Responsive image
博碩士論文 etd-1122116-152016 詳細資訊
Title page for etd-1122116-152016
論文名稱
Title
三重磁化準備快速梯度迴訊脈衝序列在3T磁場下實現人腦T1弛緩常數測量與組織對比最佳化
Whole-brain T1 Mapping and CNR Optimization using MP3RAGE pulse sequence at 3.0Tesla
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-12-08
繳交日期
Date of Submission
2016-12-22
關鍵字
Keywords
反轉脈衝激發效率、T1弛緩常數分布圖、三重磁化準備快速梯度迴訊、雙重磁化準備快速梯度迴訊、對比雜訊比
MP3RAGE, T1 Mapping, inversion efficiency, contrast-to-noise ratio, MP2RAGE
統計
Statistics
本論文已被瀏覽 5671 次,被下載 99
The thesis/dissertation has been browsed 5671 times, has been downloaded 99 times.
中文摘要
三重磁化準備快速梯度迴訊(MP3RAGE)成像技術在2012年提出,並且實現於1.5T磁場,此技術是在一次激發過程中,收取三組不同反轉時間的影像,修正雙重磁化準備快速梯度迴訊(MP2RAGE)成像技術在測量T1的同時,無法考量反轉隔熱脈衝所帶來的影響。2013年MP3RAGE脈衝序列提出了新的影像合併方法,並推導出其雜訊模型,透過模擬方式找出脈衝序列的最佳反轉時間與其他掃描參數,針對人腦之對比雜訊比(CNR)進行最大化,並且實現於1.5T磁場下。

本研究中,將使用MP3RAGE脈衝序列實現於3T磁場下進行人腦T1之測量,並與IR-FSE、MP2RAGE脈衝序列在相同磁場下進行比較,並且討論IR-FSE、MP3RAGE脈衝序列所使用的反轉隔熱脈衝在人腦中激發效率(Eff)的分布情況。此外,將使用MP3RAGE脈衝序列所提出的影像合併方法與推導的雜訊模型,進行不同切面的CNR最佳化參數計算。

實驗結果得知,IR-FSE、MP2RAGE、MP3RAGE脈衝序列所計算出的T1不盡相同,但皆在T1的合理範圍內。而MP3RAGE脈衝序列在人腦中心處的位置所獲得的Eff皆為1.00、眼球附近約為0.30、鼻竇區域約為0.50~0.70,表示在不同區域位置可能會有不同的激發效率,而MP3RAGE能獲得一組不受激發效率所影響的T1 Mapping;最後CNR最佳化參數實驗結果所量測的組織對比與模擬結果不盡相同,而這是模擬中所假設的T1是根據參考文獻而來,與實際使用MP3RAGE所計算出的T1略有不同,因此若使用本研究中所計算出來的T1搭配實驗掃描參數進行模擬,結果顯示在灰質的訊號與實驗結果相符。
Abstract
Magnetization Prepared 3 Rapid Gradient Echo (MP3RAGE) was proposed and implemented at 1.5 T in 2012. By receiving three data sets of different inversion times, MP3RAGE achieves T1 mapping without assuming inversion efficiency (Eff) as a global constant in MP2RAGE. Furthermore, the image reconstruction and noise model of MP3RAGE was also derived in 2013, rendering the optimization of contrast-to-noise ratio (CNR) of human brain at 1.5 T.

In this study, the implementation of MP3RAGE pulse sequence at 3T is performed to obtain the whole-brain high resolution T1 mapping. T1 measurement by using IR-FSE and MP2RAGE was compared and the spatial distribution of Eff was discussed. In addition, the CNR optimization has been done by applying the model previously proposed by our team.

The results reveal that the T1 values obtained by IR-FSE, MP2RAGE and MP3RAGE are not identical but still fall in reasonable range according to literatures. Except regions close to the edge of the RF coil or those suffering serious inhomogeneity of susceptibility, most parts of the brain show an Eff of nearly 1.0 in MP3RAGE. In comparison, the value around eyeballs is 0.3 and that of nasal sinus is about 0.50~0.70, which indicates that Eff is location dependent. On the other hand, the in vivo experiment of CNR optimization shows that the tissue contrast of MP3RAGE does not match the simulation very well. This is possibly because the assumption of T1 in simulation differs from with the value measured by the T1 mapping of MP3RAGE. By replacing the T1 relaxation time, it is found that the simulated signal of gray matter agrees with the experimental result perfectly.
目次 Table of Contents
審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 簡介 1
第一節 背景 1
第二節 研究動機與目的 4
第二章 脈衝序列 5
第一節 IR-FSE 5
第二節 MP2RAGE 7
第三節 MP3RAGE 10
第四節 CNR定義與最佳化模擬 13
第三章 人體實驗 19
第一節 IR-FSE序列之T1 MAPPING測量 21
第二節 MP2RAGE序列之T1 MAPPING測量 25
第三節 MP3RAGE序列之T1 MAPPING測量 28
第四節 CNR最佳化實驗結果 31
第四章 討論與結論 34
第一節 針對不同序列計算之EFF結果比較 34
第二節 針對不同序列計算之T1 MAPPING結果比較 37
第三節 MP3RAGE脈衝序列的CNR最佳化 41
第四節 結論 46
參考文獻 47
參考文獻 References
1. Brex, P.A., et al., Lesion heterogeneity in multiple sclerosis: a study of the relations between appearances on T1 weighted images, T1 relaxation times, and metabolite concentrations. J Neurol Neurosurg Psychiatry, 2000. 68(5): p. 627-32.
2. Goubran, M., et al., In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy. Hum Brain Mapp, 2016. 37(3): p. 1103-19.
3. El Azami, M., et al., Detection of Lesions Underlying Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem. PLoS One, 2016. 11(9): p. e0161498.
4. Moon, W.J., et al., A Comparison of Substantia Nigra T1 Hyperintensity in Parkinson's Disease Dementia, Alzheimer's Disease and Age-Matched Controls: Volumetric Analysis of Neuromelanin Imaging. Korean J Radiol, 2016. 17(5): p. 633-40.
5. Constable, R.T., R.C. Smith, and J.C. Gore, Signal-to-noise and contrast in fast spin echo (FSE) and inversion recovery FSE imaging. J Comput Assist Tomogr, 1992. 16(1): p. 41-7.
6. Zhu, D.C. and R.D. Penn, Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering. Magn Reson Med, 2005. 54(3): p. 725-31.
7. Mugler, J.P., 3rd and J.R. Brookeman, Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med, 1990. 15(1): p. 152-7.
8. Ashburner, J. and K.J. Friston, Voxel-based morphometry--the methods. Neuroimage, 2000. 11(6 Pt 1): p. 805-21.
9. Cohen, M.S., R.M. DuBois, and M.M. Zeineh, Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging. Hum Brain Mapp, 2000. 10(4): p. 204-11.
10. Axel, L., J. Costantini, and J. Listerud, Intensity correction in surface-coil MR imaging. AJR Am J Roentgenol, 1987. 148(2): p. 418-20.
11. Katscher, U. and P. Bornert, Parallel RF transmission in MRI. NMR Biomed, 2006. 19(3): p. 393-400.
12. Marques, J.P., et al., MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage, 2010. 49(2): p. 1271-81.
13. Van de Moortele, P.F., et al., T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. Neuroimage, 2009. 46(2): p. 432-46.
14. Marques, J.P. and R. Gruetter, New developments and applications of the MP2RAGE sequence--focusing the contrast and high spatial resolution R1 mapping. PLoS One, 2013. 8(7): p. e69294.
15. Fujimoto, K., et al., Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. Neuroimage, 2014. 90: p. 60-73.
16. Shin, W., et al., CNR improvement of MP2RAGE from slice encoding directional acceleration. Magn Reson Imaging, 2016. 34(6): p. 779-84.
17. Tannus, A. and M. Garwood, Adiabatic pulses. NMR Biomed, 1997. 10(8): p. 423-34.
18. Conolly, S., et al., A reduced power selective adiabatic spin-echo pulse sequence. Magn Reson Med, 1991. 18(1): p. 28-38.
19. de Graaf, R.A., et al., Spectral editing with adiabatic pulses. J Magn Reson B, 1995. 109(2): p. 184-93.
20. Zaitsev, M., S. Steinhoff, and N.J. Shah, Error reduction and parameter optimization of the TAPIR method for fast T1 mapping. Magn Reson Med, 2003. 49(6): p. 1121-32.
21. Kingsley, P.B., et al., Correction of errors caused by imperfect inversion pulses in MR imaging measurement of T1 relaxation times. Magn Reson Imaging, 1998. 16(9): p. 1049-55.
22. Chen, P.-T., 3D High Resolution T1 Mapping of Human Brain. 2012.
23. Hung, W.-F., CNR Optimization of MP3RAGE for Human Brain at 1.5 Tesla. 2013.
24. Deichmann, R., et al., Optimization of 3-D MP-RAGE sequences for structural brain imaging. Neuroimage, 2000. 12(1): p. 112-27.
25. Wu, S.-J., Optimization of contrast and signal homogeneity for high resolution 3D MRI of human brain at 1.5 Tesla. 2011.
26. Streitburger, D.P., et al., Impact of image acquisition on voxel-based-morphometry investigations of age-related structural brain changes. Neuroimage, 2014. 87: p. 170-82.
27. Rooney, W.D., et al., Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med, 2007. 57(2): p. 308-18.
28. Clare, S. and P. Jezzard, Rapid T(1) mapping using multislice echo planar imaging. Magn Reson Med, 2001. 45(4): p. 630-4.
29. Tran-Gia, J., et al., A model-based reconstruction technique for fast dynamic T1 mapping. Magn Reson Imaging, 2016. 34(3): p. 298-307.
30. Wansapura, J.P., et al., NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging, 1999. 9(4): p. 531-8.
31. Liberman, G., Y. Louzoun, and D. Ben Bashat, T(1) mapping using variable flip angle SPGR data with flip angle correction. J Magn Reson Imaging, 2014. 40(1): p. 171-80.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code