Responsive image
博碩士論文 etd-1124110-150810 詳細資訊
Title page for etd-1124110-150810
論文名稱
Title
不平衡分散式配電系統故障分析與智慧型電網節能應用
Unbalanced Distributed Distribution Network Fault Analysis and Smart Grid Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-11-18
繳交日期
Date of Submission
2010-11-24
關鍵字
Keywords
智慧型電網、不平衡分散式配電系統、混合補償、故障分析、等效電流注入
fault analysis, and Smart Grid Application, Equivalent Current Injection, hybrid compensation, unbalanced distribution systems
統計
Statistics
本論文已被瀏覽 5832 次,被下載 20
The thesis/dissertation has been browsed 5832 times, has been downloaded 20 times.
中文摘要
本論文提出一以等效電流注入(ECI) 為基礎的直接求解的演算法推算分散式配電系統之電力潮流。此演算法主要系建立BI 及ZV-BC 兩種主要矩陣,用以求解電力潮流。此二矩陣依分散網路的拓樸特性所建立。BI 為由匯流排注入電流與支路電流的關係矩陣,而ZV-BC 為敘述匯流
排電壓變化差量以及支路電流的關係。前述兩個矩陣的演算法能輕易的程式化,並且能以簡單的搜尋技巧來完成。文中亦根據分散式系統的相連結構來分類四種情況的分散式系統拓撲特徵的節點延伸模式,可透過修正原分散式電力潮流的兩個關係矩陣直接求解,而不必重新
建置新矩陣。另外,本文亦提出不平衡分散式配電系統的故障分析,直接以混合補償分支電流及疊代之方式進行非對稱與接地故障電流計算。應用不平衡三相模型來分析非對稱故障,配合所提出之混合型補償的方法,包含兩組分散式配電網路形狀結構特性資訊的矩陣BI 及ZV-BC,並針對不平衡分散式配電系統的數種特定非對稱故障,透過取得到適當的邊界條件來解決各式各樣不同型式的單一或同時發生的非對稱故障之故障電流。本文提出的演算法不需如LU 分解法、亞可比矩陣或Y 導納矩陣的耗時計算。測試結果證明本文所提出的方法是有效率的,容易程式化直接且具快速求解兼具強韌與精確的優點。本文亦介紹與探討智慧型電網電力系統模型建立之相關應用,提出混合規劃的演算法用來解決配電網路重新配置開關的最佳組態應用,能即時機動地整合調度微電網結合各種再生能源包括太陽能和風能等再生能源發電系統所組成的區域型分散式發電及供電架構,以作為智慧型電網達到最佳節能管理的應用。
Abstract
A direct and rigid algorithm approach based on Equivalent Current Injection (ECI) for large-scale distribution power flow analysis is proposed in this dissertation. This algorithm used two primary matrices: BI and ZV-BC. Two matrices, which are built from the topological characteristics of distribution networks, are used to achieve the power flow solutions. BI matrix is the bus injection to branch current matrix and the ZV-BC matrix describes the relationship between the bus voltage mismatches and the branch current. The building algorithm is easily programmable and can be accomplished by a simple search technique with the two proposed matrices. Four connected cases are considered in this dissertation. The proposed algorithm is robust and accurate. Test results demonstrate the potential and validity of the proposed algorithm in distribution applications. Secondly, this thesis also presents a fault analysis with hybrid compensation for unbalanced distribution systems is proposed. The method employs the unbalanced three-phase model to analyze faults. BI and ZV-BC matrices containing information of the topological characteristics of distribution networks were built along with the proposed hybrid compensation method for analysis. Appropriate boundary conditions can be obtained for a fault to solve various types of single or simultaneous faults. The time-consuming LU decompositions, the Jacobian matrix, or the Y admittance matrix, required in the traditional algorithms, are not needed in the new development. Test results show that the proposed method is efficient, easy to program, also with advantages of high speed, robustness, improved accuracy, and lower memory requirements. This thesis also presents a hybrid programming (HP) technique to solve the reconfiguration problem for loss reduction and service restoration in Smart Grid application.
目次 Table of Contents
目 錄
中文摘要................………................………................…... I
英文摘要................………................………................…... II
目錄................………................………................………. III
圖目錄................………................………................…… VII
表目錄................………................………................…… IX
名詞縮寫與符號表………................….........………… X
第一章 緒論................………................………............. 1
1-1 研究背景與動機................……...................……. 1
1-2 論文貢獻................………................………......... 5
1-3 論文內容架構................…………………..…….. 7
第二章 電力潮流模型分析介紹........................... 11
2-1 等效電流注入為基礎之電力潮流模型........... 11
2-1-1 不平衡三相阻抗網路模型推導.……………… 12
2-2 匯流排之電力潮流模型..................................... 14
2-2-1 負載匯流排模型(PQ Bus ).........................…… 14
2-2-2 電壓控制匯流排(PV Bus ).............…………… 16
2-3 分散式配電系統電力潮流模型........................ 18
2-4 本章結論................………................………......... 19
第三章 分散式電力潮流直接求解演算法...... 21
3-1 Z 阻抗矩陣演算法......……................……….. 22
3-2 ECI 直接求解演算法.....................…….......... 22
3-2-1 BI 與ZV-BC 矩陣................…………….……… 23
3-3 分散式網路矩陣修正............………............. 27
3-4 本章結論................………................………......... 39
第四章 智慧型電網模型與節能演算法.............. 40
4-1 微電網相關能源模型....................................... 41
4-1-1 太陽能系統單二極體模型.…………….……… 41
4-1-2 風機系統模型.................................…............... 44
4-1-3 最大功率追蹤器模型................……................ 46
4-2 線損分析最佳節能演算法.….......................... 48
4-2-1 微電網分散式配電網路....…………….……… 48
4-2-2 微電網主匯流排的電力潮流....………............. 52
4-2-3 混合規劃演算法....………..............…............... 55
4-3 本章結論................………................………......... 60
第五章 非對稱故障分析策略................................ 61
5-1 不平衡分散式配電系統..……...................…… 63
5-2 配電系統接地故障分析.........……................… 65
5-2-1 單線對地故障(Single line-to-ground fault)....... 65
5-2-2 雙線對地故障(Double Line-to- ground fault)…. 67
5-2-3 三相對地故障(Three-phase-to-ground fault)…. 69
5-3 配電系統線間故障分析.........……................… 71
5-3-1 線對線故障(Line-to-line fault)…...................... 71
5-3-2 斷路故障(Open-conductor fault)....................... 73
5-4 分散式發電機................…...…................……….. 76
5-5 本章結論................………..............………........... 78
第六章 系統模擬及結果分析................…………. 80
6-1 前言........................………................………........... 80
6-2 ECI 直接求解演算法整合測試..…….…....... 81
6-2-1 精確度比較.......................................…...…...... 81
6-2-2 性能測試………………...............………......... 83
6-2-3 強健性測試……………...........……………...... 84
6-2-4 記憶空間需求.........………………………........ 86
6-3 不平衡配電系統之非對稱故障分析.…........... 87
6-3-1 單一故障(Single fault)………..……….…........ 87
6-3-2 多重故障 (Multiple faults)…..………...…...... 88
6-3-3 不平衡配電系統網路之故障分析……..…...... 88
6-3-4 故障分析整合測試……..…………………....... 93
6-4 混合規劃演算法模擬分析.…............................. 97
6-4-1 收斂測試………..……….…………………....... 97
6-4-2 負載測試…..……….................................…...... 98
6-4-3 故障測試……..……………………………....... 98
6-5 本章結論................………..............………........... 100
第七章 結論及未來研究方向............………......... 102
7-1 結論............………................…............………....... 102
7-2 未來研究方向............………..............….............. 103
參考文獻............………................…............………....... 106
參考文獻 References
[1] W. M. Lin and M. S. Chen, “An overall distribution automation structure,” IEEE
Elect. Power Syst. Res., vol. 10, pp. 7–19, 1986
[2] J. H. Teng, “Modelling distributed generations in three-phase distribution load
flow”, IET Proc. Generation, Transmission and Distribution, vol. 2, pp. 330-340,
May. 2008.
[3] B. Stott and O. Alsac, “Fast decoupled load flow,” IEEE Trans. Power Apparat.
Syst., PAS-93, pp. 859–869, May 1974.
[4] J. H. Teng and W. M. Lin, “Current-based power flow solutions for distribution
systems,” in Proc. IEEE Int. Conf. Power Syst. Technol., Beijing, China, 1994,
pp. 414–418.
[5] W. M. Lin and J. H. Teng, “Phase-decoupled load flow method for radial and
weakly-meshed distribution networks”, IEE Proc. Generation, Transmission and
Distribution, vol. 143, pp. 39-42, Jan. 1996.
[6] W. M. Lin, Y. S. Su, H. C. Chin, and J. H. Teng, “Three-Phase Unbalance
Distribution Power Flow Solutions with Minimum Data Preparation”, IEEE
Trans. Power Syst., vol. 14, pp. 1178-1183, Aug. 1999.
[7] J. H. Teng, Y. S. Su, and W. M. Lin, “Decomposition approach and analysis for a
Z-matrix building process”, IEE Proc. Generation, Transmission and
Distribution, vol. 151, pp. 638-643, Sept. 2004.
[8] T. H. Chen, M. S. Chen, T. Inoue, and E. A. Chebli, “Three phase cogenerator
and transformer models for distribution system analysis,” IEEE Trans. Power
Delivery, vol. 6, pp. 1671–1681, Oct. 1991.
[9] T. H. Chen, M. S. Chen, K. J. Hwang, P. Kotas, and E. A. Chebli, “Distribution
system power flow analysis—A rigid approach,” IEEE Trans. Power Delivery,
vol. 6, pp. 1146–1152, July 1991.
[10] T. H. Chen and J. D. Chang, “Open wye-open delta and open delta-open delta
transformer models for rigorous distribution system analysis,” in Proc. Inst.
Elect. Eng., vol. 139, 1992, pp. 227–234.
[11] T. H. Chen, M. S. Chen, W. J. Lee, P. Kotas, and P. Van Olinda, “Distribution
system short circuit analysis-A rigid approach,” IEEE Trans. Power Syst., vol. 7,
pp. 444–450, Feb. 1992.
[12] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo, “A compensation-
based power flow method for weakly meshed distribution and
transmission networks,” IEEE Trans. Power Syst., vol. 3, pp. 753–762, May
1988.
[13] G. X. Luo and A. Semlyen, “Efficient load flow for large weakly meshed
networks,” IEEE Trans. Power Syst., vol. 5, pp. 1309–1316, Nov.1990
[14] C. S. Cheng and D. Shirmohammadi, “A three phase power flow method for
real-time distribution systems”, IEEE Trans. Power Syst., vol.10, pp.671-679,
May 1995.
[15] R. D. Zimmerman and H. D. Chiang, “Fast decoupled power flow for
unbalanced radial distribution systems,” IEEE Trans. Power Syst., vol. 10, pp.
2045–2052, Nov. 1995.
[16] J. J. Grainger and W. D. Stevenson: ‘Power system analysis’ (McGraw-HillInternational Editions, 1994)
[17] J.D. Glover and M. Sarma: ‘Power system analysis and design’ (PWS
Publishing Co, 1994)
[18] R. Bergen and V. Vittal: ‘Power Systems Analysis’ (Prentice-Hall, Inc., 2000)
[19] H. E. Brown: ‘Solution of large networks by matrix methods’ (John Wiley and
Sons, New York, 1985)
[20] J.D. Glover and M. Sarma: ‘Power system analysis and design’ (PWS
Publishing Co, 1994)
[21] J. H. Teng, “Systematic short-circuit-analysis method for unbalanced
distribution systems”, IET Proc. Generation, Transmission and Distribution, Vol.
152, no. 4, Jul. 2005, pp. 549-555.
[22] H. E. Brown: ‘Solution of large networks by matrix methods’ (John Wiley and
Sons, New York, 1985)
[23] R. Bergen and V. Vittal: ‘Power Systems Analysis’ (Prentice-Hall, Inc., 2000)
[24] 詹東昇,“應用以電流為基礎的網路模型於輸電系統負載潮流之研究”,碩
士論文,國立中山大學,中華民國八十八年。
[25] 洪文哲,“應用UPFC 於電力系統最佳化雍塞管理之研究”,碩士論文,國
立中山大學,中華民國九十二年。
[26] W. M. Lin, T. S. Zhan, and M. T. Tsay, “Multiple-Frequency Three-Phase Load
Flow for Harmonic Analysis,” IEEE Trans. on Power Systems, vol. 19, no. 2, pp.
897-904, May 2004.
[27] 黃琮暉,“應用最佳化電力潮流於配電系統復電策略之研究”,博士論文,
國立中山大學,中華民國九十七年。
[28] 詹東昇,“多頻電力潮流模型與電力市場潮流追蹤之研究”,博士論文,國
立中山大學,中華民國九十五年。
[29] J.D. Glover and M. Sarma: ‘Power system analysis and design’ (PWS
Publishing Co, 1994)
[30] J. J. Grainger and W. D. Stevenson: ‘Power system analysis’ (McGraw-Hill
International Editions, 1994)
[31] H. E. Brown: ‘Solution of large networks by matrix methods’ (John Wiley and
Sons, New York, 1985)
[32] R. Bergen and V. Vittal: ‘Power Systems Analysis’ (Prentice-Hall, Inc., 2000)
[33] F. Nakanishi, T. Ikegami, K. Ebihara, S. Kuriyama, Y. Shiota, “Modeling and
Operation of a 10kW Photovoltaic Power Generator Using Equivalent Electric
Circuit Method,” Photovoltaic Specialists Conference, 2000, pp.1703-1706.
[34] J. J. Bzura, “Performance of Grid-Connected Photovoltaic Systems on
Residences and Commercial Building in New England,” IEEE Transactions on
Energy Conversion, Vol. 7, No.1, 1992, pp. 79-82.
[35] Hua Chihchiang, and Shen Chihming, “Control of DC/DC Converters for Solar
Energy System with Maximum Power Tracking,” International Conference on
Industrial Electronics, Control and Instrumentation, Vol. 2, 1997, pp. 827-832.
[36] K. H. Hussein, I. Muta, T. Hoshino and M. Osakada, “Maximum Photovoltaic
Power Tracking: an algorithm for rapidly changing atmospheric conditions,”
IEEE proc. Gener. Transm. Distrib, Vol.142, No.1, Jan. 1995, pp.59-64.
[37] C. Hua, J. Lin and C. shen, “Implementation of a DSP-controlled Photovoltaic
System with Peak Power Tracking,” IEEE Transactions on Industrial
Electronics, Vol. 45, No. 1, 1998, pp.99-107.
[38] C. Ching-Tsan, C. Tung-Sheng, and H. Hou-Sheng, "Modeling a photovoltaic
power system by CMAC-GBF," in Photovoltaic Energy Conversion, 2003.Proceedings of 3rd World Conference on, 2003, pp. 2431-2434 Vol.3.
[39] S. Chowdhury, G. A. Taylor, S. P. Chowdhury, A. K. Saha, and Y. H. Song,
"Modelling, simulation and performance analysis of a PV array in an embedded
environment," in Universities Power Engineering Conference, 2007. UPEC
2007. 42nd International, 2007, pp. 781-785.
[40] S. Chowdhury, S. P. Chowdhury, G. A. Taylor, and Y. H. Song, "Mathematical
modelling and performance evaluation of a stand-alone polycrystalline PV plant
with MPPT facility," in Power and Energy Society General Meeting -
Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE,
2008, pp. 1-7.
[41] J. A. Gow and C. D. Manning, "Development of a photovoltaic array model for
use in power-electronics simulation studies," Electric Power Applications, IEE
Proceedings -, vol. 146, pp. 193-200, 1999.
[42] R. C. Campbell, "A Circuit-based Photovoltaic Array Model for Power System
Studies," in Power Symposium, 2007. NAPS '07. 39th North American, 2007, pp.
97-101.
[43] J. G. Slootweg, S. W. H. de Haan, H. Polinder and W. L. Kling, “General
model for representing variable speed wind turbines in power system dynamics
simulations, ”IEEE Transactions on Power Systems, Vol. 18, No 1, Feb. 2003,
pp. 144–151
[44] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,”
IEEE Transactions Power Apparatus and Systems. Vol. 102, No. 12, Dec. 1983,
pp. 3791-3795.
[45] A. Koyanagi, H. Nakamura, A. M. Kobayashi, Y. Suzuki, and R. Shimada,
“Study on Maximum Power Point Tracking of Wind Turbine Generator Using a
Flywheel,” Proceedings of Power Conversion , Vol. 1, 2002, pp. 322 – 327.
[46] W. Y. Chang, H. T. Yang, P. C. Peng, C. C. Yu, and J. Y. Wang, “A study on
Maximum Power Point Tracking Technologies for Wind-Turbine Generation, ”
R.O.C Symp. On Electrical Power Eng., 2004, pp.1649-1654.
[47] K. Amei, Y. Takayasu, T. Ohji and M. Sakui, “A maximum power control of
wind generator system using a permanent magnet synchronous generator and a
boost chopper circuit,” Proceedings of Power Conversion, Vol. 3, 2002, pp.
1447 - 1452.
[48] M. Chen and G. A. Rincon-Mora, "Accurate electrical battery model capable of
predicting runtime and I-V performance," IEEE Transactions on Energy
Conversion, vol. 21, pp. 504-511, 2006.
[49] L. Gao, S. Liu, and R. A. Dougal, "Dynamic lithium-ion battery model for
system simulation," IEEE Transactions on Components and Packaging
Technologies, vol. 25, pp. 495-505, 2002.
[50] B. Schweighofer, K. Raab, and G. Brasseur, "Modelling of high power
automotive batteries by the use of an automated test system," 2002, pp.
1707-1710.
[51] S. Buller, M. Thele, R. W. A. A. De Doncker, and E. Karden, "Impedance-based
simulation models of supercapacitors and Li-ion batteries for power electronic
applications," Industry Applications, IEEE Transactions on, vol. 41, pp. 742-747,
2005.
[52] Z. Xiaofeng, F. Soudi, D. Shirmohammadi, and C.S. Cheng, “A distribution
short circuit analysis approach using hybrid compensation method,” IEEE Trans.
Power Syst., Vol. 10, no. 4, Nov. 1995, pp. 2053-2059.
[53] J. H. Teng, “A direct approach for distribution system load flow solutions,”IEEE Trans. Power Delivery, Vol. 18, no. 3, July 2003, pp. 882-887.
[54] W. M. Lin, Y. S. Su, H. C. Chin, and J. H. Teng, “Three-Phase Unbalance
Distribution Power Flow Solutions with Minimum Data Preparation,” IEEE
Trans. Power Syst., Vol. 14, Aug. 1999, pp. 1178-1183.
[55] M. Todorovski and D. Rajicic, “Handling three-winding transformers and loads
in short circuit analysis by the admittance summation method,” IEEE Trans.
Power Syst., Vol. 18, no. 3, Aug. 2003, pp. 993-1000.
[56] J. H. Teng, “Modelling distributed generations in three-phase distribution load
flow,” IET Proc. Generation, Transmission and Distribution, Vol. 2, no.3, May
2008, pp. 330-340.
[57] J. J. Grainger and W. D. Stevenson: ‘Power system analysis’ (McGraw-Hill
International Editions, 1994)
[58] Richard E. Brown, “Electric Power Distribution Reliability”, Marcel Dekker,
New York, 2002.
[59] C. S. Cheng, and D. Shirmohammadi, “A three-phase power flow method for
real-time distribution system analysis,” IEEE Trans. Power Syst., Vol. 10, no.
2, May 1995, pp. 671-679.
[60] W. M. Lin, C. H. Huang, and T. S. Zhan, “A Hybrid Current-Power Optimal
Power Flow Technique”, IEEE Trans. Power Syst., vol. 23, pp. 177-185, Feb.
2008.
[61] K. Kurohane, T. Senjyu, A. Yona, N. Urasaki, T. Goya, and T. Funabashi, “A
Hybrid Smart AC/DC Power System,” IEEE Trans. Smart Grid, vol. 1, no. 2, pp.
199–204, Sept. 2010.
[62] P. Piagi and R. Lasseter, “Autonomous control of microgrids,” in Proc. IEEE
Power Eng. Soc. Gen. Meeting, Montreal, QC, Canada, vol. 1, pp. 305–308, Jun.
18–22, 2006,.
[63] F. Katiraei, M. Iravani, and P. Lehn, “Micro-grid autonomous operation during
and subsequent to islanding process,” IEEE Trans. Power Del., vol. 20, no. 1, pp.
248–257, Jan. 2005.
[64] J. P. Lopes, C. Moreira, and A.Madureira, “Defining control strategies for
microgrids islanded operation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp.
916–924, May 2006.
[65] M. E. Baran and F. F. Wu, "Network Reconfiguration in Distribution Systems
for Loss Reduction and Load Balancing," IEEE Trans. on Power Delivery, Vol.4,
No.2, pp. 1401-1407, 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.234.62
論文開放下載的時間是 校外不公開

Your IP address is 18.191.234.62
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code