Responsive image
博碩士論文 etd-1123111-115045 詳細資訊
Title page for etd-1123111-115045
論文名稱
Title
還原態穀胱甘肽及NADPH氧化酶抑制劑DPI減緩乙烯誘導甘藷葉片老化、H2O2含量上升及老化相關基因表現
Reduced glutathione and NADPH oxidase inhibitor DPI alleviates ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-11-08
繳交日期
Date of Submission
2011-11-23
關鍵字
Keywords
葉片老化、NADPH氧化酶、還原態榖胱甘肽、甘藷、益收生長素
NADPH oxidase, leaf senescence, ethephon, sweet potato, reduced glutathione
統計
Statistics
本論文已被瀏覽 5702 次,被下載 262
The thesis/dissertation has been browsed 5702 times, has been downloaded 262 times.
中文摘要
乙烯長期被認為是主要植物生長調節物質且對於葉片老化過程中扮演重要角色。Ethephon是一個釋出乙烯的化合物,於甘藷切離葉片會加速葉片老化及H2O2含量上升,這些影響於外加還原態榖胱甘肽和抗壞血酸下可以有效的被減緩。Ethephon處理 3天時會增加甘藷葉片內生性總量及還原態榖胱甘肽和抗壞血酸的含量,然而其H2O2含量亦顯著上升。另外外加還原態榖胱甘肽於ethephon處理切離的甘藷葉片24小時,其內生性總量及還原態榖胱甘肽的含量比單獨ethephon處理有極顯著的大量增加,並且於72小時其H2O2含量亦比單獨ethephon處理顯著下降。Ethephon處理切離的甘藷葉片約4小時會快速增加一個小的 H2O2 的頂峰(peak),且此H2O2 peak會受外加還原態榖胱甘肽前處理而被移除。切離的甘藷葉片前處理NADPH oxidase 抑制劑會減緩ethephon誘導 3天的葉片老化及H2O2含量,且此減緩作用於乙烯處理後前 4小時內是有效的。Ethephon 及一個榖胱甘肽合成酶抑制劑 BSO 可以誘導老化相關基因asparaginyl endopeptidase (SPAE) 及cysteine proteases (SPCP1, SPCP2 及 SPCP3) 的表現,且此基因活化作用受外加還原態榖胱甘肽的抑制。根據這些結果我們結論ethephon處理可能會經由NADPH oxidase快速造成一個小的 H2O2 peak,此H2O2 peak的功能與ethephon 訊息傳遞誘導甘藷葉片老化、H2O2含量上升、及老化相關基因表現可能有關,抗氧化劑例如還原態榖胱甘肽的增加速率是重要的,且會影響甘藷葉片老化、H2O2含量及老化相關基因表現。
Abstract
Ethylene has long been considered as the main plant growth regulator that plays a key role in the regulation of leaf senescence. In sweet potato, ethephon, an ethylene releasing compound, promoted leaf senescence and H2O2 elevation. These ethephon-mediated effects were alleviated or attenuated by exogenous reduced glutathione and ascorbic acid. Ethephon treatment gradually increased endogenous total and reduced glutathione and ascorbic acid levels in sweet potato detached leaves 3 days after treatment. The H2O2 amount, however, was also increased at 72 h after treatment. Sweet potato detached leaves pretreated with reduced glutathione did significantly increased endogenous total and reduced glutathione levels at 24 h and remarkably decreased H2O2 amount at 72 h after ethephon application compared to that of ethephon alone control. Ethephon caused quick elevation of a small H2O2 peak at about 4 h after application, and the enhancement was eliminated by reduced glutathione pretreatment in treated sweet potato leaves. Pretreatment of diphenylene iodonium (DPI), an NADPH oxidase inhibitor, also repressed leaf senescence and H2O2 elevation at day 3 after ethephon treatment in sweet potato detached leaves, and the attenuation was effective within the first 4 h after ethephon treatment. For senescence-associated gene expression, ethephon and L-buthionine sulfoximine (BSO), an endogenous glutathione synthase inhibitor, did induced asparaginyl endopeptidase (SPAE) and cysteine proteases (SPCP1, SPCP2 and SPCP3) gene expression and the activation was repressed by reduced glutathione pretreatment. Based on these data we conclude that ethephon treatment may cause quick elevation of a small H2O2 peak likely via the NADPH oxidase, which may function as a signal component leading to leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato detached leaves. The rate of endogenous antioxidant such as reduced glutathione elevation is also important and affects leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato leaves.
目次 Table of Contents
目 錄
論文審定書................…………………………..................……………......i
誌謝………………………………………………………………...............ii
圖次………………………………....………………..................................vi
中文摘要………………………………………..............……….….........viii
英文摘要………………………………………..…………………............ix
壹、緒論......................................................................................................1-6
甘藷與葉片老化...............................................................................1-2
乙烯...................................................................................................2-3
抗氧化物...........................................................................................3-4
NADPH oxidase ...............................................................................4-5

貳、材料與方法......................................................................................7-18
I. 實驗材料
A. 甘藷..........................................................................................7
B. 葉片老化相關基因..................................................................7
C. 化學藥品及藥品配製...........................................................7-8
II. 實驗方法
乙烯 (Ethephon) 處理..................................................................9
乙烯及還原態穀胱甘肽(Reduced glutathione, GSH)處理.....9-10
乙烯及抗壞血酸(Ascorbic acid, ASA)處理..........................10-11
乙烯及(Diphenylene iodonium, DPI)處理..................................11
乙烯及(Buthionine sulfoximine, BSO)處理..........................11-12
乙烯,BSO及還原態穀胱甘肽處理......................................12-13
葉綠素含量測量..........................................................................13
光化學反應Fv/Fm測量..............................................................13
H2O2測定................................................................................13-14
穀胱甘肽含量測定......................................................................14
抗壞血酸含量測定......................................................................15
RT-PCR分析..........................................................................15-18
一、Total RNA extraction ..................................................15-17
二、Reverse transcription........................................................17
三、PCR primer序列.........................................................17-18
四、PCR條件..........................................................................18
統計方法......................................................................................18

參、結果..................................................................................................19-26
A. 乙烯誘導甘藷葉片老化及H2O2的增加與抗氧化物質(glutathione和ascorbate)之關聯性探討...............................19-24
B. 乙烯誘導甘藷葉片老化及H2O2含量的增加與NADPH oxidase之關聯性探討........................................................................24-25
C. 乙烯誘導甘藷葉片H2O2含量增加與老化相關基因表現之關聯性探討..........................................................................................26

肆、討論..................................................................................................27-30
A. Ethephon誘導的H2O2含量增加與NADPH oxidase有關...........27
B. 乙烯誘導的葉片老化及大量H2O2含量增加與初期H2O2增加有關係........................................................................................27-28
C. 乙烯誘導的H2O2含量增加可以作為signal誘導老化相關基因表現............................................................................................28-29
D. Ethephon誘導的葉片老化及H2O2含量與內生的glutathione增加速率有關...................................................................................29-30

伍、參考文獻..........................................................................................31-35
圖次
圖一、乙烯處理對甘藷葉片的外觀形態、葉綠素含量及光化學反應Fv/Fm之影響。.............................................................................36
圖二、乙烯處理對甘藷葉片的過氧化氫含量之影響。..........................37
圖三、還原態的榖胱甘肽對乙烯處理的甘藷葉片外觀形態、葉綠素含量及光化學反應Fv/Fm之影響。................................................38
圖四、還原態榖胱甘肽對乙烯處理的甘藷葉片過氧化氫含量之影響。................................................................................................39
圖五、抗壞血酸對乙烯處理的甘藷葉片外觀形態、葉綠素含量及光化學反應Fv/Fm之影響。...............................................................40
圖六、抗壞血酸對乙烯處理的甘藷葉片過氧化氫含量之影響。.........41
圖七、乙烯處理對甘藷葉片的外觀形態、葉綠素含量、光化學反應
Fv/Fm及過氧化氫含量之影響。.................................................42
圖八、乙烯處理對甘藷葉片內生性榖胱甘肽含量的影響。處理時間分別為一天、兩天和三天。............................................................43
圖九、乙烯處理對甘藷葉片內生性的抗壞血酸含量的影響。.............44
圖十、外加還原態榖胱甘肽對乙烯處理的甘薯葉片過氧化氫含量之影響。................................................................................................45
圖十一、外加還原態榖胱甘肽對乙烯處理的甘藷葉片榖胱甘肽含量的影響。..........................................................................................46
圖十二、NADPH氧化酶抑制劑(DPI)對乙烯處理甘藷葉片的外觀形態
、葉綠素含量及光化學反應Fv/Fm之影響。..........................47
圖十三、NADPH氧化酶抑制劑(DPI)及乙烯處理甘藷葉片的過氧化氫含量之影響。..............................................................................48
圖十四、NADPH氧化酶抑制劑(DPI)處理時間對乙烯處理甘藷葉片的外觀形態、葉綠素含量及光化學反應Fv/Fm之影響。.........49
圖十五、NADPH氧化酶抑制劑(DPI)處理時間對乙烯處理甘藷葉片的過氧化氫含量之影響。..............................................................50
圖十六、還原態榖胱甘肽對乙烯或BSO誘導老化相關基因表現之影響。..............................................................................................51
參考文獻 References
參考文獻

Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences 76: 170-174

Barceló A (1999) Some properties of the H2O2/O2- generating system from the lignifying xylem of Zinnia elegans. Free Radic Res. : 147-154.

Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. CURRENT SCIENCE 89: 1113-1121

Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology 16: 1-18

Chen HJ, Hou WC, Jane WN, Lin YH (2000) Isolation and characterization of an isocitrate lyase gene from senescent leaves of sweet potato (Ipomoea batatas cv. 'Tainong 57'). Journal of plant physiology 157: 669-676

Chen HJ, Hou WC, Liu JS, Yang CY, Huang DJ, Lin YH (2004) Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. Journal of experimental botany 55: 825-835

Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH (2003) Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. Journal of plant physiology 160: 547-555

Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH (2006) Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. Journal of plant physiology 163: 863-876

Chen HJ, Huang GJ, Chen WS, Su CT, Hou WC, Lin YH (2009) Molecular cloning and expression of a sweet potato cysteine protease SPCP1 from senescent leaves. Botanical Studies 50: 159-170

Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH (2010) Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Journal of plant physiology 167: 838-847

Chen HJ, Wen IC, Huang GJ, Hou WC, Lin YH (2008) Expression of sweet potato asparaginyl endopeptidase caused altered phenotypic characteristics in transgenic Arabidopsis. Botanical Studies 49: 109-117

Chen HJ, Wu SD, Huang GJ, Shen CY, Afiyanti M, Li WJ, Lin YH (2011) Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. Journal of plant physiology (In Press)

Chen YC, Lin HH, Jeng ST (2008) Calcium influxes and mitogen activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato. Plant, Cell & Environment 31: 62-72

De Jong AJ, Yakimova ET, Kapchina VM, Woltering EJ (2002) A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 214: 537-545

Doke N (1983) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiologial Plant Pathology 23: 359-367

Griffith OW (1982) Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. Journal of Biological Chemistry 257: 13704-13712

Hattori T, Nakagawa T, Maeshima M, Nakamura K, Asahi T (1985) Molecular cloning and nucleotide sequence of cDNA for sporamin, the major soluble protein of sweet potato tuberous roots. Plant molecular biology 5: 313-320

Hou WC, Chen HJ, Lin YH (2003) Antioxidant peptides with angiotensin converting enzyme inhibitory activities and applications for angiotensin converting enzyme purification. Journal of agricultural and food chemistry 51: 1706-1709

Hou WC, Chen YC, Chen HJ, Lin YH, Yang LL, Lee MH (2001) Antioxidant activities of trypsin inhibitor, a 33 KDa root storage protein of sweet potato (Ipomoea batatas (L.) Lam cv. 'Tainong 57'). J. Agric. Food Chem. 49: 2978-2981

Huang DJ, Chen HJ, Hou WC, Lin CD, Lin YH (2006) Sweet potato (Ipomoea batatas [L.] Lam 'Tainong 57' ) storage root mucilage with antioxidant activities in vitro. Food chemistry 98: 774-781

Huang GJ, Sheu MJ, Chen HJ, Chang YS, Lin YH (2007a) Induced apoptosis and G2/M cell cycle arrest by trypsin inhibitor from sweet potato (Ipomoea batatas (L.) Lam 'Tainong 57' ) storage roots in NB4 premyelocytic leukemia cells. J Agric Food Chem 55: 2548-2553

Huang GJ, Sheu MJ, Chen HJ, Chang YS, Lin YH (2007b) Inhibition of reactive nitrogen species in vitro and ex vivo by trypsin inhibitor from sweet potato 'Tainong 57' storage roots. Journal of agricultural and food chemistry 55: 6000-6006

Jih PJ, Chen YC, Jeng ST (2003) Involvement of Hydrogen Peroxide and Nitric Oxide in Expression of the Ipomoelin Gene from Sweet Potato. Plant Physiology 132: 381-389

Koehl J, Djulic A, Kirner V, Nguyen TT, Heiser I (2007) Ethylene is required for elicitin-induced oxidative burst but not for cell death induction in tobacco cell suspension cultures. Journal of plant physiology 164: 1555-1563

Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annual Review of Plant Biology 48: 251-275

Lim PO, Kim HJ, Nam GH (2007) Leaf Senescence. Annual Review of Plant Biology 58: 115-136

Makino A, Osmond B (1991) Solubilization of ribulose-1, 5-bisphosphate carboxylase from the membrane fraction of pea leaves. Photosynthesis research 29: 79-85

Maruthi MN, Colvin J, Thwaites RM, Banks GK, Gibson G, Seal SE (2004) Reproductive incompatibility and cytochrome oxidase I gene sequence variability amongst host adapted and geographically separate Bemisia tabaci populations (Hemiptera: Aleyrodidae). Systematic Entomology 29: 560-568

Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynthesis Research 86: 435-457

Miyazaki JH, Yang SF (1987) The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiologia Plantarum 69: 366-370

Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant and cell physiology 38: 1118-1126

Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine 30: 1191-1212

Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM (2008) Higher plant antioxidants and redox signaling under environmental stresses. Comptes rendus biologies 331: 433-441

Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. Journal of Experimental Botany 53: 1227-1236

Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. The Plant Cell Online 14: S131-S151

Yang TH, Tsai YC, Hseu CT, Ko HS, Chen SW, Blackwell RQ (1975) Protein content and its amino acid distribution of locally produced rice and sweet potato in Taiwan. Journal of Chinese agricultural Chemical Society 13: 132-138

Yoshida S (2003) Molecular regulation of leaf senescence. Current Opinion in Plant Biology 6: 79-84

Zechmann B, Mauch F, Sticher L, Muller M (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. Journal of Experimental Botany 59: 4017-4027

沈哲宇,從甘藷老化葉片分子選殖mitogen-activated protein kinase cDNA 及乙烯訊息傳導探討。國立中山大學 生物科學系研究所,碩士論文2011。

蔡怡菁,轉殖阿拉伯芥植株外源表現甘藷半胱胺酸蛋白分解酶SPCP3改變其生長特徵和增加對乾旱逆境敏感性及細胞死亡。國立中山大學 生物科學系研究所,碩士論文2010。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code