Responsive image
博碩士論文 etd-1124110-120358 詳細資訊
Title page for etd-1124110-120358
論文名稱
Title
使用邊界元素法聲場分析與田口法於MEMS麥克風尺寸參數之最佳化設計
Optimization of MEMS Microphone Size Parameters by BEM Sound Field Analysis and Taguchi Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-06
繳交日期
Date of Submission
2010-11-24
關鍵字
Keywords
田口法、變異數分析、微機電麥克風、聲場分布、邊界元素法
Sound Field Distribution, Taguchi Method, Boundary Element Method, MEMS Microphone, ANOVA
統計
Statistics
本論文已被瀏覽 5619 次,被下載 0
The thesis/dissertation has been browsed 5619 times, has been downloaded 0 times.
中文摘要
MEMS麥克風,又稱微機電麥克風。具有高音質、低耗電、耐高溫、抗雜訊等優點,自1980年代以來學者們相繼投入研究,至今已是3G手機的基本配備。有鑑於MEMS麥克風的性能改善多為內部電路晶片製程中的技術改良或新材料的應用,本文使用工業設計上廣泛使用之田口法,對MEMS麥克風外部的封裝腔體尺寸進行設計,並搭配邊界元素聲場分析軟體BEASY,以腔內聲壓最大值的增加做為麥克風性能改善之目標,期望提供一個低成本、較快速設計的新想法。本文以田口法規劃腔體尺寸,搭配BEASY軟體得到建議的尺寸組合,最後進行最佳化,得到最佳的尺寸設計。結果顯示,正常發聲頻帶下田口法得到參數尺寸組合已使腔內聲壓有2.2 dB ~ 2.4dB之增益,且僅空孔位置此參數影響最為顯著,只要移動空孔位置即可達到最佳化設計;而最佳化結果顯示將空孔位置往邊界移動,確實可得到更大的聲壓值,約有0.3 dB ~ 0.6 dB之聲壓增益;從聲場分布圖可看出,聲源頻率增加亦會使角落最大聲壓值更大且沿腔體厚度上呈現均勻分布。
Abstract
Since the micro-electro mechanical system microphone, MEMS microphone, has the advantages of superior sound quality, low power consumption, higher temperature resistance and anti-noise ability in used. The researchers therefore have studied the functions of MEMS microphone since 1980s. The MEMS microphones is applied as the part of 3G mobile phone in the market. Though the functions of microphone are improved by manufacturing process technique and new material designed, this study tends to provide a new, low-cost and rapid design idea to gain the performance in chamber of microphone. Taguchi method and BEASY software, which is boundary element method, are combined to evaluate the results of the design in sound field. Taguchi method is a famous method in industrial design to find out relations between system parameters and chamber size. BEASY is a tool for sound field analysis in the research. The result from Taguchi method appears the sound pressure level gain about 2.2 dB to 2.4 dB due to the change of microphone chamber size only. It is also interested in studying the optimization design for position of microphone. It is displayed that the location of port is closer to the boundary of chip will also increase about 0.3 dB to 0.6dB sound pressure level in sound field. The higher frequency of sound source will also create larger sound pressure level at two corners on the port.
目次 Table of Contents
目錄…………………………………………………………i
表目錄………………………………………………………iv
圖目錄………………………………………………………vi
中文摘要……………………………………………………ix
Abstract ……………………………………………………x
第一章 緒論
1.1 研究動機與目的………………………………………1
1.2 文獻回顧與MEMS麥克風簡介 ………………………2
第二章 研究基本理論
2.1 聲學相關理論…………………………………………9
2.1.1 波動方程式 …………………………………………9
2.1.2 聲波的反射、透射與散射…………………………10
2.2 邊界元素法……………………………………………11
2.2.1 邊界元素法原理……………………………………11
2.2.2 以邊界元素法模擬聲場變化………………………12
2.2.3 邊界元素軟體介紹與處理步驟……………………14
2.2.4 使用元素介紹………………………………………16
2.2.5 模擬參數設定………………………………………18
第三章 參數設計法
3.1 參數設計法……………………………………………25
3.2 田口法概述……………………………………………25
3.2.1 品質特性SN比與損失函數 ………………………27
3.2.2 參數選擇與直交表設計……………………………29
3.2.3 變異數分析…………………………………………30
3.2.4 各因子效應與交互作用……………………………31
3.2.5 確認結果之實驗……………………………………34
3.3 最佳化設計……………………………………………35
第四章 模擬與結果討論
4.1 結果與討論 …………………………………………43
4.1.1 田口法………………………………………………43
4.1.2 最佳化設計…………………………………………46
4.1.3 聲場分布……………………………………………46
4.2 聲壓增益 ……………………………………………47
4.2.1 聲壓增益與頻率效應………………………………47
4.2.2 聲壓增益與溫度效應………………………………48
第五章 結論與建議
5.1 結論……………………………………………………65
5.2 建議……………………………………………………66
參考文獻 …………………………………………………68
參考文獻 References
1. R. Schellin and G. Hess, “A Silicon Subminiature Microphone Based on Piezoresistive Polysilicon Strain Gauges,” Sensors and Actuators A, Vol. 32, pp. 555-559, 1992.
2. R. Shellin, M. Strecker, U. Nothelfer, and G. Schuster, “Low Pressure Acoustic Sensors for Airborne Sound with Piezoresitive Monocrystalline Silicon and Electrochemically Etched Diaphragms,” Sensors and Actuators A, Vol. 46-47, pp. 156-160, 1995.
3. M. Sheplak, K.S. Breuer, and M.A. Schmidt, “A Wafer-Bonded, Silicon-Nitride Membrane Microphone with Dielectrically-Isolated, Signal-Crystal Silicon Piezoresistors,” Solid-State Sensor and Actuator Workshop, Hilton Head, SC (TRF, Cleveland Heights, Ohio, 1998), pp. 23-26.
4. M. Royer, J.O. Holmen, M.A. Wurm, O.S. Aadland, and M. Glenn, “ZnO on Si Integrated Acoustic Sensor,” Sensors and Actuators, Vol. 4, pp. 357-362, 1983.
5. C. H. Han and E. S. Kim, “Micromachined piezoelectric ultrasonic transducers based on parylene diaphragm in silicon substrate,” in IEEE International Ultrasonic Symposium, San Juan, Puerto Rico, 2000, pp. 919-923.
6. M. Brauer, A. Dehé, T. Brver, S. Barzen, S. Schmitt, M. Füldner and R. Aigner, “Silicon microphone based on surface and bulk micromachining”, Journal of Micromechanics and Microengineering, Vol. 11, pp. 319-322, 2001.
7. A. Dehé, R. Aigner, T. Bever, K.-G. Oppemann, E. Pettenpaul, S. Schmitt, H.-J. Timme, “Silicon Micromachined Microphone Chip at Siemens,” Journal of the Acoustic Society of America., vol. 105, pp. 997, 1999.
8. Q. Zou, Z. Li and L. Liu, “Design and fabrication of single wafer silicon condenser microphone using corrugated diaphragms,” IEEE Journal of Microelectromechanical Systems., Vol. 5, pp. 197-204, 1996.
9. J. Bergqvist and F. Rudolf, J. Maisano, F. Parodi and M. Rossi, “A silicon condenser microphone with a highly perforated backplate”, Proceedings of Transducers ’91, vol. 24-27, pp. 266-269, 1991.
10. http://www.eettaiwan.com/login.do?fromWhere=/ART_8800489776_617723_NT_7cdaf7a6.HTM
11. W. Soede, J.B. Augustinus, J. Berkhout, and F. A. Bilsen, “Development of a Directional Hearing Instrument Based on Array Technology,” Journal of the Acoustical Society of America, Vol. 105, pp. 785-795, 1993.
12. E.D. McKinnery and V.E. DeBrunner, “A Two-microphone Adaptive Broadband Array for Hearing Aids,” Proc ICASSP 96 Atlanta, GA, pp. 933-936, 1996.
13. M.W. Hoffman and R.W. Stewart, “Simulation of Multi-microphone Hearing Aids in Multiple Interference Environments,” The British Journal of Radiology., vol. 30, pp. 249-260, 1996.
14. M.C. Killion, J. Stuart, D. Wilson, M.J. Roberts, S. Iseberg, and S.T. Monroe, “Directional Microphone Assembly,” U.S. Patent 5 878 147, 1999.
15. B. Csermak, “A Primer on a Dual Microphone Directional System,” Hearing Rev., Vol. 7, pp. 56-60, 2000.
16. S. Bauer, Ed., “Microphones White Paper,” in Proceedings From the Stakeholder Forum on Hearing Enhancement: Rehab. Eng. Res. Center Technol. Transfer, State Univ. New York, Buffalo, pp. 87-94, 2000.
17. S. Chowdhury, M. Ahmadi and W.C. Miller, “Design of a MEMS Acoustical Beamforming Sensor Microarray”, IEEE Sensors Journal, Vol. 2, No. 6, pp. 617-627, 2002.
18. http://www.eettaiwan.com/login.do?fromWhere=/ART_8800538545_480502_NP_e831ef93.HTM
19. http://www.eettaiwan.com/login.do?fromWhere=/ART_8800564271_480102_NT_6583077f.HTM
20. http://www.knowles.com/search/products/m_surface_mount.jsp
21. 黃柏瑋,使用邊界元素法研究聲子晶體聲場特性,國立中山大學碩士論文,中華民國九十六年七月。
22. S.M. Niku, R.A. Adey, T.R. Bridges, “Application of BEASY to Industrial and Environmental Acoustics,” Lyndhurst Road, Ashurst, Southampton, U.K., 1993.
23. R.D. Ciskowski, C.A. Brebbia, “Boundary Element Methods in Acoustics,” Computational Mechanics Publications, Southampton and Elsevier Applied Science, London 1991.
24. BEASY User Guide, Computational Mechanics BEASY, Southampton, England 1994.
25. 丁志華、游璨瑋、戴寶通、朝春光,田口實驗計畫法簡介(II),毫微米通訊,第八卷第四期,中華民國90年11月。
26. 陳耀茂,田口實驗計畫法,滄海書局,中華民國86年4月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.129.19
論文開放下載的時間是 校外不公開

Your IP address is 18.221.129.19
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code