electrokinetic remediation of heavy metal-contaminated soils under reducing environments,” Waste Management, Vol. 19, pp. 269-282 (1999).
Reddy, K. R., U. S. Parupudi, S. N. Devulapalli, and Y. C. Xu, “Effects of soil composition on the removal of chromium by electrokinetics,” Journal of Hazardous Materials, Vol. 55, pp. 135-158 (1997).
Regenspurg, S., A. Brand, and S. Peiffer, “Formation and stability of schwertmannite in acid mining lakes,” Geochimica et Cosmochimica Acta, Vol. 68, pp. 1185-1197 (2004).
Reis, E., A. Lodolo, and S. Miertus, “Survey of sediment remediation technology,” International Centre for Science and High Technology, United Nations Industrial Development Organization (2007).
Richardson, S. D. and T. A. Ternes, “Water analysis: Emerging contaminants and current issues,” Analytical Chemistry, Vol. 83, pp. 4614-4648 (2011).
Richardson, S. D., “Environmental mass spectrometry: Emerging contaminants and current issues,” Analytical Chemistry, Vol. 84, pp. 747-778 (2012).
Roslev, P., K. Vorkamp, J. Aarup, K. Frederiken, and P. H. Nielsen, “Degradation of phthalate esters in an activated sludge wastewater treatment plant,” Water Research, Vol. 41, pp. 969-976 (2007).
Saichek, R. E. and K. R. Reddy, “Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review,” Critical Reviews in Environmental Science and Technology, Vol. 35, pp. 115-192 (2005).
Schwertmann, U. and L. Carlson, “The pH-dependent transformation of schwertmannite to goethite at 25℃,” Clay Minerals, Vol. 40, pp. 63-66 (2005).
Shapiro, A. P. and R. E. Probstein, “Removal of contaminants from saturated clay by electroosmosis,” Environmental Science and Technology, Vol. 27, pp. 283-291 (1993).
Stales, C. A., D. R. Peterson, T. F. Parkerton, and W. J. Adams, “The environmental fate of phthalate esters: A literature review,” Chemosphere, Vol. 35, pp. 667-749 (1997).
Šubrt, J., J. Boháček, V. Štengl, T. Grygar, and P. Bezdička, “Uniform particles with a large surface area formed by hydrolysis of Fe2(SO4)3 with urea,” Materials Research Bulletin, Vol. 34, pp. 905-914 (1999).
Suèr, P., K. Gitye, and B. Allard, “Speciation and transport of heavy metals and macroelements during electroremediation,” Environmental Science and Technology, Vol. 37, pp. 177-181 (2003).
Sun, H. W. and Q. S. Yan, “Influence of pyrene combination state in soils on its treatment efficiency by Fenton oxidation”, Journal of Environmental Management, Vol. 88, pp. 556-563 (2008).
Sun, J., J. Huang, A. Zhang, W. Liu, and W. Cheng, “Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime,” Journal of Hazardous Materials, Vols. 248-249, pp. 142-149 (2013a).
Sun, J., A. Zhang, L. Fang, J. Wang, and W. Liu, “Levels and distribution of Dechlorane Plus and related compounds in surficial sediments of the Qiantang River in eastern China: The results of urbanization and tide,” Science of the Total Environment, Vol. 443, pp. 194-199 (2013b).
Swedlund, P. J. and J. G. Webster, “Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite,” Applied Geochemistry, Vol. 16, pp. 503-511 (2001).
Tennakone, K., V. P. S. Perera, I. R. M. Kottegoda, and G. R. R. A. Kumara, “Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV) oxide films,” Journal of Physics D: Applied Physics, Vol. 32, pp. 374-379 (1999).
Thepsithar, P. and E. P. L. Roberts, “Removal of phenol form contaminated kaolin using electrokinetically enchanced in situ chemical oxidation,” Environmental Science and Technology, Vol. 40, pp. 6098-6103 (2006).
Uhl Ⅲ, J. N., “Groundwater remediation technologies for trichloroethylene and technetium-99,” Master Thesis, Department of Civil and Environmental Engineering, University of Louisville, Kentucky, USA (2005).
USEPA, “Reference guide to non-combustion technologies for remediation of persistent organic pollutants in stockpiles and soil,” EPA-542-R-05-006, USEPA, Washington, DC (2005).
USEPA, “Bis(2-ethylhexyl) phthalate (DEHP),” Air Toxics Web Site of United States Environmental Protection Agency, http://www.epa.gov/ttn/atw/hlthef/eth-phth.html/. Accessed 24 December 2014 (2014a).
USEPA, “Clean up technologies,” Superfund of United States Environmental Protection Agency, http://www.epa.gov/superfund/remedytech/. Accessed 12 May 2014 (2014).
Varga, M., J. Dobor, A. Helenkár, L. Jurecska, J. Yao, and G. Záray, “Investigation of acidic pharmaceuticals in river water and sediment by microwave-assisted extraction and gas chromatography–mass spectrometry,” Microchemical Journal, Vol. 95, pp. 353-358 (2010).
Virkutyte, J. and M. Silanpää, “The hindering effect of experimental strategies on advancement of alkaline front and electroosmotic flow during electrokinetic lake sediment treatment,” Journal of Hazardous Materials, Vol. 143, pp. 673-681 (2007).
Virkutyte, J., M. Sillanpää, P. Latostenmaa, and J. Martisius, “Electrode layout and process kinetics of electroremoval of copper from sand,” International Journal of Surface Mining, Reclamation and Environment, Vol. 18, pp. 220-231 (2004).
Wang, F., X. Xia, and Y. Sha, “Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China,” Journal of Hazardous Materials, Vol. 154, pp. 317-324 (2008).
Wang, L., L. Wang, C. Zhu, X. W. Wei, and X. Kan, “Preparation and application of functionalized nanoparticles of CdS as a fluorescence probe,” Analytica Chimica Acta, Vol. 468, pp. 35-41 (2002).
Wang, L. Y., Y. Y. Zhou, L. Wang, C. Q. Zhu, Y. X. Li, and F. Gao, “Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe,” Analytica Chimica Acta, Vol. 466, 87-92 (2002).
Wang, L. Y., L. Wang, L. Dong, Y. L. Hu, T. T. Xia, H. Q. Chen, L. Li, and C. Q. Zhu, “Determination of γ-globulin at nanogram levels by its enhancement effect on the resonance light scattering of functionalized HgS nanoparticles,” Talanta, Vol. 62, 237-240 (2004).
Wang, S., “A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater,” Dyes and Pigments, Vol. 76, 714-720 (2008).
Wang, W. M., J. Song, and X. Han, “Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2,” Journal of Hazardous Materials, Vol. 262, pp. 412-419 (2013).
Watts, R. J., M. D. Udell, P. A. Rauch, and S. W. Leung, “Treatment of pentachlorophenol-contaminated soils using Fenton's reagent,” Hazardous Waste and Hazardous Materials, Vol. 7, pp. 335-345 (1990).
Waychunas, G. A., C. S. Kim, and J. F. Banfield, “Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scanvenging mechanisms,” Journal of Nanoparticle Research, Vol. 7, pp. 409-433 (2005).
WDOE, “Sediment management standards,” Publication no. 13-09-055, Washington Department of Ecology, USA (2013).
Weeks, K. R., C. J. Bruell, and N. R. Mohanty, “Use of Fenton’s reagent for the degradation of TCE in aqueous systems and soil slurries”, Soil and Sediment Contamination, Vol. 9, pp. 331-345 (2000).
Wittle, J. K., S. Pamukcu , D. Bowman, L. M. Zanko, and F. Doering, “Field studies on sediment remediation”, in: K. R. Reddy and C. Cameselle (Eds.), Electrochemical remediation technologies for polluted soils, sediments and groundwater, John Wiley & Sons, USA and Canada, pp. 661-696 (2009).
Yang, G. C. C. and C. F. Yeh, “Enhanced nano-Fe3O4/S2O82− oxidation of trichloroethylene in a clayey soil by electrokinetics,” Separation and Purification Technology, Vol. 79, pp. 264-271 (2011).
Yang, G. C. C., C. H. Yen, and C. L. Wang, “Monitoring and removal of residual phthalate esters andpharmaceuticals in the drinking water of Kaohsiung City, Taiwan,” Journal of Hazardous Materials, Vol. 277, pp. 53-61 (2014a).
Yang, G. C. C., C. L. Wang, and Y. H. Chiu, “Occurrence and distribution of phthalate esters and pharmaceuticals in Taiwan river sediments,” Journal of Soils and Sediments, doi: 10.1007/s11368-014-1003-4 (2014b).
Yang, G. C. C., C. L. Wang, and Y. H. Chiu, “A comprehensive study on remediation of mercury-contaminated soil by the iodide-assisted electrokinetic process,” The 11th Symposium on Electrokinetic Remediation (EREM 2012), Sapporo, Japan, July 8-11 (2012).
Yang, G. C. C., C. L. Wang, and Y. H. Chiu, “Remediation of subsurface mercury contamination using the iodide-assisted electrokinetic process,” The 12th Symposium on Electrokinetic Remediation (EREM 2013), Boston, U.S.A., June 23-26 (2013).
Yang, G. C. C. and C. Y. Liu, “Remediation of TCE contaminated soils by in situ EK-Fenton process,” Journal of Hazardous Materials, Vol. 85, pp. 317-331 (2001).
Yang, G. C. C. and M. Y. Wu, “Injection of nanoscale Fe3O4 slurry coupled with the electrokinetic process for remediation of NO3- in saturated soil: Remediation performance and reaction behavior,” Separation and Purification Technology, Vol. 79, pp. 272-277 (2011).
Yang, G. C. C., S. H. Liou, and C. L. Wang, “The influences of storage and further purification on residual concentrations of pharmaceuticals and phthalate esters in drinking water,” Water, Air, and Soil Pollution, doi: 10.1007/s11270-014-1968-z (2014c).
Yang, G. C. C. and Y. I. Chang, “Remediation of trichloroethylene in saturated soil by emulsified nanoiron coupled with the electrokinetic process,” Separation and Purification Technology, Vol. 79, pp. 278-284 (2011).
Yang, G. C. C. and Y. W. Long, “Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process,” Journal of Hazardous Materials, Vol. 69, pp. 259-271 (1999).
Yu, J. W. and I. Neretnieks, “Theoretical evaluation of a technique for electrokinetic decontamination of soils,” Journal of Contaminant Hydrology, Vol. 26, pp. 291-299 (1997).
Yuan, S. Y., Y. Y. Lin, and B. V. Chang, “Biodegradation of phthalate esters in polluted soil by using organic amendment,” Journal of Environmental Science and Health, Part B, Vol. 46, pp. 419-425 (2011).
Zeng, F., K. Cui, Z. Xie, M. Liu, Y. Li, Y. Lin, Z. Zeng, and F. Li, “Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, south China,” Environment International, Vol. 34, pp. 372-380 (2008).
中石化公司,「中石化 (台鹼) 安順廠整治場址」,中國石油化學工業開發股份有限公司,http://epb3.tainan.gov.tw/cpdc/ch/default.asp,2014年11月查詢 (2014)。
林秉寬,「河川底泥放線菌對鄰苯二甲酸酯類之降解」,碩士學位論文,東吳大學微生物學系,台北市 (2005)。
林郁真、林正芳、康佩群、余宗賢、傅素鄉、蔡宇庭及林志安,「水中醫藥類及其代謝之殘留化學物質之檢測技術建立研究 (2/4)」,行政院環境保護署計畫研究報告 (2008)。
高博緒,「鄰苯二甲酸酯類在河川底泥中之聚積性」,碩士學位論文,國立屏東科技大學環境工程與科學系,屏東縣 (2003)。
陳桂貞,「臺灣河水底泥中放線菌對鄰苯二甲酸二丁酯、鄰苯二甲酸與苯甲酸降解能力之研究」,碩士學位論文,東吳大學微生物學系,台北市 (2008)。
張柏偉,「鄰苯二甲酸二丁酯在後勁溪底泥中的生物降解」,碩士學位論文,義守大學土木與生態工程學系,高雄市 (2010)。
張書奇、余光昌、蔡利局、陳姿文及江蓬鈺,「河川底泥污染整治技術研究-以二仁溪為例」,工業污染防治,第121期,第145-165頁 (2012)。

張書奇、陳鴻偉、羅雲松、江蓬鈺、陳姿文、余光昌、蔡利局及張譽鐘,「鄰苯二甲酸酯塑化劑污染底泥之快速檢測與模場試驗」,103年度土壤及地下水污染整治基金會補助研究與模場試驗成果發表會會議手冊,第135-143頁 (2014)。
黃蘊慧、蔡劍輝及曹亞文,「新礦物 (1994.1–1994.12)」,岩石礦物學雜誌,第18卷,第1期,第50-64頁 (1999)。
楊金鐘、王智龍、黃聖智、邱鈺涵及李玄安,「後勁溪底泥中之鄰苯二甲酸酯類殘留量調查及其利用新穎組合技術現地整治之可行性研究」,102年度土壤及地下水污染整治基金會補助研究與模場試驗成果發表會會議手冊,第106-110頁 (2013)。
楊喜男、王漢泉、劉鎮山、王世冠、彭瑞華、郭季華、楊禮源、李俊宏及徐美榕,「台灣河川水體、底泥及生物監測分析研究計畫」,行政院環境保護署計畫研究報告 (2002)。
蔡國聖、蔡鴻德、鄒燦陽、陳俞穎、陳盈孜、許國恩、楊亞欣、朱敬平及王聖瑋,「地下水鄰苯二甲酸酯類污染潛勢分析」,2014 (第4屆) 新興污染物論壇論文集,第38-45頁,10月17日,高雄市,台灣 (2014)。

環保署,「底泥採樣方法」,行政院環境保護署環境檢驗所,NIEA S104.30C,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2011年9月查詢 (2011a)。
環保署,「土壤水分含量測定方法-重量法」,行政院環境保護署環境檢驗所,NIEA S280.61C,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2011年9月查詢 (2011b)。
環保署,「超音波萃取法」,行政院環境保護署環境檢驗所,NIEA M167.00C, http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=REFSOIL,2011年9月查詢 (2011c)。
環保署,「矽膠淨化法」,行政院環境保護署環境檢驗所,NIEA M183.00C,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=REFSOIL,2011年9月查詢 (2011d)。
環保署,「毒性化學物質環境流布調查成果手冊—100年版」,行政院環境保護署,http://oldweb.epa.gov.tw/ch/DocList.aspx?unit=21&clsone=808&clstwo=0&clsthree=0&busin=324&path=15608,2012年8月查詢 (2012)。
環保署,「土壤及地下水污染整治法」,行政院環境保護署環保法規,http://ivy5.epa.gov.tw/epalaw/index.aspx,2013年8月查詢 (2013a)。
環保署,「底泥品質指標之分類管理及用途限制辦法」,行政院環境保護署環保法規,http://ivy5.epa.gov.tw/epalaw/index.aspx,2013年8月查詢 (2013b)。
環保署,「目的事業主管機關檢測底泥品質備查作業辦法」,行政院環境保護署環保法規,http://ivy5.epa.gov.tw/epalaw/index.aspx,2013年8月查詢 (2013c)。
環保署,「土壤酸鹼值 (pH值) 測定方法-電極法」,行政院環境保護署環境檢驗所,NIEA S410.62C,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2014年1月查詢 (2014a)。
環保署,「土壤及底泥水分含量測定方法-重量法」,行政院環境保護署環境檢驗所,NIEA S280.62C,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2014年1月查詢 (2014b)。
環保署,「水中抗生素類及鎮痛解熱劑類化合物檢測方法─固相萃取與高效液相層析/串聯式質譜儀法」,行政院環境保護署環境檢驗所,NIEA W543.50B,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER,2014年1月查詢 (2014c)。
環保署,「水中新興污染物檢測方法─固相萃取與高效液相層析/串聯式質譜儀法」,行政院環境保護署環境檢驗所,NIEA W545.50B,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER,2014年1月查詢 (2014d)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code