Responsive image
博碩士論文 etd-1126109-155241 詳細資訊
Title page for etd-1126109-155241
論文名稱
Title
胺基膦化物鎳與鋁金屬錯合物之合成、結構及反應性之探討
Synthesis, Structure and Reactivity Studies of Nickel and Aluminum Complexes Containing Amido Phosphine Ligands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
296
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-11-20
繳交日期
Date of Submission
2009-11-26
關鍵字
Keywords
螯合效應、軟硬與酸鹼、混價配位基、雙環氮磷配位基
chelate effect, hard soft acid base, diarylamido phosphine ligand
統計
Statistics
本論文已被瀏覽 5710 次,被下載 0
The thesis/dissertation has been browsed 5710 times, has been downloaded 0 times.
中文摘要
我們置備一系列磷上取代基相同與不相同之胺基雙環磷化配位基,對稱[N(o-C6H4PR2)2]- ([R-PNP]- ; R = Ph, iPr, Cy)與不對稱[N(o-C6H4PPh2)( o-C6H4PiPr2)]-,
其中性配位基H[R-PNP] ( R = Ph, iPr, Cy)或H[Ph-PNP-iPr],可以用n-BuLi 做去氫化反應,產生一系列鋰鹽錯合物,[R-PNP]Li(solv)n ( R = Ph, iPr, Cy; solv = THF, OEt2; n =1,2)或[Ph-PNP-iPr]Li(solv)n (solv = THF, OEt2; n = 1,2),其溶劑之配位數會因為溶劑之配位能力及溶劑本身之立體障礙而異。接著,將鋰鹽錯合物或是中性配位基與NiCl2(DME)反應,皆可以得到鎳氯金屬錯合物,[R-PNP] NiCl ( R = Ph, iPr, Cy)或[Ph-PNP-iPr]NiCl。再將鎳氯金屬錯合物分別與格鋰鈉試劑反應,則可以得到一系列鎳金屬碳氫錯合物,此類錯合物即使具有β-氫,在高溫下也會非常穩定。再者,我們將鎳氯金屬錯合物分別與Π- donor 配位基進行反應,生成鎳金屬以共價鍵鍵結非碳原子之錯合物,並區別出此類錯合物之酸鹼強度。另外,我們將中性配位基與Ni(COD)2 反應,皆可以得到鎳氫金屬錯合物,[R-PNP] NiH ( R = Ph, iPr, Cy)或[Ph-PNP-iPr]NiH。接著,將鎳氫金屬錯合物分別與烯類或炔類進行一系列插入(insertion)反應,其為1,2-insertion 或是2,1-insertion,會受其配位基之磷上取代基影響或是受到烯類或炔類取代基之影響。最後,我們也合成出一系列acyl 鎳金屬錯合物及具有催化性並生成C-N 鍵之鎳金屬錯合物。一系列鎳金屬錯合物皆經由多何種核磁共振光譜儀確定其溶液態之組成,並由X-ray 單晶繞射儀確定固態結構,再由元素分析確定錯合物碳、氫、氮之比例。在合成鋁金屬錯合物方面,我們置備一系列中性對稱H[R-PNP] ( R = Ph, iPr)與不對稱H[Ph-PNP-iPr]配位基,分別與trialkylaluminum 進行alkane elimination,得到五配位之dialkyl aluminum 錯合物,[R-PNP]AlR’2 ( R = Ph, iPr; R’ = Me, Et, iBu)
[Ph-PNP-iPr]AlR’ (R’ = Me, Et, iBu),而aluminum dihydride 錯合物,必須in situ 合成aluminum dichloride 前趨物,再與LiAlH4 反應,才可以得到。所有之錯合物皆經由多何種之核磁共振光譜儀確定溶液態之組成,其中,對稱之dialkyl aluminum 錯合物,
溶液態是屬於C2 對稱,不對稱之dialkyl aluminum 錯合物,溶液態是屬於C1 對稱,而且,在氫譜上,不對稱之dialkyl aluminum 錯合物,其α-氫原子具diastereotopy
之性質,由X-ray 單晶繞射儀確定固態結構皆為五配位之組成,並由元素分析確定錯合物碳、氫、氮之比例。
Abstract
We prepared a seties of tridentate amido diphosphine ligands, including symmetrical [N(o-C6H4PR2)2]- ([R-PNP]- ; R = Ph, iPr, Cy) and unsymmetrical [N(o-C6H4PPh2) (o-C6H4PiPr2)]-. Deprotonation of neutral ligands, H[R-PNP] ( R = Ph, iPr, Cy) or H[Ph-PNP-iPr], with n-BuLi in ether solutions at -35oC produced the lithium complexes, [R-PNP]Li(solv)n ( R = Ph, iPr, Cy; solv = THF, OEt2; n = 1,2) or [Ph-PNP-iPr]Li(solv)n
(solv = THF, OEt2; n = 1,2), respectively. The reactions of the lithium complexes or neutral ligands with NiCl2(DME) in THF solutions generated nickel(II) chloride complexes, [R-PNP]NiCl ( R = Ph, iPr, Cy) or [Ph-PNP-iPr]NiCl, which was then reacted with a variety of Grignard reagents to afford the corresponding hydrocarbyl complexes. Of particular interest among the compounds isolated are alkyl complexes that contain β−hydrogen atoms. The metathetical reactions of nickel(II) chloride complexes with
LiNHPh, NaOPh, NaSPh, or NaOtBu, respectively, produced the correspounding nickel anilide, nickel phenolate, nickel thiophenolate and nickel tert-butoxide derivatives. Protonolysis studies of nickel(II)-heteroatom complexes revealed the basic reactivity of
these π-donor ligands. The basicity follows the order OtBu > NHPh > OPh > SPh. Treatment of Ni(COD)2 (COD = cycloocta-1,5-diene) with neutral ligands produced the correspounding four-corrdinate nickel hydride complexes, [R-PNP]NiH (R = Ph, iPr, Cy)
or [Ph-PNP-iPr]NiH. The olefin insertion reactions of [iPr-PNP]NiH or [Ph-PNP-iPr]NiH with ethylene, 1-hexene, and norbornene, respectively, generated the corresponding ethyl, n-hexyl, and 2-norbornyl complexes. The formation of [iPr-PNP]Ni(n-hexyl) or
[Ph-PNP-iPr]Ni(n-hexyl) is indicative of exclusive 1,2-insertion of 1-hexene. In contrast, styrene inserts into the Ni-H bond of [Ph-PNP-iPr]NiH in an exclusively 2,1-manner to afford [Ph-PNP-iPr]NiCH(Me)Ph. The selective 2,1-insertion products [R-PNP]NiCH(Me)CO2Me (R = Ph, iPr, Cy) or [Ph-PNP-iPr]NiCH(Me)CO2Me were also isolated from the reactions of methyl acrylate with the corresponding nickel hydride
complexes. The effects of the phosphorus and olefin substituent on the reactivity and regioselectivity of the olefin insertion reactions are discussed. We also prepared nickel acyl complexes and nickel complexes catalyzed C-N bond formation. In addition to solution
NMR spectroscopic data for all new compounds. X-ray diffraction revealed solid structures. A series of five-coordinate aluminum complexes supported by o-phenylene - derived amido diphosphine ligands have been prepared and structurally characterized. Alkane
elimination reactions of trialkylaluminum with neutral ligands, H[R-PNP] ( R = Ph, iPr) and H[Ph-PNP-iPr] in toluene solution at -35oC respectively produced the corresponding dialkyl complexes [iPr-PNP]AlR'2, [Ph-PNP]AlR'2 and [iPr-PNP-Ph]AlR'2 (R' = Me, Et,
iBu) in high isolated yield. The dihydride complexes [iPr-PNP] AlH2, [Ph-PNP]AlH2 and [iPr-PNP-Ph]AlH2 prepared in one-pot reactions of in situ prepared dichloride precursors with LiAlH4 in THF at room temperature. X-ray diffraction studies revealed a distorted trigonal-bipyramidal structure for these molecules in which the two phosphorus donors are
mutually trans. The solution structures of these complexes were all characterized by 1H, 13C, and 31P NMR spectroscopy. The NMR data are indicative of solution C2 symmetry for [iPr-PNP]- and [Ph-PNP]- complexes, whereas they are indicative of C1 for [iPr-PNP-Ph]- derivatives. The 1H NMR spectra of [iPr-PNP]AlR'2, [Ph-PNP]AlR'2 and [iPr-PNP-Ph]AlR'2 (R' = Et, iBu) revealed diastereotopy for the α-hydrogen atoms in these molecules.
目次 Table of Contents
壹、Nickel Complexes Containing Amido Phosphine Ligands : Synthesis, Structural
and Reactivity…………………………………………………………1
1.1 緒論………………………………………………………………........1
1.2 結果與討論………………………………………………………......12
1.2.1 Ligand precursor 的合成與鑑定………………………….....12
1.2.2 Lithium complexes 的合成與鑑定……………………….....15
1.2.3 Nickel chloride complexes 的合成與鑑定................................20
1.2.4 Nickel alkyl complexes 的合成與鑑定.....................................22
1.2.5 Nickel hydride complex 的合成與鑑定....................................25
1.2.6 Olefin insertion reactions of nickel hydride 的合成與鑑定.......
..........................................................................................................28
1.2.7 Alkynes insertion reactions of nickel hydride 的合成與鑑定....
..........................................................................................................38
1.2.8 CO insertion reactions of nickel hydride 的合成與鑑定.........43
1.2.9 Nickel amide, alkoxide, and thiolate complexes 合成與鑑定....
..........................................................................................................45
1.2.10 Protonolysis reactions of nickel complexes………………...51
1.2.11 Protonolysis reactions of a nickel amide complex 合成與鑑定
........................................................................................................54
1.2.12 Nickel hydroxide complexes 的合成與鑑定..........................56
1.2.13 Nickel acyl complexes 的合成與鑑定.....................................58
1.2.14 CO insertion reactions of nickel amide complexes 的合成與鑑定...
..........................................................................................................62
1.2.15 Nickel triflate adducts 合成與鑑定..........................................65
1.3 結論…………………………………………………………………...67
1.4 未來展望………………………………………………………....…...71
1.5 實驗部分……………………………………………………....……...71
1.5.1 Synthesis of [iPr-PNP-Ph]Li(OEt2). [PYL 3-140; PYL 8-3].....71
1.5.2 Synthesis of [iPr-PNP-Ph]Li(THF)2. [PYL 8-5]……………...73
1.5.3 Synthesis of [iPr-PNP-Ph]H. [PYL 3-161]…………………...74
1.5.4 Synthesis of [iPr-PNP-Ph]NiCl. [PYL 3-132 ; PYL 3-172]......75
1.5.5 Synthesis of [iPr-PNP-Ph]NiH. [PYL 3-181]…………...….....77
1.5.6 Synthesis of [iPr-PNP-Ph]Ni(CH2)5CH3. [PYL4-64]...……...78
1.5.7 Synthesis of [iPr-PNP-Ph]Ni(norbornyl). [PYL4-72]...……...80
1.5.8 Synthesis of [iPr-PNP-Ph]NiCH(Me)CO2Me. [PYL4-47].......81
1.5.9 Synthesis of [iPr-PNP-Ph]Ni(CH=NtBu). [PYL4-99]...……...82
1.5.10 Synthesis of [iPr-PNP-Ph]NiPhC=CHPh. [PYL4-33]...…......83
1.5.11 Synthesis of [iPr-PNP-Ph]NiCH(=CH)SiMe3. [PYL4-81;PYL8-21]
………………………………………………………............85
1.5.12 Synthesis of [iPr-PNP-Ph]NiPhC=CH2. [PYL4-83]...………86
1.5.13 Synthesis of [iPr-PNP-Ph]NiCH(Me)Ph. [PYL8-79]...….......87
1.5.14 Synthesis of [Ph-PNP]NiCH(Me)C(O)OMe. [PYL8-70].......88
1.5.15 Synthesis of [Ph-PNP]NiCH(Me)Ph. [PYL8-91]……...……89
1.5.16 Synthesis of {Ni[N(o-C6H4PPh)(o-C6H4PiPr2)]}2. [PYL8-56]
………………………………………………………….......90
1.5.17 Synthesis of LiNHPh(THF). [PYL5-13]…………..………..91
1.5.18 Synthesis of [iPr-PNP-Ph]NiNHPh. [PYL3-153]…...……....91
1.5.19 Synthesis of [iPr-PNP-Ph]NiOPh. [PYL3-149]…...………...93
1.5.20 Synthesis of [iPr-PNP-Ph]NiOtBu. [PYL3-204]…...……….94
1.5.21 Synthesis of [iPr-PNP-Ph]NiSPh. [PYL3-150]……..….........95
1.5.22 Synthesis of [iPr-PNP-Ph]NiC(O)NHPh. [PYL6-146]...…....96
1.5.23 Synthesis of [Ph-PNP]NiC(O)NHPh. [PYL7-225]...……….98
1.5.24 Synthesis of [iPr-PNP-Ph]NiC2SiMe3. [PYL3-240]...……....98
1.5.25 Synthesis of [iPr-PNP-Ph]NiCH2CN. [PYL4-2]…...………..99
1.5.26 Synthesis of [iPr-PNP-Ph]NiC ≣CPh. [PYL4-91]…….......100
1.5.27 Synthesis of H[iPr-PNP-Ph]Ni(CO)2. [PYL4-43]..................101
1.5.28 Synthesis of [iPr-PNP-Ph]NiC(O)(n-hexyl). [PYL4-77]……….
………………………………………………………..........103
1.5.29 Synthesis of [iPr-PNP-Ph]Ni+(CNtBu)(OTf -). [PYL4-74]…….
…………………………………………………………......104
1.5.30 Synthesis of [iPr-PNP-Ph]Ni+(CO)(OTf -). [PYL4-98].........105
1.5.31 Synthesis of [iPr-PNP-Ph]Ni+(CH3CN)(OTf -). [PYL4-144].....
...............................................................................................106
1.5.32 Synthesis of [iPr-PNP-Ph]NiMe. [PYL6-121]……...….......107
1.5.33 Synthesis of [iPr-PNP-Ph]NiC(O)Me. [PYL6-126]…….....109
1.5.34 Synthesis of [iPr-PNP]Ni(CH2)2CH3. [PYL7-54]…………110
1.5.35 Synthesis of [iPr-PNP-Ph]NiEt. [PYL6-122; PYL7-198]……..
……………………………………………………….….....111
1.5.36 Synthesis of [iPr-PNP-Ph]NiC(O)Et. [PYL6-250]...……... 112
1.5.37 Synthesis of [Ph-PNP]NiEt. [PYL 7-232]…...………….....114
1.5.38 Synthesis of [iPr-PNP-Ph]NiPh. [PYL5-8]............................114
1.5.39 Synthesis of [Ph-PNP]NiCH2Ph. [PYL7-219]…...…...…....115
1.5.40 Synthesis of [iPr-PNP-Ph]NiBr. [PYL5-9].............................116
1.5.41 Synthesis of [iPr-PNP-Ph]NiC(O)(norbornyl). [PYL5-11]…….
…………………………………………………………......117
1.5.42 Synthesis of [iPr-PNP]NiOH. [PYL8-129]……...….............118
1.5.43 Synthesis of [iPr-PNP-Ph]NiOTf [PYL4-157]…….………119
1.5.44 Synthesis of 3-morphlin-4-yl-propionitrile [PYL 6-13]……….
…………………………………………………………......120
1.5.45 Synthesis of 3-morphlin-4-yl-propionic methyl ester [PYL6-133]..
……………………………………………………..………121
1.5.46 Synthesis of 3-pentylamino-propionitrile [PYL 7-3]………122
1.5.47 Synthesis of 3-pentylamino-propionic acid methyl ester [PYL 7-39]
………………………………………………………...…..123
1.6 參考文獻…………………………………………………………....124
貳、Aluminum Complexes Containing Diarylamido Diphosphine Ligands : Synthesis
and Structure ..............................................................................................139
2.1 緒論……………………………………………………...………….139
2.2 結果與討論………………………………………………..………..140
2.2.1 Aluminum Complexes 的合成與鑑定.....................................140
2.2.2 對稱[PNP]-鋁金屬錯合物之溶液態光譜討論…..………...142
2.2.3 不對稱[PNP]-鋁金屬錯合物之溶液態光譜討論……..…...147
2.2.4 固態鋁錯合物之結構討論……………………..…………..148
2.2.5 Catalytic polymerization……………………………………153
2.3 結論……………………………………………………..…………...154
2.4 實驗部分………………………………………………………….....154
2.4.1 Synthesis of [iPr-PNP-Ph]AlMe2. [PYL 5-2]……….…….....154
2.4.2 Synthesis of [iPr-PNP-Ph]AlEt2. [PYL 6-72]…….………....156
2.4.3 Synthesis of [iPr-PNP-Ph]AliBu2. [PYL 6-73]…..……….....157
2.4.4 Synthesis of [iPr-PNP]AlMe2. [PYL 6-70]………..………..159
2.4.5 Synthesis of [iPr-PNP]AlEt2. [PYL 6-124]…….…………...160
2.4.6 Synthesis of [iPr-PNP]AliBu2. [PYL 6-119]……….……….161
2.4.7 Synthesis of [iPr-PNP]AlCl2. [PYL 6-60]…………………..162
2.4.8 Synthesis of [iPr-PNP]AlH2. [PYL 7-51 ; PYL 8-259]……..163
2.4.9 Synthesis of [Ph-PNP]AlMe2. [PYL 6-142]………………..165
2.4.10 Synthesis of [Ph-PNP]AlEt2. [PYL 6-85]………………....166
2.4.11 Synthesis of [Ph-PNP]AliBu2. [PYL6-86]………………...167
2.4.12 Synthesis of [Ph-PNP]AlH2. [PYL 8-257]………………..168
2.4.13 Synthesis of [iPr-PNP-Ph]AlH2. [PYL 8-258]….………....169
2.5 參考文獻……………………………………………….…………...171
參、附錄…………………………………………………………………..….176
附錄A Kinetic Studies of Benzene C-H Bond Activation by Nickel (II) Hydride
Complexes Bearing Amide Pincer Ligands…………………..176
A.1 緒論………………………………………………………...………176
A.2 結果與討論…………………………………………………...……180
A.2.1 C-H bond activation of [iPr-PNP-Ph]NiH………..………..180
A.3 結論………………………………………………………..……….212
A.4 未來展望…………………………………………………..……….213
A.5 參考文獻……………………………………………………..…….213
附錄B Synthesis of Iridium Complexes Containing Amido Phosphine Ligands
……………………………………………………………………215
B.1 緒論…………………………………………………..…………….215
B.2 結果與討論…………………………………..…………………….219
B.3 結論………………………………………………..……………….234
B.4 未來展望……………………………………………..……………..234
B.5 實驗部分…………………………………………………...……….235
B.5.1 Synthesis of H[Me-NP]Ir(Cl)(COD). [PYL7-81]…...……….235
B.5.2 Synthesis of [Me-NP]Ir(COD). [PYL7-52]………..………....236
B.5.3 Synthesis of H[iPr-NP]Ir(Cl)(COD). [PYL8-13]…...………..237
B.5.4 Synthesis of [iPr-NP]Ir(COD). [PYL6-167M]……...………..238
B.5.5 Synthesis of [iPr-PNP-Ph]Ir(COD). [PYL9-29]…...………....239
B.5.6 Synthesis of [iPr-PNP]IrHCl. [PYL 7-10]…………...…….....241
B.5.7 Synthesis of [iPr-PNP]IrH2. [PYL 7-61]……………………..241
B.6 參考文獻………………………………………………………..….242
附錄C 其他化合物之合成及鑑定……………………………………….245
C.1 Synthesis of [iPr-PNP]PdNHPh. [PYL7-1]…...……...…………....245
C.2 Synthesis of [iPr-PNP]PdSPh. [PYL7-2]……………..…………...246
C.3 Synthesis of [Ph-PNP]PdNHPh. [PYL7-3]…………..…..………..246
C.4 Synthesis of [Ph-PNP]PdOPh. [PYL7-4]…………..……………...247
C.5 Synthesis of [iPr-PNP]PdH. [PYL7-24]…………..………………248
C.6 Synthesis of [iPr-PNP]PdOTf. [PYL7-66]……...………………....249
參考文獻 References
(1) Fryzuk, M. D.; Love, J. B. J.; Retting, S. J.; Young, V. G. Science 1997, 275.
(2) Fryzuk, M. D. Can. J. Chem. 1992, 70, 2839.
(3) Schrock, R. R.; Seidel, S. W.; Schrodi, Y.; Davis, W. M. Organometallics 1999,
18, 428.
(4) Fryzuk, M. D.; Johnson, S. A.; Rettig, S. J. J. Am. Chem. Soc. 1998, 120, 11024.
(5) Fryzuk, M. D.; MacKay, B. A.; Patrick, B. O. J. Am. Chem. Soc. 2003, 125, 3234.
(6) Shaver, M. P.; Fryzuk, M. D. J. Am. Chem. Soc. 2005, 127, 500.
(7) Fryzuk, M. D.; Love, J. B.; Rettig, S. J. Chem. Commun. 1996, 2783.
(8) Fryzuk, M. D.; Love, J. B.; Rettig, S. J. Organometallics 1998, 17, 846.
(9) Fryzuk, M. D.; Giesbrecht, G. R.; Rettig, S. J.; Yap, G. P. A. J. Organomet. Chem.
1999, 591, 63.
(10) Fryzuk, M. D.; Johnson, S. A.; Rettig, S. J. J. Am. Chem. Soc. 2001, 123, 1602.
(11) Fryzuk, M. D.; Kozak, C. M.; Bowdridge, M. R.; Jin, W. C.; Tung, D.; Patrick, B.
O.; Rettig, S. J. Organometallics 2001, 20, 3752.
(12) Fryzuk, M. D.; Kozak, C. M.; Mehrkhodavandi, P.; Morello, L.; Patrick, B. O.;
Rettig, S. J. J. Am. Chem. Soc. 2002, 124, 516.
(13) Fryzuk, M. D.; Giesbrecht, G. R.; Olovsson, G.; Rettig, S. J. Organometallics1996, 15, 4832.
(14) Fryzuk, M. D.; Montgomery, C. D. Coord. Chem. Rev. 1989, 95, 1.
(15) Fryzuk, M. D.; Haddad, T. S.; Berg, D. J. Coord. Chem. Rev. 1990, 99, 137.
(16) Fryzuk, M. D.; Johnson, S. A. Coord. Chem. Rev. 2000, 200, 379.
(17) MacKay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385.
(18) Basch, H.; Musaev, D. G.; Morokuma, K.; Fryzuk, M. D.; Love, J. B.; Seidel, W.
W.; Albinati, A.; Koetzle, T. F.; Klooster, W. T.; Mason, S. A.; Eckert, J. J. Am.
Chem. Soc. 1999, 121, 523.
(19) Fryzuk, M. D.; Mackay, B. A.; Johnson, S. A.; Patrick, B. O. Angew. Chem. Int.
Ed. 2002, 41, 3709.
(20) Fryzuk, M. D.; Shaver, M. P.; Patrick, B.O. Inorg. Chim. Acta 2003, 350, 293.
(21) Ozerov, O. V.; Ferard, H. F.; Watson, L. A.; Huffman, J. C.; Caulton, K. G.
Inorg. Chem. 2002, 41, 5615.
(22) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. Organometallics 1991, 10, 2026.
(23) Liang, L.-C.; Lin, J. -M.; Hung, C.-H. Organometallics 2003, 22, 3007.
(24) Fritz, H. P.; Gordon, I. R.; Schwarzhans, K. E.; Venznzi, L. M. J. Chem. Soc.
1965, 5210.
(25) Crociani, L.; Tisato, F.; Refosco, F.; Bandoli, G.; Corain, B. Eur. J. Inorg. Chem.
1998, 1689, and references cited therein.
(26) Hedden, D.; Roundhill, D. M. Inorg. Chem. 1985, 24, 4152.
(27) Rauchfuss, T. B.; Patino, F. T.; Roundhill, D. M. Inorg. Chem. 1975, 14, 652.
(28) Liang, L.-C.; Lee, W.-Y.; Hung, C.-H. Inorg. Chem. 2003, 42, 5471.
(29) Winter, A. M.; Eichele, K.; Mack, H. G.; Potuznik, S. H.; Mayer, A.; Kaska, W.
C. J. Organomet. Chem. 2003, 682, 149.
(30) Pearson, R. G. J. Chem. Educ. 1968, 45, 643.
(31) Beller, M.; Fischer, H.; Herrmann, W. A.; Ofele, K.; Brossmer, C. Angew.
Chem. Int. Ed. 1995, 34, 1848.
(32) Gibson, S.; Foster, D. F.; Eastham, G. R.; Tooze, R. P.; Cole-Hamilton, D. J.
Chem. Commun. 2001, 779.
(33) Morales-Morales, D.; Redon, R.; Yung, C.; Jensen, C. M. Chem. Commun.
2000, 1619.
(34) Albrecht, M.; Van Koten, G. Angew. Chem. Int. Ed. 2001, 40, 3750.
(35) Gossage, R. A.; Van De Kuil, L. A.; Van Koten, G. Acc. Chem. Res.1998, 31,
423.
(36) Van Der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759.
(37) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239.
(38) Slagt, M. Q.; Van Zwieten, D. A. P.; Moerkerk, A.; Gebbink, R.; Van Koten, G.
Coord. Chem. Rev. 2004, 248, 2275.
(39) Whitcombe, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron 2001, 57, 7449.
(40) Baumann, R.; Davis, W. M.; Schrock, R. R. J. Am. Chem. Soc.1997, 119, 3830.
(41) Baumann, R.; Stumpf, R.; Davis, W. M.; Liang, L. -C.; Schrock, R. R. J. Am.
Chem. Soc. 1999, 121, 7822.
(42) Graf, D. D.; Schrock, R. R.; Davis, W. M.; Stumpf, R. Organometallics 1999, 18,
843.
(43) Liang, L.-C.; Schrock, R. R.; Davis, W. M.; McConville, D. H. J. Am. Chem. Soc.
1999, 121, 5797.
(44) Schrock, R. R.; Schattenmann, F.; Aizenberg, M.; Davis, W. M. Chem. Commun.
1998, 199.
(45) Schrock, R. R.; Lee, J.; Liang, L.-C.; Davis, W. M. Inorg. Chim. Acta 1998, 270,
353.
(46) Schrock, R. R.; Liang, L.-C.; Baumann, R.; Davis, W. M. J. Organomet. Chem.
1999, 591, 163.
(47) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.;
Wiley-Interscience: Hoboken, NJ, 2005.
(48) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and
Applications of Organotransition Metal Chemistry; University Science Books: Mill
Valley, CA, 1987.
(49) Bochmann, M. J. Chem. Soc. , Dalton Trans. 1996, 255–270.
(50) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169–1203.
(51) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283–315.
(52) Rappe, A. K.; Skiff, W. M.; Casewit, C. J. Chem. Rev. 2000, 100, 1435–1456.
(53) Brintzinger, H. H.; Fischer, D.; Mu¨lhaupt, R.; Rieger, B.; Waymouth, R. M.
Angew. Chem., Int. Ed. Engl. 1995, 1143–1170.
(54) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38,
429–447.
(55) Grubbs, R. H.; Coates, G. W. Acc. Chem. Res. 1996, 29, 85–93.
(56) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000, 100,
1253–1345.
(57) Alt, H. G.; Koppl, A. Chem. Rev. 2000, 100, 1205–1221.
(58) Tshuva, E. Y.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Organometallics 2001, 20,
3017–3028.
(59) Groysman, S.; Tshuva, E. Y.; Goldberg, I.; Kol, M.; Goldschmidt, Z.; Shuster, M.
Organometallics 2004, 23, 5291–5299.
(60) Segal, S.; Goldberg, I.; Kol, M. Organometallics 2005, 24, 200–202.
(61) Tshuva, E. Y.; Goldberg, I.; Kol, M. J. Am. Chem. Soc. 2000, 122, 10706–10707.
(62) Suzuki, Y.; Yasumoto, T.; Mashima, K.; Okuda, J. J. Am. Chem. Soc. 2006, 128,13017–13025.
(63) Zeimentz, P. M.; Arndt, S.; Elvidge, B. R.; Okuda, J. Chem. Rev. 2006, 106,
2404–2433.
(64) Voth, P.; Spaniol, T. P.; Okuda, J. Organometallics 2003, 22, 3921–3926.
(65) Capacchione, C.; Proto, A.; Ebeling, H.; Mulhaupt, R.; Moller, K.; Spaniol, T. P.;
Okuda, J. J. Am. Chem. Soc. 2003, 125, 4964–4965.
(66) Ammendola, P. T. T.; Zambelli, A. Macromolecules 1986, 19, 307–310.
(67) Arndt, S.; Okuda, J. Chem. Rev 2002, 102, 1953–1976.
(68) Reinartz, S.; Mason, A. F.; Lobkovsky, E. B.; Coates, G. W. Organometallics
2003, 22, 2542–2544.
(69) Hustad, P. D.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 11578–11579.
(70) Tian, J.; Hustad, P. D.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 5134–5135.
(71) Mason, A. F.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 16326–16327.
(72) Miller, S. A.; Bercaw, J. E. Organometallics 2006, 25, 3576–3592.
(73) Chirik, P. J.; Zubris, D. L.; Ackerman, L. J.; Henling, L. M.; Day, M. W.;
Bercaw, J. E. Organometallics 2003, 22, 172–187.
(74) Baumann, R.; Schrock, R. R. J. Organomet. Chem. 1998, 557, 69–75.
(75) Tonzetich, Z. J.; Lu, C. C.; Schrock, R. R.; Hock, A. S.; Bonitatebus, P. J.Organometallics 2004, 23, 4362–4372.
(76) Schrock, R. R.; Baumann, R.; Reid, S. M.; Goodman, J. T.; Stumpf, R.; Davis, W.
M. Organometallics 1999, 18, 3649–3670.
(77) Baumann, R.; Stumpf, R.; Davis, W. M.; Liang, L. C.; Schrock, R. R. J. Am.
Chem. Soc. 1999, 121, 7822–7836.
(78) Baumann, R.; Davis, W. M.; Schrock, R. R. J. Am. Chem. Soc. 1997, 119,
3830–3831.
(79) Chen, M. C.; Roberts, J. A. S.; Marks, T. J. J. Am. Chem. Soc. 2004, 126,
4605–4625.
(80) Jensen, T. R.; Yoon, S. C.; Dash, A. K.; Luo, L. B.; Marks, T. J. J. Am. Chem.
Soc. 2003, 125, 14482–14494.
(81) Chen, E. Y. X.; Marks, T. J. Chem. Rev. 2000, 100, 1391–1434.
(82) McCord, E. F.; McLain, S. J.; Nelson, L. T. J.; Ittel, S. D.; Tempel, D.; Killian, C.
M.; Johnson, L. K.; Brookhart, M. Macromolecules 2007, 40, 410–420.
(83) Schrekker, H. S.; Kotov, V.; Preishuber-Pflugl, P.; White, P.; Brookhart, M.
Macromolecules 2006, 39, 6341–6354.
(84) Hicks, F. A.; Brookhart, M. Organometallics 2001, 20, 3217–3219.
(85) Hicks, F. A.; Jenkins, J. C.; Brookhart, M. Organometallics 2003, 22,
3533–3545.
(86) Jenkins, J. C.; Brookhart, M. J. Am. Chem. Soc. 2004, 126, 5827–5842.
(87) Wang, C. M.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R. H.; Bansleben,
D. A.; Day, M. W. Organometallics 1998, 17, 3149–3151.
(88) Younkin, T. R.; Conner, E. F.; Henderson, J. I.; Friedrich, S. K.; Grubbs, R. H.;
Bansleben, D. A. Science 2000, 287, 460–462.
(89) Rose, J. M. C. A. E.; Coates, G. W. J. Am. Chem. Soc. 2006, 128, 4186–4187.
(90) Grubbs, R. H.; Coates, G. W. Acc. Chem. Res. 1996, 29, 85-93.
(91) Breslow, D. S.; Newburg, N. R. J. Am. Chem. Soc. 1959, 81, 81-86.
(92) Cossee, P. Tetrahedron Lett. 1960, No. 17, 12-16.
(93) Cossee, P. Tetrahedron Lett. 1960, No. 17, 17-21.
(94) Cossee, P. J. Catal. 1964, 3, 80-88.
(95) Arlman, E. J.; Cossee, P. J. Catal. 1964, 3, 99-104.
(96) Green, M. L. H. Pure Appl. Chem. 1978, 50, 27-35.
(97) Ivin, K. J.; Rooney, J. J.; Stewart, C. D.; Green, M. L. H.; Mahtab, R. J. Chem.
Soc., Chem. Commun. 1978, 604-606.
(98) Dawoodi, Z.; Green, M. L. H.; Mtetwa, V. S. B.; Prout, K. J. Chem. Soc., Chem.
Commun. 1982, 1410-1411.
(99) Laverty, D. T.; Rooney, J. J. J. Chem. Soc., Faraday Trans. 1 1983, 79, 869-878.
(100) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395-408.
(101) Brookhart, M.; Green, M. L. H.; Wong, L. L. Prog. Inorg. Chem. 1988, 36,
1-124.
(102) Liang, L.-C.; Schrock, R. R.; Davis, W. M.; McConville, D. H. J. Am. Chem.
Soc. 1999, 121, 5797–5798.
(103) Liang, L.-C.; Schrock, R. R.; Davis, W. M. Organometallics 2000, 19,
2526–2531.
(104) Mehrkhodavandi, P.; Bonitatebus, P. J.; Schrock, R. R. J. Am. Chem. Soc. 2000,
122, 7841–7842.
(105) Schrock, R. R.; Adamchuk, J.; Ruhland, K.; Lopez, L. P. H. Organometallics
2003, 22, 5079–5091.
(106) Mehrkhodavandi, P.; Schrock, R. R.; Pryor, L. L. Organometallics 2003, 22,
4569–4583.
(107) Capacchione, C.; De Carlo, F.; Zannoni, C.; Okuda, J.; Proto, A.
Macromolecules 2004, 37, 8918–8922.
(108) McCord, E. F.; McLain, S. J.; Nelson, L. T. J.; Arthur, S. D.; Coughlin, E. B.;
Ittel, S. D.; Johnson, L. K.; Tempel, D.; Killian, C. M.; Brookhart, M.
Macromolecules 2001, 34, 362–371.
(109) Hustad, P. D.; Tian, J.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 3614–3621.
(110) Guo, N.; Li, L. T.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 6542–6543.
(111) Liu, Z.; Somsook, E.; White, C. B.; Rosaaen, K. A.; Landis, C. R. J. Am. Chem.
Soc. 2001, 123, 11193–11207.
(112) Song, F. C., R. D.; Bochmann, M. J. Am. Chem. Soc. 2003, 125, 7641–7653.
(113) Alagona, G.; Ghio, C.; Lazzaroni, R.; Settambolo, R. Organometallics 2001, 20,
5394–5404.
(114) Clarke, M. L.; Roff, G. J. Chem. Eur. J. 2006, 12, 7978–7986.
(115) Liang, L.-C. Coord. Chem. ReV. 2006, 250, 1152–1177.
(116) Liang, L.-C.; Chien, P.-S.; Huang, M.-H. Organometallics 2005, 24, 353–357.
(117) Lee, W.-Y.; Liang, L.-C. Dalton Trans. 2005, 1952–1956.
(118) Chien, P.-S.; Liang, L.-C. Inorg. Chem. 2005, 44, 5147–5151.
(119) Liang, L.-C.; Lee, W.-Y.; Yin, C.-C. Organometallics 2004, 23, 3538–3547.
(120) Liang, L.-C.; Lee, W.-Y.; Hung, C.-H. Inorg. Chem. 2003, 42, 5471–5473.
(121) Lee, P.-Y.; Liang, L.-C. Inorg. Chem. 2008, 47, 749–758.
(122) Liang, L.-C.; Chien, P.-S.; Lee, P.-Y.; Lin, J.-M.; Huang, Y.-L. Dalton Trans.
2008, 3320-3327.
(123) Liang, L.-C.; Chien, P.-S.; Lin, J.-M.; Huang, M.-H.; Huang, Y.- L.; Liao, J.-H.
Organometallics 2006, 25, 1399–1411.
(124) Liang, L.-C.; Lin, J.-M.; Hung, C.-H. Organometallics 2003, 22, 3007–3009.
(125) Chirik, P. J.; Bercaw, J. E. Organometallics 2005, 24, 5407–5423.
(126) Vela, J.; Vaddadi, S.; Cundari, T. R.; Smith, J. M.; Gregory, E. A.; Lachicotte,
R. J.; Flaschenriem, C. J.; Holland, P. L. Organometallics 2004, 23, 5226–5239.
(127) Ackerman, L. J.; Green, M. L. H.; Green, J. C.; Bercaw, J. E. Organometallics
2003, 22, 188–194.
(128) Umezawa-Vizzini, K.; Lee, T. R. Organometallics 2004, 23, 1448–1452.
(129) Burger, B. J.; Thompson, M. E.; Cotter, W. D.; Bercaw, J. E. J. Am.Chem. Soc.
1990, 112, 1566–1577.
(130) Liang, L.-C.; Chien, P.-S.; Lee, P.-Y. Organometallics 2008, 27, 3082–3093.
(131) Keim, W. Angew. Chem. Int. Ed. 1978, 17, 466; 1990, 29, 235.
(132) She, L.; Li, X.; Sun, H.; Ding, J.; Frey, M.; Klein, H.-F. Organometallics 2007,
26, 566–570.
(133) Li, X.; Vogel, T.; Incarvito, C. D.; Crabtree, R. H. Organometallics 2005, 24,
62–76.
(134) For regio- and stereochemistry of alkyne insertion, see: (a) Navarro, J.; Sola, E.;
Martin, M.; Dobrinovitch, I. T.; Lahoz, F. J.; Oro, L. A. Organometallics 2004, 23,
1908. (b) Frohnapfel, D. S.; White, P. S.; Templeton, J. L. Organometallics 2000, 19,
1497. (c) Selmeczy, A. D.; Jones, W. D. Inorg. Chim. Acta 2000, 300-302, 138. (d)
Herberich, G. E.; Bariage, W. Organometallics 1987, 6, 1924. (e) Bassetti, M.;
Casellato, P.; Gamasa, M. P.; Gimeno, J.; Gonzalez-Bernardo, C.; Martin-vaca, B.Organometallics 1997, 15, 5470. (f) Gao, Y.; Jennings, M. C.; Puddephatt, R. L.
Dalton Trans. 2003, 261. (g) Bassetti, M.; Marini, S.; Diaz, J.; Gamasa, M. P.;
Gimeno, J.; Rodriguez-Alvarez, Y.; Garcia-Granda, S. Organometallics 2002, 21,
4815.
(135) (a) Chung, L. W.; Wu, Y.-D.; Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2003,
125, 11578. (b) Crabtree, R. H. New J. Chem. 2003, 27, 771. (c) Tanke, R. S.;
Crabtree, R. H. J. Am. Chem. Soc. 1990, 112, 7984. (d) Ojima, I.; Clos, N.; Donovan,
R. J.; Ingallina, P. Organometallics 1990, 9, 3127. (e) Frohnapfel, D. S.; Templeton, J.
L. Coord. Chem. Rev. 2000, 206, 199.
(136) (a) Esteruelas, M. A.; Oro, L. A.; Valero, C. Organometallics 1995, 14, 3596.
(b) Buil, M. L.; Esteruelas, M. A. Organometallics 1999, 18, 1798.
(137) (a) Li, X.; Appelhans, L. N.; Faller, J. W.; Crabtree, R. H. Organometallics
2004, 23, 3378. (b) De los Rı´os, I.; Tenorio, M. J.; Puerta, M. C.; Valerga, P. J. Am.
Chem. Soc. 1997, 119, 6529. (c) Wakatsuki, Y.; Koga, N.; Werner, H.; Morokuma, K.
J. Am. Chem. Soc. 1997, 119, 360. (d) Windmu¨ ller, B.; Wolf, J.; Werner, H. J.
Organomet.
Chem. 1995, 502, 147. (e) Garcia Alonso, F. J.; Hoehn, A.; Wolf, J.; Otto, H.; Werner,
H. Angew. Chem. 1985, 97, 401. (f) Torkelson, J. R.; McDonald, R.; Cowie, M.Organometallics 1999, 18, 4134.
(138) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852-860.
(139) Fulton, J. R.; Holland, A. W.; Fox, D. J.; Bergman, R. G. Acc. Chem. Res. 2002,
35, 44–56.
(140) Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. Rev. 1996, 96, 2239–2314.
(141) Roundhill, D. M. Chem. Rev. 1992, 92, 1–27.
(142) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163–1188.
(143) Fryzuk, M. D.; Montgomery, C. D. Coord. Chem. Rev. 1989, 95, 1–40.
(144) Caulton, K. G. New. J. Chem. 1994, 18, 25–41.
(145) Rais, D.; Bergman, R. G. Chem.–Eur. J. 2004, 10, 3970–3978.
(146) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 4206–4207.
(147) Hartwig, J. F.; Richards, S.; Baranano D.; Paul, F. J. Am. Chem. Soc. 1996, 118,
3626–3633.
(148) Panda, A.; Stender, M.; Wright, R. J.; Olmstead, M. M.; Klavins, P.; Power, P.
P. Inorg. Chem. 2002, 3909–3916.
(149) Buttner, T. G.; Frison, J.; Harmer, G.; Calle, J.; Schweiger, C.; Schonberg, A.;
Grutzmacher, H. H. Science 2005, 307, 235–238.
(150) Villanueva, L. A.; Abboud, K. A.; Boncella, J. M. Organometallics 1994, 13,
3921–3931.
(151) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc., 1995, 117, 4708–4709.
(152) Louie, J.; Paul, F.; Hartwig, J. F. Organometallics, 1996, 15, 2794–2805.
(153) Albeniz, A. C.; Calle,V.; Espinet, P.; Gomez, S. Inorg. Chem. 2001, 40,
4211–4216.
(154) Driver M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 8232–8245.
(155) Widenhoefer, R. A.; Buchwald, S. L. Organometallics 1996, 15, 3534–3542.
(156) Fafard, C. M.; Adhikari, D.; Foxman, B. M.; Mindiola, D. J.; Ozerov, O. V.
J. Am. Chem. Soc. 2007, 129, 10318–10319.
(157) Holland, P. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1996, 118,
1092–1104.
(158) Holland, P. L.; Andersen, R. A.; Bergman, R. G.; Huang, J. K.; Nolan, S. P.
J. Am. Chem. Soc. 1997, 119, 12800–12814.
(159) Holland, P. L.; Smith, M. E.; Andersen, R. A.; Bergman, R.G. J. Am. Chem. Soc.
1997, 119, 12815–12823.
(160) Hope, H.; Olmstead, M. M.; Murray, B. D.; Power, P. P. J. Am. Chem. Soc.
1985, 107, 712–713.
(161) Campora, J.; Palma, P.; Alvarez, E. Organometallics 2004, 23, 5653–5655.
(162) Campora, J.; Matas, I.; Palma, P.; Graiff, C.; Tiripicchio, A. Organometallics 2005, 24, 2827–2830.
(163) Eckert, N. A.; Bones, E. M.; Lachicotte, R. J.; Holland, P. L. Inorg. Chem. 2003,
42, 1720–1725.
(164) Kogut, E.; Wiencko, H. L.; Zhang, L.; Cordeau, D. E.; Warren, T. H. J. Am.
Chem. Soc. 2005, 127, 11248–11249.
(165) Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991, 30, 3371–
3381.
(166) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc., 2001, 123, 4623–4624.
(167) Mindiola D. J.; Hillhouse, G. L. Chem. Commun. 2002, 1840–1841.
(168) VanderLende, D. D.; Abboud, K. A.; Boncella, J. M. Inorg. Chem. 1995, 34,
5319–5326.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.146.221.52
論文開放下載的時間是 校外不公開

Your IP address is 3.146.221.52
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code