Responsive image
博碩士論文 etd-1126116-120102 詳細資訊
Title page for etd-1126116-120102
論文名稱
Title
東沙環礁產指形軟珊瑚與肉質軟珊瑚宿主與共生藻脂肪酸組成
Fatty acid compositions in the host tissues and zooxanthellae of soft corals Sinularia and Sarcophyton in Dongsha Atoll
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-12-21
繳交日期
Date of Submission
2016-12-26
關鍵字
Keywords
肉質軟珊瑚、指形軟珊瑚、脂肪酸、水深、生物指標
fatty acid, Sarcophyton, Sinularia, water depth, biomarker
統計
Statistics
本論文已被瀏覽 5812 次,被下載 514
The thesis/dissertation has been browsed 5812 times, has been downloaded 514 times.
中文摘要
本研究以脂肪酸組成作為食性結構指標,探討東沙軟珊瑚處於不同深度與生長域其營養來源的差異,目的在瞭解分佈深度與生長區域對軟珊瑚與共生藻間的營養傳輸的影響。以水肺潛水方式在東沙環礁北岸水深5 m與25 m及東北岸5 m採集兩屬優勢軟珊瑚:指形軟珊瑚與肉質軟珊瑚,冷凍樣本經均質與離心,分離為珊瑚宿主組織與共生藻兩部分,萃取脂肪並後氣相層析儀分析脂肪酸組成,並取部分共生藻樣品進行系群分析。分佈於北岸與東北岸的指形軟珊瑚宿主組織與共生藻脂肪酸組成並不相同,東北岸者主要為不飽和脂肪酸,特別是16:2ω6及16:2ω 7,北岸指形軟珊瑚宿主組織飽和脂肪酸含量高於東北岸者(P<0.01),不飽和脂肪酸東北岸高於北岸如16:2ω7 (P<0.05)。肉質軟珊瑚宿主組織與共生藻脂肪酸組成在兩採樣點皆是飽和脂肪酸為主。水深5 m肉質軟珊瑚宿主組織中飽和脂肪酸含量高於25m者,不飽和脂肪酸則反之,例如16:3ω 4,肉質軟珊瑚的共生藻脂肪酸組成也有類似的趨勢,但無顯著不同。這些結果顯示分佈地點造成軟珊瑚屬間與共生藻系群間脂肪酸組成變異大於分佈的深度,分佈地區的環境因子可能是造成軟珊瑚與共生藻脂肪酸組成變化的主要因素。
Abstract
Fatty acid compositions were used as the biomarkers of trophic structure to study the influence of environmental factors including distribution depth and area on the host tissue and zooxanthellae of soft corals in the Dongsha Atoll. Two of dominant soft coral genera, Sinularia (SI) and Sarcophyton (SA), were collected by SCUBA from 5 m and 25 m in north (N) and northeastern (NE) coast of the Atoll. The samples were separated into host tissues and zooxanthellae through homogenization and centrifugation. Fatty acid composition was quantified by gas chromatography after lipid extraction. The results showed that the fatty acid composition of SI tissue and zooxanthellae was varied between N and NE. N SI were rich in saturated fatty acids, while NE SI were rich mainly in unsaturated fatty acids, especially16:2ω 6 and16:2ω 7. The content of fatty acids in N SI was higher (P<0.01) than those in NE SI while the unsaturated fatty acid was opposite, like 16:2ω 6(P<0.05). Both tissue and zooxanthellae of SA were rich in saturated fatty acid, especially 18:0, either in N or NE. The content of saturated fatty acid, like 16:3ω 4 in SA tissue was higher at 5 m than at 25m while the converse was true for the unsaturated fatty acids. Similar trend was observed in SA zooxanthellae. In summary, the results showed that distribution location was more important than distribution depth in influencing the fatty acid composition of the soft coral in the Dongsha Atoll.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 v
表目錄 vi
一、前言 1
1.1脂質與脂肪酸 1
1.2珊瑚營養來源 4
1.3珊瑚與共生藻 6
1.4珊瑚的脂質營養 9
1.5東沙環礁的軟珊瑚 11
三、實驗方法與材料 15
3.1 採樣地點與採樣方式 15
3.2 脂肪酸分析 15
3.2.1宿主組織與共生藻之分離 15
3.3.2宿主組織與共生藻脂肪萃取 16
3.3.3脂肪甲酯化 16
3.4 脂肪酸組成分析 16
3.5 共生藻系群鑑定 17
3.6 統計分析 17
四、結果 33
4-1、指形軟珊瑚與肉質軟珊瑚脂肪酸特徵 33
4-2、共生藻系群及其脂肪酸特徵 33
4.3、兩採樣點軟珊瑚宿主與共生藻脂肪酸比較 36
4.4、不同深度軟珊瑚宿主體組織脂肪酸特徵 42
五、討論 52
六、參考文獻 55
英文文獻 55
中文文獻 64
參考文獻 References
英文文獻
Ackman RG, Eaton CA 1966. Lipids of the fin whale (Balaenoptera physalus) from North Atlantic waters. III. Occurrence of eicosenoic and docosenoic fatty acids in the zooplankter Meganyctiphanes norvegica (M. sars) and their effect on whale oil composition. Canadian Biochemistry 44.11: 1561–1566.

Agaba, M. K., Tocher, D. R., Zheng, X., Dickson, C. A., Dick, J. R., & Teale, A. J. 2005. Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish. Biochemistry and Molecular Biology 142.3: 342-352.

Al-Sofyani, A., & Niaz, G. R. 2008. A comparative study of the components of the hard coral Seriatopora hystrix and the soft coral Xenia umbellata along the Jeddah coast, Saudi Arabia. Revista de Biología Marina y Oceanografía 42.3: 207-219.

Al-Moghrabi, S., Allemand, D., Couret, J. M., & Jaubert, J. 1995. Fatty acids of the scleractinian coral Galaxea fascicularis: effect of light and feeding. Journal of Comparative Physiology B, 165.3: 183-192.

Anthony, K. R. 1999. Coral suspension feeding on fine particulate matter. Experimental Marine Biology and Ecology 232.1: 85-106.

Battey, J. F., & Patton, J. S. 1984. A reevaluation of the role of glycerol in carbon translocation in zooxanthellae-coelenterate symbiosis. Marine Biology 79.1: 27-38.

Bishop, D. G., & Kenrick, J. R. 1980. Fatty acid composition of symbiotic zooxanthellae in relation to their hosts. Lipids, 15.10: 799-804.

Boeckh, M., Kim, H. W., Flowers, M. E., Meyers, J. D., & Bowden, R. A. 2006. Long-term acyclovir for prevention of varicella zoster virus disease after allogeneic hematopoietic cell transplantation—a randomized double-blind placebo-controlled study. Blood, 107.5: 1800-1805.

Boeckh, J., & Tolbert, L. P. 1993. Synaptic organization and development of the antennal lobe in insects. Microscopy Research and Technique 24.3: 260-280.

Boutry, J. L., Saliot, A., & Barbier, M. 1979. The diversity of marine sterols and the role of algal bio-masses; from facts to hypothesis. Experientia 35.12: 1541-1543.

Blood 107: 1800-1805.Bishop, D. G., & Kenrick, J. R. 1980. Fatty acid composition of symbiotic zooxanthellae in relation to their hosts. Lipids 15.10: 799-804.

Burr, G. O. 1981. The essential fatty acids fifty years ago. Progress in Lipid Research 20: 27-29.

Cooper, T. F., Lai, M., Ulstrup, K. E., Saunders, S. M., Flematti, G. R., Radford, B., & van Oppen, M. J. 2011. Symbiodinium genotypic and environmental controls on lipids in reef building corals. PLoS One, 6(5), e20434.

Crossland, C. J., Barnes, D. J., & Borowitzka, M. A. 1980. Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Marine Biology 60.2-3: 81-90.

Dalsgaard, J., John, M. S., Kattner, G., Müller-Navarra, D., & Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46: 225-340.

Davies, P. S. 1991. Effect of daylight variations on the energy budgets of shallow-water corals. Marine Biology 108.1: 137-144.

Davy, S. K., Allemand, D., & Weis, V. M. 2012. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiology and Molecular Biology Reviews, 76.2: 229-261.

Ding, S. T., Lapillonne, A., Heird, W. C., & Mersmann, H. J. 2003. Dietary fat has minimal effects on fatty acid metabolism transcript concentrations in pigs. Journal of Animal Science, 81.2: 423-431.

Dobretsov, S., Al-Wahaibi, A. S., Lai, D., Al-Sabahi, J., Claereboudt, M., Proksch, P., & Soussi, B. 2015. Inhibition of bacterial fouling by soft coral natural products. International Biodeterioration & Biodegradation 98: 53-58.

Dodds, L. A., Black, K. D., Orr, H., & Roberts, J. M. 2009. Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Marine Ecology Progress Series 397: 113-124.

Dunn, S. R., Thomas, M. C., Nette, G. W., & Dove, S. G. 2012. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis. PLoS One, 7.10: e46801.

Eckel, R. H., Grundy, S. M., & Zimmet, P. Z. 2005. The metabolic syndrome. Lancet 365.9468: 1415-1428.

Falkowski, P. G., Dubinsky, Z., Muscatine, L., & Porter, J. W. 1984. Light and the bioenergetics of a symbiotic coral. Bioscience 34.11: 705-709.

Figueiredo, J., Baird, A. H., Cohen, M. F., Flot, J. F., Kamiki, T., Meziane, T., Tsuchiya M & Yamasaki, H. 2012. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs, 31.2: 613-619.

Folch, J., Lees, M., & Sloane-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Biological Chemistry 226.1: 497-509.

Graham, I. A., Cirpus, P., Rein, D., & Napier, J. A. 2004. The use of very long chain polyunsaturated fatty acids to ameliorate metabolic syndrome: transgenic plants as an alternative sustainable source to fish oils. Nutrition Bulletin, 29.3: 228-233.

Grant, A. J., Rémond, M., People, J., & Hinde, R. 1997. Effects of host-tissue homogenate of the scleractinian coral Plesiastrea versipora on glycerol metabolism in isolated symbiotic dinoflagellates. Marine Biology, 128.4: 665-670.

Grimsditch, G. D., & Salm, R. V. 2006. Coral reef resilience and resistance to bleaching. IUCN, The World Conservation Union.

Glynn, P. W., & D'croz, L. 1990. Experimental evidence for high temperature stress as the cause of El Nino-coincident coral mortality. Coral reefs, 8.4: 181-191.

Grottoli A.G., Rodrigues L.J., Palardy J.E., 2006. Heterotrophic plasticity and resilience in bleached corals. Nature 440.7088: 1186–1189.

Hagedorn, M., & Carter, V. L. 2015. Seasonal Preservation Success of the Marine Dinoflagellate Coral Symbiont, Symbiodinium. Plos One 10.9: e0136358.

Harland, A. D., Davies, P. S., & Fixter, L. M. 1992. Lipid content of some Caribbean corals in relation to depth and light. Marine Biology, 113.3: 357-361.

Harland, A. D., Navarro, J. C., Davies, P. S., & Fixter, L. M. 1993. Lipids of some Caribbean and Red Sea corals: total lipid, wax esters, triglycerides and fatty acids. Marine Biology 117.1: 113-117.

Hennige, S. J., Smith, D. J., Walsh, S. J., McGinley, M. P., Warner, M. E., & Suggett, D. J. 2010. Acclimation and adaptation of scleractinian coral communities along environmental gradients within an Indonesian reef system. Journal of Experimental Marine Biology and Ecology, 391.1: 143-152.

Hoegh-Guldberg, O. 1999. Climate change, coral bleaching and the future of the world's coral reefs. Marine and Freshwater Research 50.8: 839-866.

Higgs, D. A., & Dong, F. M. 2000. Lipids and fatty acids. Encyclopedia of aquaculture. Wiley-Interscience London: 476-496.

Houlbreque, F., & Ferrier‐Pagès, C. 2009. Heterotrophy in tropical scleractinian corals. Biological Reviews, 84.1: 1-17.

Hulbert, A. J. 2003. Life, death and membrane bilayers. Experimental Biology, 206.14: 2303-2311.

Imbs, A. B., Demidkova, D. A., Latypov, Y. Y., & Pham, L. Q. 2007. Application of fatty acids for chemotaxonomy of reef-building corals. Lipids, 42.11: 1035-1046.

Imbs A.B., Latyshev N.A., Dautova T.N. and Latypov Y.Y. 2010a. Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Marine Ecology Progress Series 409: 65–75.

Imbs, A. B., 2010c. Biosynthesis of Polyunsaturated Fatty Acids in Zooxanthellae and Polyps of Corals. Marine Biology 36.6: 452-457.

Imbs, A. B., & Latyshev, N. A. 2012. Fatty acid composition as an indicator of possible sources of nutrition for soft corals of the genus Sinularia (Alcyoniidae). Marine Biological Association of the United Kingdom, 92.06: 1341-1347.

Imbs, A. B., Latyshev, N. A., Zhukova, N. V., & Dautova, T. N. 2007. Comparison of fatty acid compositions of azooxanthellate Dendronephthya and zooxanthellate soft coral species. Biochemistry and Molecular Biology, 148.3: 314-321.

Imbs, A. B., Yakovleva, I. M., Dautova, T. N., Bui, L. H., & Jones, P. 2014. Diversity of fatty acid composition of symbiotic dinoflagellates in corals: Evidence for the transfer of host PUFAs to the symbionts. Phytochemistry 101: 76-82.

Imbs, A. B., Yakovleva, I. M., & Pham, L. Q. 2010b. Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral Sinularia Fisheries Science, 76.2: 375-380.

Kellogg, R. B., & Patton, J. S. 1983. Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: a model coral polyp. Marine Biology, 75.2-3: 137-149.

Lands, W. E. 1993. Eicosanoids and health. Annals of the New York Academy of Sciences 676.1: 46-59.

Lapillonne, A., DeMar, J. C., Nannegari, V., & Heird, W. C. 2002. The fatty acid profile of buccal cheek cell phospholipids is a noninvasive marker of long-chain polyunsaturated fatty acid status in piglets. Nutrition 132.8: 2319-2323.

Latyshev, N. A., Naumenko, N. V., Svetashev, V. I., & Latypov, Y. 1991. Fatty acids of reef-building corals. Marine Ecology Progress Series. Oldendorf 76.3: 295-301.

Lauritzen, L. A., Hansen, H. S., Jørgensen, M. H., & Michaelsen, K. F. 2001. The essentiality of long chain ω3 fatty acids in relation to development and function of the brain and retina. Progress in Lipid Research 40.1: 1-94.

Lee, R. F., Nevenzel, J. C., & Paffenhöfer, G. A. 1971. Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Marine Biology 9.2: 99-108.

Luo, Y. J., Wang, L. H., Chen, W. N., Peng, S. E., Tzen, J. C., Hsiao, Y. Y., & Chen, C. S. 2009. Ratiometric imaging of gastrodermal lipid bodies in coral–dinoflagellate endosymbiosis. Coral Reefs, 28.1: 289-301.

March, B. E. 1993. Essential fatty acids in fish physiology. Physiology and Pharmacology 71.9: 684-689.

Mieog, J. C., Olsen, J. L., Berkelmans, R., Bleuler-Martinez, S. A., Willis, B. L., & van Oppen, M. J. 2009. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS One, 4.7: e6364.

Muscatine, L. 1967. Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, 156.3774: 516-519.

Muscatine, L., & Cernichiari, E. 1969. Assimilation of photosynthetic products of zooxanthellae by a reef coral. The Biological Bulletin 137.3: 506-523.

Muscatine, L., McCloskey, L. R., & Marian, R. E. 1981. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration1. Oceanography 26:4.

Nichols, P. D., Phillips, K., Mooney, B., Wilson, G., & Phleger, C. F. 2007. Signature lipid and fatty acid profiling in food web studies. Fish Biology 150-159.

Oku, H., Yamashiro, H., Onaga, K., Iwasaki, H., & Takara, K. 2002. Lipid distribution in branching coral Montipora digitata. Fisheries Science 68.3: 517-522.

Palardy, J. E., Grottoli, A. G., & Matthews, K. A. 2005. Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Marine Ecology Progress Series 300: 79-89.

Patton, J. S., Battey, J. F., Rigler, M. W., Porter, J. W., Black, C. C., & Burris, J. E. 1983. A comparison of the metabolism of bicarbonate 14C and acetate 1-14C and the variability of species lipid compositions in reef corals. Marine Biology 75.2-3: 121-130.

Papina, M., Meziane, T., & Van Woesik, R. 2007. Acclimation effect on fatty acids of the coral Montipora digitata and its symbiotic algae. Biochemistry and Molecular Biology 147.4: 583-589.

Papina, M., Meziane, T., & Van Woesik, R. 2003. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Biochemistry and Molecular Biology, 135.3: 533-537.

Pochon, Xavier., Gates, Ruth D. 2010. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Molecular Phylogenetics and Evolution, 56: 492–497.

Riegl, B. 1995. Effects of sand deposition on scleractinian and alcyonacean corals. Marine Biology, 121.3: 517-526.

Riddle, D. 2006. Lighting by number–Types of zooxanthellae and what they tell us. Advanced Aquarist 5: 6-15.

Rodrigues, L. J., Grottoli, A. G., & Pease, T. K. 2008. Lipid class composition of bleached and recovering Porites compressa Dana, 1846 and Montipora digitata Dana, 1846 corals from Hawaii. Marine Biology and Ecology 358.2: 136-143.

Rogers, C. S. 1990. Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series. Oldendorf 62: 185-202.

Sargent, J. R., Bell, J. G., Bell, M. V., Henderson, R. J., & Tocher, D. R. 1995. Requirement criteria for essential fatty acids. Applied Ichthyology 11.3‐4: 183-198.

Sargent, J. R., Tocher, D. R., & Bell, J. G. 2002. The lipids. Fish Nutrition 3: 181-257.

Sargent, J. R., L. A. McEvoy, and J. G. Bell. 1997. Requirements, pressenation and source of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155: 117-127.

Seemann, J., Sawall, Y., Auel, H., & Richter, C. 2013. The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids, 48.3: 275-286.

Simopoulos, A. P. 2000. Human requirement for ω3 polyunsaturated fatty acids. Poultry Science 79.7: 961-970.

Svetashev V.I. and Vysotskii M.V. 1998. Fatty acids of Heliopora coerulea and chemotaxonomic significance of tetracosapolyenoic acids in coelenterates. Biochemistry and Molecular Biology 119: 73–75.

Sorokin, Y. 1991. Biomass, metabolic rates and feeding of some common reef zoantharians and octocorals. Marine and Freshwater Research, 42.6: 729-741.

Szmant, A., & Gassman, N. J. 1990. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral reefs, 8.4: 217-224.

Tchernov, D., Gorbunov, M. Y., de Vargas, C., Yadav, S. N., Milligan, A. J., Häggblom, M., & Falkowski, P. G. 2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proceedings of the National Academy of Sciences of the United States of America 101.37: 13531-13535.

Teece, M. A., Estes, B., Gelsleichter, E., & Lirman, D. 2011. Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnology and Oceanography 56.4: 1285.

Treignier, C., Grover, R., Ferrier-Pages, C., & Tolosa, I. 2008. Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnology and Oceanography 53.6: 2702-2710.

Treignier, C., Tolosa, I., Grover, R., & Reynaud, S. 2009. Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: Effect of light and feeding. Limnology and Oceanography 54.6: 1933-1940.

Tolosa, I., Treignier, C., Grover, R., & Ferrier-Pages, C. 2011. Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30.3: 763-774.

Van Oppen, M. J. H., Mieog, J. C., Sanchez, C. A., & Fabricius, K. E. 2005. Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Molecular Ecology,14.8: 2403-2417.

Venn, A. A., Loram, J. E., & Douglas, A. E. 2008. Photosynthetic symbioses in animals. Journal of Experimental Botany, 59.5: 1069-1080.

Ward, S. 1995. Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinian coral Pocillopora damicornis. Coral Reefs 14.2: 87-90.

Yamashiro, H., Oku, H., Higa, H., Chinen, I., & Sakai, K. 1999. Composition of lipids, fatty acids and sterols in Okinawan corals. Biochemistry and Molecular Biology 1224: 397-407.

Yamashiro, H., Oku, H., & Onaga, K. 2005. Effect of bleaching on lipid content and composition of Okinawan corals. Fisheries Science 71.2: 448-453.

Zhukova, N. V., & Titlyanov, E. A. 2003. Fatty acid variations in symbiotic dinoflagellates from Okinawan corals. J. Phytochemistry 62.2: 191-195.

中文文獻
鄭明修, 戴昌鳳, 陳正平 (2011)。東沙珊瑚礁生態現況與變遷趨勢評估計畫,海洋國家公園管理處成果報告,27-33。

鄭明修, 戴昌鳳, 陳正平 (2008)。東沙海域珊瑚礁生態資源調查與監測(二),內政部營建署委託辦理報告,52-58。

戴昌鳳, 秦啟祥, 鄭安怡 (2013a)。東沙珊瑚生態圖鑑,海洋國家公園管理處,8-322。

戴昌鳳, 葉素然, 蔡明憲, 鄭安怡, 鄭有容, 張鳳婷, 張景淳, 陳宜暄 (2013b)。東沙環礁珊瑚生長關鍵因子之探討—珊瑚群聚組成分析暨生態圖鑑製作,海洋國家公園管理處成果報告,18-21。

戴昌鳳 (2011a)。台灣珊瑚礁地圖 上 本島篇,天下遠見出版社股份有限公司,6-13;26-28;52-54。

戴昌鳳 (2011b)。台灣珊瑚礁地圖 下 離島篇,天下遠見出版社股份有限公司,180-223。

戴昌鳳 (2011c)。藍海綠洲—東沙海洋篇,海洋國家公園管理處,10-53;66;80-137。

戴昌鳳, 洪聖雯 (2009)2月。台灣珊瑚圖鑑,貓頭鷹出版,12-215。

莊明達 (2013)。飼料a-次亞麻油酸與亞麻油酸比例對海鱺體脂肪脂肪酸置換的影響。國立中山大學海洋科學系研究所碩士論文。

林家平 (2014)。飼料維生素E和硒隊點帶石斑高度不飽和脂肪酸組成的影響。國立中山大學海洋科學系研究所碩士論文。

林幸助 (2010)。波光綠茵:東沙海草床,海洋國家公園管理處,8-9;12-13。

李培芬 (2006)。東沙:東沙環礁國家公園生態解說手冊,內政部營建署,31-40。

李培芬 (2009)。認識東沙:東沙環礁國家公園解說叢書,海洋國家公園管理處,10-21;46-51;56-59。

宋克義, 陳正平, 張睿昇, 劉莉蓮, 蘇焉 (2012)。東沙環礁北側礁台生物多樣性及棲地組成調查,海洋國家公園管理處成果報告,35-38。

王玉懷, 洪佳章, 李逸環 (2010)。東沙環礁國家公園海洋環境長期調查研究,海洋國家公園管理處成果報告,63。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code