Responsive image
博碩士論文 etd-1124114-185048 詳細資訊
Title page for etd-1124114-185048
論文名稱
Title
稀磁性半導體銻化鎵錳場效結構的磁性及傳輸性質之研究
Electric-Field Effects on Magnetic Properties of (Ga,Mn)Sb Channel in Field-Effect Structures.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-15
繳交日期
Date of Submission
2015-01-21
關鍵字
Keywords
場效結構、磁性材料、分子束磊晶、三五族半導體、銻
Magnetic materials, Field effect structures, Semiconducting III–V materials, Antimonides, Molecular beam epitaxy
統計
Statistics
本論文已被瀏覽 5760 次,被下載 77
The thesis/dissertation has been browsed 5760 times, has been downloaded 77 times.
中文摘要
摘 要
本論文旨在探討超薄銻化鎵錳場效結構之磁性及傳輸性質的特性。
我們將超薄銻化鎵錳製成金屬-絕緣-半導體的場效結構,並探討其於外加電場下,不同溫度以及不同磁場之影響下的傳輸特性。其結果證實我們可以藉由外加電場控制超薄銻化鎵錳薄膜的磁特性,如同控制砷化鎵錳薄膜的磁特性一樣;不同於砷化鎵錳的是,砷化鎵錳薄膜由實驗結果獲得的居禮溫度TC和電洞濃度p的關係 TC ∝ p^ϒ,其指數ϒ約為0.2;而銻化鎵錳薄膜之指數的實驗結果為1.3-1.6,是砷化鎵錳薄膜的數倍大。
並且,我們以p-d Zener 模型為基礎,並考慮薄膜中電洞分布不均勻的情形,以數值計算方式得以再現指數的實驗數值。計算結果顯示出於銻化鎵錳薄膜中,其電洞分布不均勻且電洞蓄積於絕緣層於銻化鎵錳薄膜之界面處;相較於砷化鎵錳薄膜中,其絕緣層於砷化鎵錳薄膜之界面處呈現出電洞空乏的情形。其計算結果符合了p型銻化鎵及p型砷化鎵之費米能級的釘扎位置。
同時,我們也發現了銻化鎵錳薄膜之霍耳電導率,不同於砷化鎵錳薄膜之霍耳電導率。
本研究之結果對於超薄銻化鎵錳薄膜之應用,或以稀磁性半導體相關之化合物的電磁特性之控制有其重要性。


關鍵詞: 銻、三五族半導體、磁性材料、分子束磊晶、場效結構
Abstract
This thesis investigates the magnetotransport properties of ultrathin (Ga,Mn)Sb layers in a field-effect structure. We fabricate a metal-insulator-semiconductor field-effect structure with a thin (Ga,Mn)Sb channel and investigate its magnetotransport properties, as functions of temperature, external magnetic field, and gate electric field. The results show that one can control magnetic properties of (Ga,Mn)Sb by applying electric fields, as similar to (Ga,Mn)As. The most prominent finding is that the Curie temperature of (Ga,Mn)Sb can be modulated by gating but in somewhat different manner from (Ga,Mn)As. For (Ga,Mn)Sb, we determine experimentally the relationship between the Curie temperature TC and hole concentration p, to be Tc ∝ p^ϒ with ϒ of 1.3~1.6, which is several times larger than ϒ ~ 0.2 reported previously for (Ga,Mn)As.

We show that the value of ϒ can be reproduced by the numerical calculations based on the adapted p-d Zener model with non-uniform hole distribution, and the calculation indicates the accumulation of holes in (Ga,Mn)Sb in the vicinity of the interface with a gate insulator, while for (Ga,Mn)As the depletion of holes at the interface. The results are consistent with the reported Fermi energy pinning positions for p-GaSb and p-GaAs.
We also find that the conductivity dependence of the Hall conductivity is different from that reported for (Ga,Mn)As.

The findings are of great importance for employing thin and ultrathin layers of (Ga,Mn)Sb or related compounds in the concept of spintronics devices, where magnetic and electronic properties are mutually controlled.
目次 Table of Contents
論文審定書...... i
ACKNOWLEDGMENTS...... iv
摘要...... v
Abstract...... vi
CONTENTS...... vii
1 Introduction …………………………………………………………………………1
1.1 Background ……………………………………………………………………1
1.2 Purpose …………………………………………………………………………2
1.3 Structure………………………………………………………………………...3
Bibliography of Chapter 1 …………………………… …………………………5
2 Diluted magnetic semiconductor………………………………………………7
2.1 III-V group diluted magnetic semiconductor………………………………....9
2.1.1 Growth of (Ga,Mn)Sb films……………………………………….…9
2.1.2 Mn composition and lattice properties……………………………….13
2.2 Magnetic properties…………………………………………………………...17
2.3 Origin of ferromagnetism……………………………………………………..18
2.4 Magnetotransport properties………………………………………………….26
2.4.1 Extrinsic anomalous Hall effect…………………………………...…27
2.4.2 Intrinsic anomalous Hall effect……………………………………....29
2.4.3 Temperature and magnetic field dependence of resistivity………….30
2.5 Electron spin device by controlling ferromagnetism with an electric field …..32
2.5.1 Manipulation of hole concentration and Curie temperature by electric field…………………………………………………………………...33
2.5.2 Anomalous temperature dependence of the anomalous Hall effect (AHE) in the (Ga,Mn)As channel FET……………………………….37
2.5.3 Controlling magnetic anisotropy by hole density and strain…………39
Bibliography of Chapter 2………………………………...…………………….45
3 Epitaxy growth of (Ga,Mn)Sb …………………………………………………...49
3.1 Low temperature molecular beam epitaxial growth (Ga,Mn)Sb ………51
3.1.1 Growth rate calibration by using RHEED intensity oscillations……..53
3.1.2 Growth procedure…………………………………………………….57
3.2 Material analysis: x-ray diffraction…………………………………………...62
3.3 Magnetic properties: magnetization measurement…………………………....65
3.4 The properties of the FET structure with (Ga,Mn)Sb ultra-thin film…………69
Bibliography of Chapter 3………………………………………………….…….75
4 Theoretical Modeling…………………………………………………………….77
4.1 Hole state and hole mediated exchange interactions……………………….77
4.2 p-d Zener model of ferromagnetism, and its application to (Ga,Mn)Sb……...82
4.3 Calculate the Curie temperature by p-d Zener model with nonuniform hole distribution in (Ga,Mn)Sb layer………………………………………….……86
Bibliography of Chapter 4……………………………………………..………..96
5 Electric-field effects on magnetic properties of (Ga,Mn)Sb layers in field-effect structures………………………………………………………………….…….97
5.1 Magnetotransport properties under gate voltage…………………………….99
5.2 Hole concentration dependence on gate voltage…………………………….102
5.3 Curie temperature dependence on gate voltage……………………………...104
5.4 Main result and their interpretation…………………………………………......107
5.5 Comparison of theoretical and experimental results……………………….....109
Bibliography of Chapter 5…………………………………………….….........….…...111
6 Summary and prospects ………………………………………………………...113

Author’s scientific contribution and training ………………………………………114
參考文獻 References
Bibliography of Chapter 2
1 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
2 T. Dietl, Acta Phys. Pol. A 100 (Suppl.) 139 (2001).
3 J. Furdyna and J. Kossut (eds.), Semiconductor and Semimetals, Vol. 25, Academic, New York (1988).
4 J. Kossut, and W. Dobrowolski, in: Buschow, K. H. J. (Ed.), Handbook of Magnetic Materials, Vol. 7 North-Hoalland, Amsterdam (1993).
5 T. Dietl, (Diluted) Magnetic Semiconductors, in: T. S. Moss (Ed.), Handbook of Semiconductors, Vol. 3B, North-Hoalland, Amsterdam (1994).
6 N. Shibata, A. Ohki, and A. Katsui, J. Cryst. Growth 93, 703 (1988).
7 T. Baron, S. Tatarenko, K. Saminadayer, N. Magnea, and J. Fontenille, Appl. Phys. Lett. 65, 1284 (1994).
8 H. Munekata, H. Ohno, S. von Molnár, A. Segmüller, L. L. Chang, and L. Esaki, Phys. Rev. Lett. 63, 1849 (1989).
9 H. Ohno, H. Munekata, T. Penney, S. von Molnár, and L. L. Chang, Phys. Rev. Lett. 68, 2664 (1992).
10 H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
11 H. Ohno, Science 281, 951 (1998).
12 DeSimone, D., C. E. C. Wood, C. A. Evans Jr., J. Appl. Phys. 53, 4938 (1982).
13 M. I. Aliyev, I. S. Dadashev, and G. I. Safaraliyev, Phys. Met. Metallogr. 49, 166 (1980).
14 T. Adhikari and S. Basu, Jpn. J. Appl. Phys. Part I 33, 4581 (1984).
15 E. Abe, F. Matsukura, H. Yasuda, Y. Ohno, and H. Ohno, Physica E 7, 981 (2000).
16 F. Matsukura, E. Abe, Y. Ohno, and H. Ohno, Appl. Surf. Sci. 159-160, 265 (2000).
17 F. Matsukura, E. Abe, and H. Ohno, J. Appl. Phys. 87, 6442 (2000).
18 Y. Nishitani, M. Endo, F. Matsukura, and H. Ohno, Physica E 42, 2681 (2010).
19 J. H. Neave, P. J. Dobson, B. A. Joyce, and J. Zhang, Appl. Phys. Lett. 47, 15 (1985).
20 A. Shen, H. Ohno, F. Matsukura, Y. Sugawara, N. Akiba, T. Kuroiwa, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, J. Cryst. Growth 175/176, 1069 (1997).
21 H. Ohno, F. Matsukura, A. Shen, Y. Sugawara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, in: M. Scheffler and R. Zimmermann (Eds.), Proceedings of the 23rd International Conference on Physics of Semiconductors, World Scientific, Singapore, pp. 405-408 (1996).
22 A. Shen, F. Matsukura, S. P. Guo, Y. Sugawara, H. Ohno, M. Tani, H. Abe, and H. C. Liu, J. Cryst. Growth 201/202, 673 (1999).
23 W.J. Bartels and W. Nijman, J. Cryst. Growth 44, 518 (1978).
24 T. Omiya, F. Matsukura, A. Shen, Y. Ohno, and H. Ohno, Physica E 10, 206 (2001).
25 M. Abolfath, T. Jungwirth, J. Brum, and A. H. MacDonald, Phys. Rev. B 63, 054418 (2001).
26 T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. 63, 195205 (2001).
27 H. Ohno et al., Appl. Phys. Lett. 69, 363 (1996).
28 R. Shioda, K. Ando, T. Hayashi, and M. Tanaka, Phys. Rev. B 58, 1100 (1998).
29 H. Hasegawa, H. Ohno, and T. Sawada, Jpn. J. Appl. Phys. Part 2 25, L265 (1986).
30 A. Zunger, in: Solid State Physics, Vol. 39, eds H. Ehrenreich and D. Turnbull (Academic Press, New York), 275 (1986).
31 G. van der Laan and B. T. Thole, Phys. Rev. B 43, 13401 (1991).
32 G. van der Laan, K. W. Edmonds, E. Arenholz, N. R. S. Farley, and B. L. Gallagher, Phys. Rev. B 81, 214422 (2010).
33 M. Birowska, C. Sliwa, J. A. Majewski, and T. Dietl, Phys. Rev. Lett. 108, 237203 (2012).
34 C. L. Chien and C. W. Westgate, The Hall effect and Its Applications, Plenum Press, New York (1980).
35 J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and Z. Tešanović, Phys. Rev. Lett. 83, 3737 (1999).
36 S. Zhang, Phys. Rev. Lett. 85, 393 (2000).
37 D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, S. Koleśnik, J. Jaroszyński, T. Dietl, B. Barabara, and D. Dufeu, J. Appl. Phys. 87, 6451(2000).
38 T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).
39 J. Smit, Physica 21, 877 (1955).
40 L. Berger, Phys. Rev. B 2, 4559 (1970).
41 A. Crépieux and P. Bruno, Phys. Rev. B 64, 014416 (2001).
42 J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
43 R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).
44 E. H. Hall, Philos. Mag. 10, 301 (1880).
45 N. Nagaosa et al., Rev. Mod. Phys. 82, 1539 (2010).
46 T. Fukumura, H. Toyosaki, K. Ueno, M. Nakano, T. Yamasaki, and M. Kawasaki, Jpn. J. Appl. Phys. 46, L642 (2007).
47 F. Matsukura, F., H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).
48 H. Ohno, H. and F. Matsukura, Solid State Commun. 117, 179 (2001).
49 T. Omiya, F. Matsukura, T. Dietl, Y. Ohno, T. Sakon, M. Motokawa, and H. Ohno, Physica E 7, 976 (2000).
50 A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A. S. van Sternbergen, P. J. Wellman, B. Grietens, R. Begaerts, F. Herlach, and G. Borghs, Phys. Rev. B 56, 13103 (1997).
51 H. Munekata, A. Zaslavsky, P. Fumagalli, and R. J. Gambino, Appl. Phys. Lett. 63, 2929 (1993).
52 H. Ohno, J. Mag. Magn. Mater. 200, 110 (1999).
53 S. Koshihara et al., Phys. Rev. Lett. 78, 4617 (1997).
54 Y. L. Soo, S. W. Huang, Z. H. Ming, Y. H. Kao, and H. Munekata, Phys. Rev. B 53, 4905 (1996).
55 R. Fiederling et al., Nature 402, 787 (1999).
56 Y. Ohno et al., Nature 402, 790 (1999).
57 D. Loss, and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
58 R. Vrijen et al., Phys. Rev. A 62, 012306 (2000).
59 H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).
60 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000); T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. 63, 195205 (2001).
61 T. Jungwirth, W. A. Atkinson, B. H. Lee, and A. H. MacDolnald, Phys. Rev. B 59, 9818 (1999).
62 T. Dietl, A. Haury, and Y. Merle d’Aubigné, Phys. Rev. B 55, R3347 (1997).
63 P. Kossacki, D. Ferrand, A. Arnoult, J. Cibert, S. Tatarenko, A. Wasiela, Y. Merle d’Aubigné, K. Świątek, M. Sawicki, J. Wróbel, W. Bardyszewski, and T. Dietl, Physica E 6, 709 (2000).
64 B. Lee, T. Jungwirth, and A. H. MacDonald, Phys. Rev. B 61, 15606 (2000).
65 Y. Nishitani, D. Chiba, M. Endo, M. Sawicki, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. B 81, 045208 (2010).
66 K. Wagner, D. Neumaier, M. Reinwald, W. Wegsheider, and D. Weiss, Phys. Rev. Lett. 97, 056803 (2006).
67 L. Villa, R. Gilaud, L. Thevenard, A. Lemaître, F. Pierre, J. Dufouleur, D. Mailly, B. Barbara, and G. Faini, Phys. Rev. Lett. 98, 027204 (2007).
68 Y. D. Park, A. T. Habbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. M. Ambrose, A. Willson, G. Spanos, and B. T. Jonker, Science 295, 651(2002).
69 W.L. Lin, T. Wojtowicz, X. Liu, M. Dobrowolska, J.K. Furdyna, Physica E 20 (2004) 346.
70 G.B. Kim, M. Cheon, S. Wang, H. Luo, B.D. McCombe, J. Supercond. 18 (2005) 87.
71 A. Shen, H. Ohno, F. Matsukura, Y. Sugawara, N. Akiba, T. Kuroiwa, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, J. Cryst. Growth 175/176 (1997) 1069.
72 F. Matsukura, H. Ohno, A. Shen., Y. Sugawara, Phys. Rev. B 57 (1998) R2037.
73 D. Chiba, F. Matsukura, H. Ohno, Appl. Phys. Lett. 89 (2006) 162505.
74 M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, Nat. Phys. 6, 22 (2010).
75 D. Chiba, A. Wepachowska, M. Endo, Y. Nishitani, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. Lett. 104, 106601 (2010).
76 X.-J. Liu, X. Liu, and J. Sinova, Phys. Rev. B 84, 165304 (2011).
77 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
78 T. Jungwirth, J. Sinova, J. Ma_sek, J. Kucˇera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
79 D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature 455, 515 (2008).
80 T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nat. Nanotechnol. 4, 158 (2009).
81 D. Chiba, Y. Nakatani, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 96, 192506 (2010).
82 D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003).

Bibliography of Chapter 3
1 H. Ohno, H. Munekata, T. Penny, S. von Monár, and L. L. Chang, Phys. Rev. Lett. 68, 2664 (1992).
2 H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
3 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
4 T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
5 H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature (London) 408, 944 (2000).
6 D. Chiba, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 162505 (2006).
7 D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003).
8 D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature (London) 455, 515 (2008).
9 M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, Nature Phys. 6, 22 (2010).
10 D. Chiba, A. Werpachowska, M. Endo, Y. Nishitani, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. Lett. 104, 106601 (2010).
11 M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science 315, 349 (2007).
12 T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and T. Suzuki, Nature Nanotech. 4, 158 (2009).
13 K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, and T. Ito, Phys. Rev. Lett. 102, 187201 (2009).
14 M. Endo, S. Kanai, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 96, 212503 (2010).
15 Y. Nishitani, D. Chiba, M. Endo, M. Sawicki, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. B 81, 045208 (2010).
16 H. Ohno, J. Appl. Phys. 113, 136509 (2013).
17 H. Hasegawa, H. Ohno, and T. Sawada, Jpn. J. Appl. Phys. Part 2 25, L265 (1986).
18 C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).
19 J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111 (2006).
20 D.C. Look, Thin Solid Films 231, 61 (1993).
21 M. R. Melloch, D. D. Nolte, J. M. Woodall, J. C. P. Chang, D. B. Janes, E. S. Harmon, CRC Crit. Rev. Solid State Mater. Sci. 21, 189 (1996).
22 A. Shen, F. Matsukura, S.P. Guo, Y. Sugawara, H. Ohno, M. Tani, H. Abe, and H. C. Liu, J. of Cryst. Growth 201, 679 (1999).
23 Y. Nishitani, M. Endo, F. Matsukura, and H. Ohno, Physica E 42, 2681 (2010).
24 P. D. Brewer, D. H. Chow, and R. H. Miles, J. Vac. Sci. Technol. B 14, 2335 (1996).
25 E. H. C.Parker (ed.), The Technology and Physics of Molecular Beam Epitaxy, Plenum Press, New York (1985).
26 M. Ohring, The Material Science of Thin Films, Academic Press, 1992.
27 D. Zhou and B. F. Usher, J. Phys. D: Appl. Phys. 34, 1461 (2001).
28 E. Abe, F. Matsukura, H. Yasuda, Y. Ohno, and H. Ohno, Physica E 7, 981 (2000).
29 P. Romanowski, J. Bak-Misiuk, E. Dynowska, J. Z. Domagara, J. Sadowski, T. Wojciechowski, A. Barcz, R. Jakiela, and W. Caliebe, Acta Physica Polon. A 117, 341 (2010).
30 D. Chiba, M. Yamanouchi, F. Matsukura, E. Abe, Y. Ohno, K. Ohtani, and H. Ohno, J. Supercond. 16, 179 (2003).
31 A. Arrott, Phys. Rev. 108, 1394 (1957).

Bibliography of Chapter 4
1 T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
2 F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).
3 T. Dietl, J. Cibert, P. Kossacki, D. Ferrand, S. Tatarenko, A. Wasiela, Y. Merle d’Aubigné, F. Matsukura, N. Akiba, and H. Ohno, Physica E 7, 967 (2000).
4 P. Kossacki, A. Kudelski, J. A. Gaj, J. Cibert, S. Tatarenko, D. Ferrand, A. Wasiela, B. Deveaud, and T. Dietl, Physica E 12, 344 (2002).
5 K. Wagner, D. Neumaier, M. Reinwald, W. Wegscheider, and D. Weiss, Phys. Rev. Lett. 97, 056803 (2006).
6 L. Vila, R. Giraud, L. Thevenard, A. Lemaître, F. Pierre, J. Dufouleur, D. Mailly, B. Barbara, and G. Faini, Phys. Rev. Lett. 98, 027204 (2007).
7 T. Dietl, A. Haury, and Y. Merle d’Aubigné, Phys. Rev. B 55, R3347 (1997).
8 T. Dietl, J. Cibert, D. Ferrand, and Y. Merle d’Aubigné, Mater. Sci. Eng. B 63, 103 (1999).
9 M. Kodzuka, T. Ohkubo, K. Hono, F. Matsukura, and H. Ohno, Ultramicroscopy 109, 644 (2009).
10 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
11 M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, Nat. Phys. 6, 22 (2010).
12 Y. Nishitani, D. Chiba, M. Endo, M. Sawicki, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. B 81, 045208 (2010).
13 I Vurgaftman, J. R. Meyer et al., J. Appl. Phys. 89, 5815 (2001).
14 H. Mathieu, D. Auvergne et al., Phys. Rev. B 12, 5815 (1975).
15 S. Adachi, Properties of Group IV, III-V and II-VI Semiconductors, John Wiley & Sons, Ltd, Chichester (2005).

Bibliography of Chapter 5
1 P. P. Edwards and M. J. Sienko, Phys. Rev. B 17, 2575 (1978).
2 N. F. Mott, Philos. Mag. 6, 287 (1961).
3 M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 87, 107203 (2001).
4 T. Dietl, J. Phys. Soc. Jpn. 77, 3, 031005 (2008).
5 F. Matsukura, H. Ohno, A. Shen, Y. Sugawara, Phys. Rev. B 57, R2037 (1998).
6 F. Matsukura, M. Sawicki, T. Dietl, D. Chiba, and H. Ohno, Physica E 21, 1032 (2004).
7 E. Abe, F. Matsukura, H. Yasuda, Y. Ohno, and H. Ohno, Physica E 7, 981 (2000).
8 D. Chiba, A. Werpachowska, M. Endo, Y. Nishitani, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. Lett. 104, 106601 (2010).
9 A. Arrott, Phys. Rev. 108, 1394 (1957).
10 H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).
11 D. Chiba, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 162505 (2006).
12 T. Fukumura, H. Toyosaki, K. Ueno, M. Nakano, T. Yamasaki, and M. Kawasaki, Jpn. J. Appl. Phys. 46, L642 (2007).
13 X.-J. Liu, X. Liu, and J. Sinova, Phys. Rev. B 84, 165304 (2011).
14 A. Werpachowska and T. Dietl, Phys. Rev. B 81, 155205 (2010).
15 W. L. Lim, T. Wojtowicz, X. Liu, M. Dobrowolska, J.K. Furdyna, Physica E 20 (2004) 346.
16 F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).
17 J. P. Jan, Solid State Phys. 5, 1 (1957).
18 A. Arrott, Phys. Rev. 108, 1394 (1957).
19 Y. Nishitani, D. Chiba, M. Endo, M. Sawicki, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. B 81, 045208 (2010).
20 T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
21 M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, Nature Phys. 6, 22 (2010).
22 M. P. López-Sancho and L. Brey, Phys. Rev. B 68, 113201 (2003).
23 M. H. S. Owen, J. Wunderlich, V. Novák, K. Olejník, J. Zemen, K. Výborný, S. Ogawa, A. C. Irvine, A. J. Ferguson, H. Sirringhaus, and T. Jungwirth, New J. Phys. 11, 023008 (2009).
24 T. Dietl, A. Haury, and Y. Merle d’Aubigné, Phys. Rev. B 55, R3347 (1997).
25 T. Dietl, J. Cibert, D. Ferrand, and Y. Merle d’Aubigné, Mater. Sci. Eng., B 63, 103 (1999).
26 H. Hasegawa, H. Ohno, and T. Sawada, Jpn. J. Appl. Phys. Part 2 25, L265 (1986).
27 C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).
28 J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111 (2006).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code