Responsive image
博碩士論文 etd-1122114-151147 詳細資訊
Title page for etd-1122114-151147
論文名稱
Title
同步電混凝/電過濾程序結合自製管狀碳質/陶瓷複合膜去除水中關切的新興污染物
The Use of Simultaneous Electrocoagulation and Electrofiltration Process Coupled with Lab-Prepared Tubular Carbonaceous/Ceramic Composite Membranes for the Removal of Contaminants of Emerging Concern in Aqueous Solutions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
245
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-08
繳交日期
Date of Submission
2014-12-22
關鍵字
Keywords
電過濾、電混凝、管狀陶瓷複合膜、新興污染物、飲水機出流水、自來水、校園生活污水
Electrofiltration, Electrocoagulation, Tubular composite membrane, Drinking fountain water, Tap water, Influent of campus STP
統計
Statistics
本論文已被瀏覽 5683 次,被下載 383
The thesis/dissertation has been browsed 5683 times, has been downloaded 383 times.
中文摘要
本研究工作主要針對台灣南部某校園生活污水處理廠進/放流水、自來水及飲水機出流水中關切之8種鄰苯二甲酸酯類、雙酚A、壬基酚、18種抗生素類藥物及10種非抗生素類藥物等新興污染物進行長期的監測,並使用具有過濾及吸附功能之碳質/氧化鋁複合膜結合同步電混凝/電過濾程序應用在水中新興污染物之去除。根據該校園水質調查結果,可以發現前述所有水體中通常至少含有3種以上之新興污染物,其中,生活污水中以先鋒黴素(Cephalexin)與咖啡因(Caffeine)為平均濃度最高者,其最高濃度分別可達5,199 ng/L及915 ng/L;而自來水及飲水機出流水則以鄰苯二甲酸二丁酯(DnBP)、鄰苯二甲酸二(2-乙基己基)酯(DEHP)及鄰苯二甲酸二異壬酯(DiNP)最為常見,平均濃度介於16-93 ng/L。
本研究亦利用4種管狀濾膜(包括:氧化鋁陶瓷膜、疏水性改質氧化鋁陶瓷膜、二氧化鈦/氧化鋁複合膜及碳質/氧化鋁複合膜),針對含關切新興污染物之模擬水樣進行相關去除機制的探討,試驗結果指出,微過濾陶瓷膜經疏水性改質後,其對模擬水樣中DnBP、DEHP及DiNP等化合物之去除效率可從10%以下提升至10-20%之間;另外,碳質/氧化鋁複合膜其表層奈米碳纖維確實能提升水中新興污染物之去除成效,相較於孔徑相近之二氧化鈦/氧化鋁超過濾複合膜,對於水中Caffeine去除率可從46%提升至69%。
同步電混凝/電過濾(EC/EF)試驗部分,主要針對不同水體中關切的新興污染物進行試驗:以模擬水樣而言,水中關切化合物之去除率皆可超過60%,主要之去除機制來自於電過濾、電混凝及碳吸附效應;於選定的某校園生活污水廠進流水方面,試驗發現天然有機物質(NOM)之存在對生活污水中關切化合物之去除具有正面的影響,加上電混凝及電過濾效應之作用,使得生活污水中標的化合物之去除率皆能超過75%,最高去除率者為Cephalexin(96%);選定的某校園自來水部分,其處理機制則以電混凝及碳吸附效應為主,而自來水中關切化合物之去除率主要介於67-92%之間。最後,阻力串聯模式分析結果發現,薄膜處理結合EC/EF程序,可以有效降低其不可逆之積垢,提高薄膜之耐用性。
Abstract
This study investigated the occurrence and removal efficiencies of 8 phthalate esters, Bisphenol A, Nonylphenol, 18 antibiotics, and 10 non-antibiotics present in the influent of a sewage treatment plant (STP), tap water, and drinking fountain water on a selected campus in southern Taiwan. To this end, a monitoring program was conducted and a novel laboratory-prepared tubular carbonaceous/alumina composite membrane (TCACM) was incorporated into the simultaneous electrocoagulation and electrofiltration (EC/EF) treatment module to remove the emerging contaminants (ECs) from water samples. The monitoring results showed that at least three kinds of ECs present in each of the abovementioned aqueous solutions. It was found that the influent of selected campus STP contained cephalexin and caffeine with concentrations up to 5199 ng/L and 915 ng/L, respectively. Three PAEs (i.e., di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), and di-iso-nonyl phthalate (DiNP)) were usually detected in tap water and drinking fountain water of concern with average concentrations ranging from 16 to 93 ng/L.
Four kinds of lab-perpared membrane, including tubular alumina membrane (TAM), tubular hydrophobically modified TAM, tubular titania/alumina composite membrane (TTACM), and TCACM, were used to investigate relevant removal mechanisms for ECs of concern in model solution. It was found that the removal efficiencies were significantly higher (10-20%) for the tubular hydrophobically modified TAM as compared with TAM. When carbon nanofibers (CNFs) layer was grown on TAM, this membrane would yield a much greater removal efficiency as compared with TTACM, for example, the removal efficiency of caffeine could increase from 46% to 69%.
The test results of the EC/EF process coupled with the TCACMs were also discussed. In model solution, removal efficiencies of over 60% were obtained for all ECs of concern. The synergistic effect of electrocoagulation and electrofiltration was considered as a probable mechanism. For the influent of campus STP, the said synergistic effect yielded the removal efficiencies up to 93% for DnBP, 95% for DEHP, 92% for DiNP, 96% for cephalexin, 95% for ciprofloxacin, 95% for caffeine, and 90% for sulfamethoxazole. Additionally, natural organic matter (NOM) was believed to enhance the removal of ECs from the influent of campus STP. It was also found that 69-72% removal efficiencies of ECs could be obtained in treatment tests of tap water. Effects of electrocoagulation and adsorption of CNFs are believed to be responsible for this finding.
According to the analysis based on the resistance in series model, the EC/EF process coupled with the TCACM yielded a lower irreversible resistance of membrane, resulting in a longer membrane life.
目次 Table of Contents
論文審定書 i
聲明切結書 ii
謝誌 iii
摘要 iv
Abstract vi
目錄 viii
圖目錄 xiii
表目錄 xvii
照片目錄 xxi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究項目 6
第二章 文獻回顧 11
2.1 新興污染物之流布及去除 11
2.1.1 水體中關切之新興污染物的流布 11
2.1.2 關切的新興污染物常見之處理技術 18
2.1.3 關切之新興污染物其相關資訊 24
2.2 薄膜單元 31
2.2.1 薄膜定義與特性 31
2.2.2 薄膜分離程序 32
2.2.3 薄膜組件之形式 34
2.2.4 無機膜之特性 36
2.3 同步電混凝/電過濾程序 38
2.3.1 電混凝之應用 38
2.3.2 掃流電過濾之應用 40
2.3.3 同步電混凝/電過濾程序 44
2.4 變異數分析 47
2.5 薄膜阻力串聯模式 54
第三章 實驗材料、設備與方法 56
3.1 實驗材料 56
3.1.1 生活污水廠進流水及放流水來源 56
3.1.2 自來水及飲水機出流水來源 57
3.1.3 管狀氧化鋁陶瓷膜及其複合膜 57
3.1.4 其他材料與試藥 59
3.2 實驗設備 62
3.2.1 化學氣相沉積設備 62
3.2.2 同步電混凝/電過濾模組 62
3.2.3 蒸氣壓氣體滲透偵測裝置 64
3.2.4 其他實驗設備及儀器 64
3.3管狀氧化鋁陶瓷膜及其複合膜之製備 67
3.3.1 管狀氧化鋁陶瓷膜 67
3.3.2 管狀二氧化鈦/氧化鋁複合膜 68
3.3.3 管狀碳質/氧化鋁複合膜 69
3.4 實驗方法 70
3.4.1 含關切新興污染之模擬水樣配製 70
3.4.2 水樣及濾液品質分析方法 70
3.4.3 掃流過濾試驗 74
3.4.4 同步電混凝/電過濾試驗 77
3.5 實驗設計(AVOVA的應用)78
第四章 結果與討論 81
4.1 關切的新興污染物於選定的某校園生活污水廠進/放流水、自來水及飲水機出流水之調查與探討 81
4.1.1生活污水廠進流水及放流水 81
4.1.2 自來水及飲水機出流水 92
4.1.3 綜合探討 100
4.2 管狀陶瓷膜及其複合膜之特性分析 104
4.2.1 表面疏水性改質 104
4.2.2 顯微結構觀測 107
4.2.3 孔徑分布測定 116
4.3 管狀陶瓷膜及其複合膜去除水中新興污染物之探討 118
4.3.1 尺寸排除效應 119
4.3.2 疏水性效應 121
4.3.3 碳吸附效應 124
4.3.4 綜合探討 134
4.4 管狀碳質/氧化鋁複合膜結合同步電混凝/電過濾程序去除 水中新興污染物之探討 137
4.4.1 模擬水樣 137
4.4.2 選定的某校園生活污水處理廠進流水 147
4.4.3 選定的某校園自來水 159
4.4.4 管狀碳質/氧化鋁複合膜結合同步電混凝/電過濾程序去除水中新興污染物之綜合探討 168
4.5 管狀碳質/氧化鋁複合膜之薄膜積垢阻力探討 176
4.6 管狀碳質/氧化鋁複合膜結合同步電混凝/電過濾程序與其他處理程序之比較 182
第五章 結論與建議 187
5.1 結論 187
5.2 建議 190
參考文獻 191
附錄 215
博士在學期間發表之學術論文及發明專利 220
參考文獻 References
中文部分:
KingNet國家網路藥典,http://hospital.kingnet.com.tw/medicine/ (2014)。
王大銘,“薄膜分離技術於廢水處理之應用概述”,經濟部工業局工安環保報導, http://www.ftis.org.tw/cpe/download/she/Issue23/subject23-2.htm (2004)。
王根樹,“飲用水水源及水質中新興污染物對人體健康風險評估之研究計畫(1/4-4/4)”,行政院環境保護署專案計畫,計畫編號:EPA-U1J1-02-101 (2010-2013)。
申永順,“以高級氧化程序處理染整廢水之研發現況”,環保月刊,第二卷,第八期,第176-185頁 (2002)。
行政院環境保護署飲用水全球資訊網,“飲用水水質管理”,http://dws.epa.gov.tw/qual/index.htm (2012).
行政院環境保護署,“毒性化學物質環境流布調查成果手冊-102年版”, 行政院環境保護署成果報告 (2013)。
行政院環境保護署,“ 宣導手冊-認識生活環境中毒性物質”,http://www.epa.gov.tw/ch/SitePath.aspx?busin=324&path=1787&list=1787 (2013)。
行政院環保署環境檢驗所,「飲用水水質採樣方法-自來水系統」,NIEA W101.54A (2005)。
行政院環保署環境檢驗所,「事業放流水採樣方法」,NIEA W109.51B (2009)。
行政院環境保護署,「石油化學業放流水標準」,環署水字第1000103848號 (2011)。
行政院環境保護署,「化工業放流水標準」,環署水字第1030005888號 (2014)。
朱敬平,“廢水污泥脫水減量與熱化學轉換利用”,財團法人中興工程顧問社簡報,第9頁 (2010)。
杜玉琴,“鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附”,碩士學位論文,國立中央大學環境工程研究所,桃園縣 (2011)。
吳宗正,“變異數分析:理論與應用”,華泰文化事業股份有限公司,台北市 (1999 )。
沈宛瑩,“新穎電薄膜程序處理生活污水中之環境荷爾蒙及藥物”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2013)。
林正芳,“特定污染源廢(污)水中新興污染物管制研究專案計畫”,行政院環境保護署專案計畫,計畫編號:EPA-96-G106-02-237 (2007)。
林伯雄,“化學物質干擾活體生物荷爾蒙平衡之研究”,行政院環境保護署專案計畫,計畫編號:EPA-90-E3S5-02-01 (2001)。
林郁真,“論環境中之新興污染物”,環境工程會刊,第18卷,第1期,第39-55頁 (2007)。
林郁真,“水中醫藥類及其代謝之殘留化學物質之檢測技術建立研究(1/4-4/4)”,行政院環境保護署專案計畫,計畫編號:EPA-E3S4-02-01 (2007-2010)。
周宗享,“同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化去除水溶液中之環境荷爾蒙及藥物”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2012)。
陳家揚,“生活污水中個人保健品殘留化學物質之檢測技術建立研究(1/4-4/4)”,行政院環境保護署專案計畫,計畫編號:EPA-E3S4-02-02 (2007-2010)。
黃英豪,“生活污水中鄰苯二甲酸酯類與藥物:監測及新穎電薄膜處理”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2014)。
陳富政,“利用同步電混凝/電過濾技術處理化學機械研磨廢水”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
歐陽嶠暉,“下水道工程學”,第三版,長松文化興業股份有限公司,台北市 (2000)。
康世芳,“飲用水水源及水質標準中列管污染物篩選與監測計畫(3/3)”,行政院環境保護署專案計畫,計畫編號:EPA-98-U1J1-02-101 (2009)。
楊金鐘,“一種利用同步電混凝及電過濾去除水溶液中奈米微粒及乳化液滴之方法與設備”,中華民國發明專利第229656號 (2005)。
楊金鐘,“利用創新管狀碳質/陶瓷複合膜反應器系統處理校園生活污水中新興污染物之效能評估及其相關的去除機制探討(1/3-3/3)”,科技部研究計畫,計畫編號:NSC-99-2221-E-110-037-MY3 (2010-2012)。
楊金鐘、王智龍、邱鈺涵,“鄰苯二甲酸酯類於後勁溪底泥及河川水流布之初步調查”,中華民國環境工程學會2013年土壤與地下水研討會光碟論文集,高雄市 (2013)。
楊金鐘、劉紹興、王智龍,“台灣南北部自來水中之藥物及鄰苯二甲酸酯類殘留調查與比較”,第29屆自來水研究發表會論文摘要集,第55頁,台中市 (2012)。
楊金鐘、顏嘉亨、沈宛瑩,“藥物在某校園生活污水廠之流佈調查”, 中華民國環境工程學會2011年廢水處理技術研討會光碟論文集,台南市 (2011)。
蔡秀惠,“利用外加電場掃流微過濾程序處理化學機械研磨廢水之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2001)。
鄭人豪,“利用奈米級TiO2薄膜光催化處理氯苯水溶液之研究” ,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司,台北市 (2003)。

英文部分:
Acero, J. L., F. J. Benitez, F. Teva, and A. I. Leal, “Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration,” Chemical Engineering Journal, Vol. 163, pp. 264-272 (2010).
Acero, J. L., F. J. Benitez, F. J. Real, and F. Teva, “Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent,” Chemical Engineering Journal, Vol. 210, pp. 1-8 (2012).
Al-Odaini, N. A., M. P. Zakaria, M. I. Yaziz, and S. Surif, “Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography-tandem mass spectrometry,” Journal of Chromatography A, Vol. 1217, pp. 6791-6806 (2010).
Alpatova, A., E. S. Kim, S. Dong, N. Sun, P. Chelme-Ayala, and M. G. El-Din, “Treatment of oil sands process-affected water with ceramic ultrafiltration membrane: Effects of operating conditions on membrane performance,” Separation and Purification Technology, Vol. 122, pp. 170-182 (2014).
Arsand, D. R., K. Kümmerer, and A. F. Martins, “Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation,” Science of the Total Environment, Vol. 443, pp. 351-357 (2013).
Barceló, D., “Emerging pollutants in water analysis,” TrAC Trends in Analytical Chemistry, Vol. 22, pp. xiv-xvi (2003).
Ben-David, A., R. Bernstein, Y. Oren, S. Belfer, C. Dosoretz, and V. Freger, “Facile surface modification of nanofiltration membranes to target the removal of endocrine-disrupting compounds,” Journal of Membrane Science, Vol. 357, pp. 152-159 (2010).
Berg, P., G. Hagmeyer, and R. Gimbel, “Removal of pesticides and other micropollutants by nanofiltration,” Desalination, Vol. 113, pp. 205-208 (1997).
Bhaskar, T., M. Tanabe, A. Muto, Y. Sakata, C. F. Liu, M. D. Chen, and C. C. Chao, “Analysis of chlorine distribution in the pyrolysis products of poly (vinylidene chloride) mixed with polyethylene, polypropylene or polystyrene,” Polymer Degradation and Stability, Vol. 89, pp. 38-42 (2005).
Bhave, R. R., Inorganic Membranes: Synthesis, Characteristics and Applications, Van Nostrand Rehinhold, New York, U.S.A. (1991).
Bodzek, M., M. Dudziak, and K. Luks-Betlej, “Application of membrane techniques to water purification. Removal of phthalates,” Desalination Vol. 162, pp. 121-128 (2004).
Burggraaf, A. J., K. Keizer, and B. A. V. Hassel, “Ceramic nanostructure materials, membranes and composite layers,” Solid State Ionics, 32/33 (Part 2), pp. 771-782 (1989).
Bystrzejewska-Piotrowska, G., J. Golimowski, and P. L. Urban, “Nanoparticles: Their potential toxicity, waste and environmental management,” Waste Management, Vol. 29, pp. 2587-2595 (2009).
Cabrita, I., B. Ruiz, A. S. Mestre, I. M. Fonseca, A. P. Carvalho, and C.O. Ania, “Removal of an analgesic using activated carbons prepared from urban and industrial residues,” Chemical Engineering Journal, Vol. 163, pp. 249-255 (2010).
Cai, Y. Q., G. B. Jiang, J. F. Liu, and Q. X. Zhou, “Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography,” Analytica Chimica Acta, Vol. 494, pp. 149-156 (2003).
Cao, G. Z., J. Meijerink, H. W. Brinkman, and A. J. Burggraaf, “Permporometry study on size distribution of active pore in porous ceramic membranes,” Journal of Membrane Science, Vol. 83, pp. 221-235 (1993).
Chen, C. Y., W. L. Chen, G. S. Wang, and J. C. Gwo, “Ultra-high performance liquid chromatography/tandem mass spectrometry determination of feminizing chemicals in river water, sediment and tissue pretreated using disk-type solid-phase extraction and matrix solid-phase dispersion,” Talanta, Vol. 89, pp. 237-245 (2012).
Chen, X., G. Chen, and P. L. Yue, “Separation of Pollutants from Restaurant Wastewater by Electrocoagulation,” Separation and Purification Technology, Vol. 19, pp. 65-76 (2000).
Cheryan, M., Ultrafiltration Handbook, Technomic Publishing Company, Lancaster, Pennsylvania, USA (1986).
Chiu, T. Y. and F. J. G. Garcia, “Critical flux enhancement in electrically assisted microfiltration,” Separation and Purification Technology, Vol. 78 , pp. 62-68 (2011).
Cho, J. W., G. Amy, and J. Pellegrino, “Membrane filtration of natural organic matter: initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes,” Water Research, Vol. 33, pp. 2517-2526 (1999).
Cho, J., G. Amy, and J. Pellegrino, “Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane,” Journal of Membrane Science, Vol. 164, pp. 89-110 (2000).
Clara, M., G. Windhofer, W. Hartl, K. Braun, M. Simon, O. Gans, C. Scheffknecht, and A. Chovanec, “Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment,” Chemosphere, Vol. 78, pp. 1078-1084 (2010).
Commission of the European Communities, Opinion of the Scientific Committee on Food on Bisphenol A, SCF/CS/PM/3936 (2002).
Cunningham, V. L., S. P. Binks, and M. J. Olsonc, “Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment,” Regulatory Toxicology and Pharmacology, Vol. 53, pp. 39-45 (2009).
Cuperus, F. P., D. Bargeman, and C. A. Smolders, “Permporometry: The determination of the size distribution of active pores in UF membranes,” Journal of Membrane Science, Vol. 71, pp. 57-67 (1992).
Dargnat, C., M. Blanchard, M. Chevreuil, and M. J. Teil, “Occurrence of phthalate esters in the Seine River Estuary (France),” Hydrological Processes, Vol. 23, pp. 1192-1201 (2009).
Deblonde, T., C. Cossu-Leguilleb, and P. Hartemanna, “Emerging pollutants in wastewater: A review of the literature,” International Journal of Hygiene and Environmental Health, Vol. 214, pp. 442-448 (2011).
Ding, W. H., C. T. Li, and C. Y. Cheng, “Determination of alkylphenol residues in baby-food purees by steam distillation extraction and gas chromatography-mass spectrometry,” Food and Chemical Toxicology, Vol. 46, pp. 803-807 (2008).
Ding, W. H., C. Y. Cheng, C. Y. Wu, and C. H. Wang, “Determination and distribution characteristics of degradation products of nonylphenol polyethoxylates in the rivers of Taiwan,” Chemosphere, Vol. 65, pp. 2275-2281 (2006).
Dolar, D., A. Vukovic, D. Asperger, and K. Kosutic, “Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes,” Journal of Environmental Sciences, Vol. 23, pp. 1299-1307 (2011).
Drewes, J. E., J. Hemming, S. J. Ladenburger, J. Schauer, and W. Sonzogni, “An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements,” Water Environment Research, Vol. 77, pp. 12-23 (2005).
El Maghraby, G. M. M., A. C. Williams, and B. W. Barry, “Drug interaction and location in liposomes: correlation with polar surface areas,” International Journal of Pharmaceutics, Vol. 292, pp. 179-185 (2005).
Ellis, J. B., “Pharmaceutical and personal care products (PPCPs) in urban receiving waters,” Environmental Pollution, Vol. 144, pp. 184-189 (2006).
Emamjomeh, M. M. and M. Sivakumar, “Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes,” Journal of Environmental Management, Vol. 90, pp. 1663-1679 (2009).
Endo, M., Y. J. Kim, T. Takeda, T. Maeda, T. Hayashi, K. Koshiba, H. Hara, and M. S. Dresselhaus, “Poly(vinylidenechloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte,” Journal of The Electrochemical Society, Vol. 148, pp. A1135-A1140 (2001).
Field, J. A., C. A. Johnson, and J. B. Rose, “ What is “emerging”? ” Environmental Science & Technology, Vol. 40, p. 7105 (2006).
Gao, N., M. Li, W. Jing, Y. Fan, and N. Xu, “Improving the filtration performance of ZrO2 membrane in non-polar organic solvents by surface hydrophobic modification,” Journal of Membrane Science, Vol. 375, pp. 276-283 (2011).
García-Galán, M. J., T. Garrido, J. Fraile, A. Ginebreda, M. S. Díaz-Cruz, and D. Barceló, “Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain),” Journal of Hydrology, Vol. 383, pp. 93-101 (2010).
Gengenbach, T. R. and H. J. Griesser, “Post-deposition ageing reactions differ markedly between plasma polymers deposited from siloxane and silazane monomers,” Polymer, Vol. 40, pp. 5079-5094 (1999).
Gozmen, B., M. A. Oturan, N. Oturan, and O. Erbatur, “Indirect electrochemical treatment of bisphenol-A in water via electrochemically generated Fenton’s reagent,” Environmental Science & Technology, Vol. 37, pp. 3716-3723 (2003).
Grover, D. P., J. L. Zhou, P. E. Frickers, and J. W. Readman, “Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: Impact on receiving river water,” Journal of Hazardous Materials, Vol. 185, pp. 1005-1011 (2011).
Hai, F. I., X. Li, W. E. Price, and L. D. Nghiem, “Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions,” Bioresource Technology, Vol. 102, pp. 10386-10390 (2011).
Hammes, J., J. A. Gallego-Urrea, and M. Hassellov, “Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport,” Water Research, Vol. 4, pp. 5350-5361 (2013).
Heberer, T., “Tracking persistent pharmaceutical residues from municipal sewage to drinking water,” Journal of Hydrology, Vol. 266, pp. 175-189 (2002).
Huang, P., N. Xu, J. Shi, and Y. S. Lin, “Characterization of asymmetric ceramic membranes by modified permporometry,” Journal of Membrane Science, Vol. 116, pp. 301-305 (1996).
Huotari, H. M., G. Tragardh, and I. H. Huisman, “Crossflow membrane filtration enhanced by an external DC electric field: A review,” Chemical Engineering Research and Design, Vol. 77A, pp. 461-468 (1999).
Jin, X. L., G. Jiang, G. L. Huang, J. F. Liu, and Q. F. Zhou, “Determination of 4-tertoctylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring,” Chemosphere, Vol. 56, pp. 1113-1119 (2004).
Jiang, J. Q., Z. Zhou, and V. K. Sharma, “Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water-A review from global views,” Microchemical Journal, Vol. 110, pp. 292-300 (2013).
Joseph, L., J. Heo, Y.-G. Park, J. R.V. Flora, and Y. Yoon, “Adsorption of bisphenol A and 17α-ethinyl estradiol on single walled carbon nanotubes from seawater and brackish water,” Desalination, Vol. 281, pp. 68-74 (2011).
Kang, J. H., D. Asai, and Y. Katayama, “Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms,” Critical Reviews in Toxicology, Vol. 37, pp. 607-625 (2007).
Khandegar, V. and A. K. Saroha, “Electrocoagulation for the treatment of textile industry effluent - A review,” Journal of Environmental Management, Vol. 128, pp. 949-963 (2013).
Kim, C., K. S. Yang, Y. J. Kim, and M. Endo, “Heat treatment temperature effects on structural and electrochemical properties of PVDC-based disordered carbons,” Journal of Membrane Science, Vol. 38, pp. 2987-2991 (2003).
Kimura, K., S. Toshima, G. Amy, and Y. Watanabe, “Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes,” Journal of Membrane Science, Vol. 245, pp. 71-78 (2004).
Kimura, K., T. Iwase, S. Kita, and Y. Watanabe, “Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes,” Water Research, Vol. 43, pp. 3751-3758 (2009).
Kiso, Y., T. Kon, T. Kitao, and K. Nishimura, “Rejection properties of alkyl phthalates with nanofiltration membranes,” Journal of Membrane Science, Vol. 182, pp. 205-214 (2001).
Kolpin, D. W., E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, and H. T. Buxton, “Pharmaceuticals, hormones, and other organic waste contaminants in U.S. streams, 1999-2000: a national reconnaissance,” Environmental Science & Technology, Vol. 36, pp. 1202-1211 (2002).
Klamerth, N., N. Miranda, S. Malato, A. Aguera, A. R. Fernandez-Alba, M. I. Maldonado, and J. M. Coronado, “Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2,” Catalysis Today, Vol. 144, pp. 124-130 (2009).
Kumar, A. and I. Xagoraraki, “Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking system,” Science of the Total Environment, Vol. 408, pp. 5972-5989 (2010).
Kuo, C. Y., “Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A,” Desalination, Vol. 249, pp. 976-982 (2009).
Kuster, M., M. J. L. de Alda, M. D. Hernando, M. Petrovic, J. Martín-Alonso, and D. Barceló, “Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain),” Journal of Hydrology, Vol. 358, pp. 112-123 (2008).
Lapworth, D. J., N. Baran, M. E. Stuart, and R. S. Ward, “Emerging organic contaminants in groundwater: A review of sources, fate and occurrence,” Environmental Pollution, Vol. 163, pp. 287-303 (2012).
Lee, S. J., M. Dilaver, P. K. Park, and J. H. Kim, “Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models,” Journal of Membrane Science, Vol. 432, pp. 97-105 (2013).
Lin, A. Y. C., T. H. Yu, and C. F. Lin, “Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan,” Chemosphere, Vol. 74, pp. 131-141 (2008).
Lin, A. Y. C. and Y. T. Tsai, “Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities,” Science of the Total Environment, Vol. 407, pp. 3793-3802 (2009).
Liou, S. H., G. C. C. Yang, C. L. Wang, and Y. H. Chiu, “Monitoring of PAEMs and beta-agonists in urine for a small group ofexperimental subjects and PAEs and beta-agonists in drinking waterconsumed by the same subjects,” Journal of Hazardous Materials, DOI 10.1016/j.jhazmat.2014.02.024 (2014).
Li, Z. Y., M. Gibson, C. Liu, and H. Hu, “Seasonal variation of nonylphenol concentrations and fluxes with influence of flooding in the Daliao River Estuary, China,” Environmental Monitoring and Assessment, Vol. 185, pp. 5221-5230 (2013).
Loos, R., B. M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, and G. Bidoglio, “EU-wide survey of polar organic persistent pollutants in European river waters,” Environmental Pollution, Vol. 157, pp. 561-568 (2009).
Loos, R., R. Carvalho, D. C. Anto´nio, S. Comero, G. Locoro, S. Tavazzi, B. Paracchini, M. Ghiani, T. Lettieri, L. Blaha, B. Jarosova, S. Voorspoels, K. Servaes, P. Haglund, J. Fick, R. H. Lindberg, D. Schwesig, and B. M. Gawlik, “EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents,” Water Research, Vol. 47, pp. 6475-6487 (2013).
Luks-Betlej, K., P. Popp, B. Janoszka, and H. Paschke, “Solid-phase microextraction of phthalates from water,” Journal of Chromatography A, Vol. 938, pp. 93-101 (2001).
Madaleno, L., J. Schjodt-Thomsen, and J. C. Pinto, “Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending+melt compounding,” Composites Science and Technology, Vol. 70, pp. 804-814 (2010).
Marcoux, M. A., M. Matias, F. Olivier, and G. Keck, “Review and prospect of emerging contaminants in waste–Key issues and challenges linked to their presence in waste treatment schemes: General aspects and focus on nanoparticles,” Waste Management, Vol. 33, pp. 2147-2156 (2013).
Meffe, R. and I. de Bustamante, “Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy,” Science of the Total Environment, Vol. 481, pp. 280-295 (2014).
Minh, T. B., H. W. Leung, I. H. Loi, W. H. Chan, M. K. So, J. Q. Mao, D. Choi, J. C.W.Lam, G. Zheng, M. Martin, J. H. W. Lee, P. K. S. Lam, and B. J. Richardson, “Antibiotics in the Hong Kong metropolitan area: ubiquitous distribution and fate in Victoria Harbour,” Marine Pollution Bulletin, Vol. 58, pp. 1052-1062 (2009).
Mojica, E. -R. E. and D. S. Aga, “Antibiotics pollution in soil and water: potential ecological and human health issues,” Encyclopedia of Environmental Health, pp. 97-110 (2011).
Mollah, M. Y. A., P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” Journal of Hazardous Materials, Vol. B114, pp. 199-210 (2004).
Mulder, M., Basic Principles of Membrane Technology, Second Edition, Kluwer Academic Publishers, Dordrecht, The Netherlands (1997).
Narbaitz, R. M., D. Rana, H. T. Dang, J. Morrissette, T. Matsuura, S. Y. Jasim, S. Tabe, and P. Yang, “Pharmaceutical and personal care products removal from drinking water by modified cellulose acetate membrane: Field testing,” Chemical Engineering Journal, Vol. 225, pp. 848-856 (2013).
Nghiem, L. D. and S. Hawkes, “Effects of membrane fouling on the nanofiltration of trace organic contaminants,” Desalination, Vol. 236, pp. 273-281 (2009).
Omastova, M., S. Podhradska, J. Prokes, I. Janigova, and J. Stejskal, “Thermal ageing of conducting polymeric composites,” Polymer Degradation and Stability, Vol. 82, pp. 251-256 (2003).
Orvos, D. R., D. J. Versteeg, J. Inauen, M. Capdevielle, A. Rothenstein, and V. Cunningham, “Aquatic toxicity of triclosan,” Environmental Toxicology and Chemistry, Vol. 21, pp. 1338-1349 (2002).
Ouaissa, Y. A., M. Chabani, A. Amrane, and A. Bensmaili, “Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption,” Journal of Environmental Chemical Engineering, Vol. 2, pp. 177-184 (2014).
Petrovic, M., S. Gonzalez, and D. Barcelo, “Analysis and removal of emerging contaminants in wastewater and drinking water,” TrAC Trends in Analytical Chemistry, Vol. 22, pp. 685-696 (2003).
Picó, Y., M. Farré, and D. Barceló, “Emerging contaminants,” In: Chemical Analysis of Food: Techniques and Applications, Chapter 20, Academic Press, pp. 665-691 (2012).
Rahman, M. F., E. K. Yanful, and S. Y. Jasim, “Occurrence of endocrine disrupting compounds and pharmaceuticals in the aquatic environment and their removal from drinking water: challenges in the context of the developing world,” Desalination, Vol. 248, pp. 578-585 (2009).
Rippeger, S. and J. Altmann, “Crossflow microfiltration – state of the art,” Separation and Purification Technology, Vol. 26, pp. 19-31 (2002).
Rochester, J. R., “Bisphenol A and human health: A review of the literature,” Reproductive Toxicology, Vol. 42, pp. 132-155 (2013).
Royal Society of Chemistry, ChemSpider Search and Share Chemistry, http://www.chemspider.com/ (2014).
Soares, A., B. Guieysse, B. Jefferson, E. Cartmell, and J. N. Lester, “Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters,” Environment International, Vol. 34, pp. 1033-1049 (2008).
Sabaliunas, D., S. F. Webb, A. Hauk, M. Jacob, and W. S. Eckhoff, “Environmental fate of triclosan in the River Aire Basin, UK,” Water Research, Vol. 37, pp. 3145-3154 (2003).
Santos, L. H., A. N. Araújo, A. Fachini, A. Pena, C. Delerue-Matos, and M. C. Montenegro, “Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment,” Journal of Hazardous Materials, Vol. 175, pp. 45-95 (2010).
Serodioa, P. and J. M. F. Nogueira, “Considerations on ultra-trace analysis of phthalates in drinking water,” Water Research, Vol. 40, pp. 2572-2582 (2006).
Shirtcliffe, N. J., G. McHale, S. Atherton, and M. I. Newton, “An introduction to superhydrophobicity,” Advances in Colloid and Interface Science, Vol. 161, pp. 124-138 (2010).
Shityakov, S., W. Neuhaus, T. Dandekar, and C. Förster, “Analysing molecular polar surface descriptors to predict blood-brain barrier permeation,” International Journal of Computational Biology and Drug Design, Vol. 6, pp. 146-156 (2013).
Shraim, A., A. Diab, A. Alsuhaimi, E. Niazy, M. Metwally, M. Amad, S. Sioud, and A. Dawoud, “Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah,” Arabian Journal of Chemistry, Available online 29 November (2012).
Sichel, C., C. Garcia, and K. Andre, “Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants,” Water Research, Vol. 45, pp 6371-6380 (2011).
Sim, W. J., J. W. Lee, and J. E. Oh, “Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea,” Environmental Pollution, Vol. 158, pp. 1938-1947 (2010).
Snyder, S. A., S. Adham, A. M. Redding, F. S. Cannon, J. DeCarolis, J. Oppenheimer, E. C. Wert, and Y. Yoon, “Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals,” Desalination, Vol. 202, pp. 156-181 (2007).
Stackelberg, P. E., E. T. Furlong, M. T. Meyer, S. D. Zaugg, A. K. Henderson, and D. B. Reissman, “Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant,” Science of the Total Environment, Vol. 329, pp. 99-113 (2004).
Staples, C. A., D. R. Peterson, T. F. Parkerton, and W. J. Adams, “The environmental fate of phthalate esters: A literature review,” Chemosphere, Vol. 35, pp. 667-749 (1997).
Steinle-Darling, E., E. Litwiller, and M. Reinhard, “Effects of sorption on the rejection of trace organic contaminants during nanofiltration,” Environmental Science & Technology, Vol. 44, pp. 2592-2598 (2010).
Tambosi, J. L., R. F. de Sena, M. Favier, W. Gebhardt, H. J. José, H. F. Schröder, and R. de F. P. M., Moreira, “Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes,” Desalination, Vol. 261, pp. 148-156 (2010).
Tansel, B., W. Y. Bao, and I. N. Tansel, “Characterization of fouling kinetics in ultrafiltration systems by resistances in series model,” Desalination, Vol. 129, pp. 7-14 (2000).
US Environmental Protection Agency, “Integrated risk information system of bisphenol A,” CASRN 80-05-7, http://www.epa.gov/IRIS/subst/03
56.htm (1993).
US Environmental Protection Agency. Integrated risk information system of Di(2-ethylhexyl)phthalate (DEHP), CASRN 117-81-7, http://www.epa.gov/iris/subst/0014.htm (1993).
Verlicchi, P., A. Galletti, M. Petrovic, and D. Barceló, “Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options,” Journal of Hydrology, Vol. 389, pp. 416-428 (2010).
Wan, C., Y. Zhang, and Y. Zhang, “Effect of alkyl quaternary ammonium on processing discoloration of melt-intercalated PVC-montmorillonite composites,” Polymer Testing, Vol. 23, pp. 299-306 (2004).
Wang, S. L., G. W. Chen, W. H. Ding, H. Y. Ku, H. R. Chao, H. Y. Chen, and M. C. Huang, “Alkylphenols in human milk and their relations to dietary habits in central Taiwan,” Food and Chemical Toxicology, Vol. 48, pp. 1939-1944 (2010).
Weigert, T., J. Altmann, and S. Reppeerger, “Crossflow electrofiltration in pilot scale,” Journal of Membrane Science, Vol. 159, pp. 253-262 (1999).
Wray, H. E., R. C. Andrews, and P. R. Berube, “Surface shear stress and retention of emerging contaminants during ultrafiltration for drinking water treatment,” Separation and Purification Technology, 122, 183-191 (2014).
Xu, J., C. Y. Chang, and C. Gao, “Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination,” Separation and Purification Technology, Vol. 75, pp. 165-173 (2010).
Xu, J., L. G. Ruan, X. Wang, Y. Y. Jiang, L. X. Gao, and J. C. Gao, “Ultrafiltration as pretreatment of seawater desalination: Critical flux, rejection and resistance analysis,” Separation and Purification Technology, Vol. 85, pp. 45-53 (2012).
Xu, P., J. E. Drewes, C. Bellona, G. Amy, T. U. Kim, M. Adam, and T. Heberer, “Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications,” Water Environment Research, Vol. 77, pp. 40-48 (2005).
Yak, H. K., J. H. Peng, C. W. Huang, and Y. M. Weng, , “Determination of polybrominated diphenyl ethers (PBDEs) in fish samples from rivers and estuaries in Taiwan,” Chemosphere, Vol. 66, pp. 1990-1997 (2007).
Yang, G. C. C. and C. C. Chuang, “Treatment of nanosized TiO2-containing wastewater by simultaneous electrocoagulation/electrofiltration,” Water Science and Technology, Vol 52, pp. 377-381 (2005).
Yang, G. C. C. and C. H. Yen, “Treatment of acetaminophen and erythromycin in sewage by the simultaneous electrocoagulation/electrofiltration process using tubular carbonaceous/ceramic composite membranes,” Proceedings of the 4th IWA-ASPIRE Conference and Exhibition, Oct 2-6, Tokyo, Japan (2011).
Yang, G. C. C. and C. H. Yen, “The use of different materials to form the intermediate layers of tubular carbon nanofibers/carbon/alumina composite membranes for removing pharmaceuticals from aqueous solutions,” Journal of Membrane Science, Vol. 425-426, pp. 121-130 (2013).
Yang, G. C. C., C. H. Yen, and C. L. Wang, “Monitoring and removal of residual phthalate esters andpharmaceuticals in the drinking water of Kaohsiung City, Taiwan,” Journal of Hazardous Materials, Vol. 277, pp. 53-61 (2014a).
Yang, G. C. C. and C. J. Li, “Preparation of tubular TiO2/Al2O3 composite membranes and their performance in electrofiltration of Oxide-CMP wastewater,” Desalination, Vol. 200, pp. 74-76 (2006).
Yang, G. C. C. and C. J. Li, “Electrofiltration of silica nanoparticle containing wastewater using tubular ceramic membranes,” Separation and Purification Technology, Vol. 58, pp. 159-165 (2007).
Yang, G. C. C. and C. J. Li, “Tubular TiO2/Al2O3 composite membranes: preparation, characterization, and performance in electrofiltration of oxide-CMP wastewater,” Desalination, Vol. 234, pp. 354-361 (2008).
Yang, G. C. C. and C. M. Tsai, “Performance evaluation of a simultaneous electrocoagulation and electrofiltration module for the treatment of Cu–CMP and Oxide-CMP wastewater,” Journal of Membrane Science, Vol. 286, pp. 36-44 (2006).
Yang, G. C. C. and C. M. Tsai, “Preparation of carbon fibers/carbon/alumina tubular composite membranes and their applications in treating Cu-CMP wastewater by a novel electrochemical process,” Journal of Membrane Science, Vol. 321, pp. 232-239 (2008).
Yang, G. C. C., S. H. Liou, and C. L. Wang, “The influences of storage and further purification on residual concentrations of pharmaceuticals and phthalate esters in drinking water,” Water, Air, & Soil Pollution, DOI 10.1007/s11270-014-1968-z (2014b).
Yoon, Y., P. Westerhoff, S. A. Snyder, and E. C. Wert, “Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products,” Journal of Membrane Science, Vol. 270, pp. 88-100 (2006).
Zhang, Q., W. Jing, Y. Fan, and N. Xu, “An improved Parks equation for prediction of surface charge properties of composite ceramic membranes,” Journal of Membrane Science, Vol. 318, pp. 100-106 (2008).
Zhang, Y., C. Causserand, P. Aimar, and J. P. Cravedi, “Removal of bisphenol A by a nanofiltration membrane in view of drinking water production,” Water Research, Vol. 40, pp. 3793-3799 (2006).
Zhu, J., T. Zhao, I. Kvande, D. Chen, X. Zhou, and W. Yuan, “Carbon nanofiber-supported Pd catalysts for heck reaction: Effects of support interaction,” Chinese Journal of Catalysis, Vol. 29, pp. 1145-1151 (2008).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code