Responsive image
博碩士論文 etd-1128104-130948 詳細資訊
Title page for etd-1128104-130948
論文名稱
Title
芋螺毒素概論與資料庫建立
Conotoxin overview and bioinformatic database setup
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-11-20
繳交日期
Date of Submission
2004-11-28
關鍵字
Keywords
芋螺毒素、芋螺、藥理學、菸鹼性乙醯膽鹼受體、離子通道、資料庫、神經毒理學
conotoxins, database, cone snails, ion channels, pharmacology, Conus, neurotoxicology, nicotinic acetylcholine receptors
統計
Statistics
本論文已被瀏覽 5645 次,被下載 0
The thesis/dissertation has been browsed 5645 times, has been downloaded 0 times.
中文摘要
芋螺屬(Conus)的掠食性海螺迄今估計已有700多種,生活在熱帶的淺水域中,棲息的環境從沙岸、泥岸、岩礁岸均有,平常晝伏夜出,多以肉食為主。這些螺類體呈錐形,屬於腹足綱軟體動物,以獨特的獵食結構——含有毒液的類魚叉箭狀齒舌,捕食或抵禦環節動物(如沙蠶、海濱蚯蚓等)、魚類、甚至其他的軟體動物。每一種芋螺的毒液多是由超過50種以上富含雙硫鍵的芋螺毒素(conotoxins)組合而成,分別對動物鈣、鈉、鉀離子通道或菸鹼性乙醯膽鹼受體產生藥理性抑制作用,進而影響神經傳導。芋螺毒素對不同離子通道或受體廣泛地選擇抑制,具有精細的專一性,可用以分辨其亞型。化學家與藥理學家以分子神經生物學的方法偵測芋螺毒素,首先發現它們能減緩痛覺刺激的反應,因此開啟藥物發展的潛力。我們為了解芋螺的生物背景、已知的芋螺毒素及醫藥應用,將芋螺的生物學與演化、芋螺毒素的命名、分類、結構、神經毒理機制、轉譯後修飾、臨床應用與其他毒素之比較,既存的資料庫,彙整成最完備並可查詢的生物資訊資料庫,提供研究者一個便利的研究工具。
Abstract
Predatory shallow-water tropical marine snails within the genus Conus are estimated to consist of up to 700 species. These carnivorous mollusks have devised efficient venom harpoon-like radular teeth that allow them to predominantly incapacitate polychaete annelids (vermivores), in some cases fish (piscivores), or other mollusks (molluscivores) as an envenomation survival strategy for feeding, defense, and competitor deterrence. The venom of each Conus species contains a distinctive assortment of over 50 diversified disulfide-rich conotoxins with varied pharmacological specificities that selectively inhibit the function of ion channels (Ca2+, Na+, K+) or nicotinic acetylcholine receptors (nAChRs) involved in the animal neurotransmission. Across the genus Conus, the conotoxins represent an extensive array of ion channel blockers each showing an exquisite selectivity to distinguish between channels / receptors and even particular their subtypes. Novel conotoxins detected in the molecular neurobiological approach, providing chemists and pharmacologists a vast library (>50,000 individual toxins) of conotoxins have been further screened for their abilities to modify the responses of tissues to pain stimuli as a first step in describing their potential as lead compounds for novel drugs. In this article, we present the natural history of the Conus biology as well as the nomenclature, classification, structure, neurotoxicological mechanisms, post-translational modification, and pharmaceutical applications of conotoxins. In addition, we also set up the bioinformatic database and search engine about hitherto-identified name and distribution of Conus species and neuropharmacological mechanism, accession number, sequence, and 3D structure of conotoxins and provide researchers advantageous tools for further investigation.
目次 Table of Contents
Chinese Abstract………………………………………………………I
English Abstract………………………………………………………II
Abbreviations…………………………………………………………III
I.Introduction: Conotoxin and Cone Snail Overview……………1
II.Perspectives of Cone Snails……………………………………5
A.Biology of cone snails……………………………………………5
1.Life Cycle of Conus………………………………………………5
2.Morphology and Anatomy……………………………………………6
3.Distribution and habit……………………………………………8
4.Phylogenetic and taxonomic classification…………………9
III.Conotoxin and Receptor………………………………………13
A.Venom apparatus and hunt mechanism…………………………13
B.Venom composition, nomenclature, and biochemistry ……15
C.Molecular role of Conus venoms in mollusks………………18
IV.Structural Genomics and Structure of Conopeptides……………20
A.Organization of conopeptide gene structure………………20
B.Characterization of conopeptide structure and biology…………………20
1.α-Conotoxins………………………………………………………21
2.μ-Conotoxins………………………………………………………28
3.ω-Conotoxins………………………………………………………30
4.δ-Conotoxins………………………………………………………33
5.μO-Conotoxins………………………………………………………36
6.κ-Conotoxins………………………………………………………38
C.Conotoxin regioisomeric folding……………………………42
D.Post-translational modification……………………………43
V.Pharmaceutical Applications of Conopeptides……………50
A.Ion channels as targets for toxins………………………50
1.Nicotinic Acetylcholine Receptor (nAChR)-Channels……50
2.Calcium Channels………………………………………………51
3.Sodium Channels…………………………………………………52
4.Potassium Channels…………………………………………53
B.Neuropharmacological effects……………………………54
C.Drug design as potential therapeutic agents………59
D.Molecular probes for neurological disorders………62
1.Epilepsy………………………………………………62
2.Parkinson’s disease………………………………64
3.Alzheimer's disease…………………………………65
4.Ischemic stroke………………………………………66
5.Myasthenia gravis……………………………………67
6.Lambert-Eaton Myasthenic syndrome (LEMS)……67
VI.Database of Conotoxins……………………………69
A.Review of cone snail and conotoxin databases…69
B.Conotoxin database……………………………………72
VII.Results and Discussion……………………………74
A.Conotoxins and venom peptides from other species…74
B.Rationale of conotoxin cabal……………………………75
C.Conus molecular neuroscience……………………………76
D.The complexity of conotoxins……………………………77
E.Conotoxins as sources of drug leads…………………78
F.Toxin mechanic pathway and toxic models……………79
VIII.References………………………………………………82
IX.Tables………………………………………………………97
Table 1………………………………………………………97
Table 2………………………………………………………108
Table 3………………………………………………………110
Table 4………………………………………………………112
Table 5………………………………………………………113
Table 6………………………………………………………115
Table 7………………………………………………………117
X.Figures……………………………………………………120
Figure 1……………………………………………………120
Figure 2……………………………………………………121
Figure 3……………………………………………………122
Figure 4……………………………………………………123
Figure 5……………………………………………………124
Figure 6……………………………………………………125
Figure 7……………………………………………………126
Figure 8……………………………………………………127
Figure 9……………………………………………………129
Figure 10…………………………………………………130
Figure 11…………………………………………………131
Figure 12…………………………………………………132
Figure 13…………………………………………………133
Figure 14…………………………………………………134
Figure 15…………………………………………………135
Figure 16…………………………………………………136
Figure 17…………………………………………………137
Figure 18…………………………………………………138
Figure 19…………………………………………………139
Figure 20…………………………………………………141
Figure 21…………………………………………………142
XI.Appendix………………………………………………143
Appendix 1………………………………………………143
Appendix 2………………………………………………144
參考文獻 References
Adams, D. J., Alewood, P. F., Craik, D. J., Drinkwater, R. D., and Lewis, R. J. (1999) Conotoxins and their potential pharmaceutical applications. Drug Dev. Res. 46, 219–234.
Adams, A. C., Layer, R. T., McCabe, R. T., and Keefe, K. A. (2000) Effects of conantokins on L-3,4-dihydroxyphenylalanine-induced behavior and immediate early gene expression. Eur. J. Pharmacol. 404, 303–313.
Adams D. J., Smith A. B., Schroeder C. I., Yasuda T., and Lewis R. J. (2003) ω-conotoxin CVID inhibits a pharmacologically distinct voltage-sensitive calcium channel associated with transmitter release from preganglionic nerve terminals. J. Biol. Chem. 278, 4057–4062.
Alewood, P. F., Alewood, D., Miranda, L., Love, S., Meutermans, W., and Wilson, D. (1997) Rapid in situ neutralization protocols for Boc and Imoc solid phase chemistries. Methods Enzymol. 289, 14–29.
Alewood, P. F. (1998) Conotoxins as molecular templates for drug design. In: Ramage R, Epton R, editors. Peptides. Bodwin, UK: Mayflower Scientific. p 183–186.
Alonso, D., Khalil, Z., Satkunanthan, N., and Livett, B. G. (2003) Drugs from the sea: conotoxins as drug leads for neuropathic pain and other neurological conditions. Mini Rev. Med. Chem. 3, 785-787.
Altamirano, M. M., Garcia, C., Possani, L. D., and Fersht, A. R. (1999) Oxidative refolding chromatography: folding of the scorpion toxin Cn5. Nat. Biotechnol. 17, 187–191.
Aneiros, A., Garcia, I., Martinez, J. R., Harvey, A. L., Anderson, A. J., Marshall, D. L., Engström, A., Hellman, U., and Karlsson, E. (1993) A potassium channel toxin from the secretion of the sea anemone Bunodosoma granulifera. Isolation, amino acid sequence and biological activity. Biochim. Biophys. Acta 1157, 86–92.
Annis, I., Hargittai, B., and Barany, G. (1997) Disulfide bond formation in peptides. Methods Enzymol. 289, 198–221.
Annis, I., Chen, L., and Barany, G. (1998) Novel solid-phase reagents for facile formation of intramolecular disulfide bridges in peptides under mild conditions. J. Am. Chem. Soc. 120, 7226–7238.
Arias, H. R., and Blanton, M. P. (2000) α-Conotoxins. Int. J. Biochem. Cell Biol. 32, 1017–1028.
Armstrong, H., Zhou, L. M., Layer, R. T., Nielson, J. S., McCabe, T., and White, H. S. (1999) Anticonvulsant properties of conantokin-G (Con-G): A novel, broad spectrum NMDA antagonist. Epilepsia 36 (Suppl 6), 39.
Atanassoff, P. G., Hartmannsgruber, M. W., Thrasher, J., Wermeling, D., Longton, W., Gaeta, R., Singh, T., Mayo, M., McGuire, D., and Luther, R. R. (2000) Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. Reg. Anesth. Pain Med. 25, 274–278.
Baell, J. B., Forsyth, S. A., Gable, R. W., Norton, R. S., and Mulder, R. J. (2001) Design and synthesis of type-III mimetics of ω-conotoxin GVIA. J. Comput. Aided Mol. Des. 15, 1119–1136.
Baell, J. B., Duggan, P. J., Forsyth, S. A., Lewis, R. J., Phei Lok, Y., and Schroeder, C. I. (2004) Synthesis and biological evaluation of nonpeptide mimetics of ω-conotoxin GVIA. Bioorg. Med. Chem. 12, 4025–4037.
Ball, J. (2001) Current advances in Parkinson’s disease. Trends Neurosci. 24, 367–369.
Bandyopadhyay, P. K., Colledge, C. J., Walker, C. S., Zhou, L.-M., Hillyard, D. R., and Olivera, B. M. (1998) Conantokin-G precursor and its role in γ-carboxylation by a vitamin K-dependent carboxylase from a Conus snail. J. Biol. Chem. 273, 5447–5450.
Bandyopadhyay, P. K., Garrett, J. E., Shetty, R. P., Keate, T., Walker, C. S., and Olivera, B. M. (2002) From the Cover: γ-Glutamyl carboxylation: An extracellular posttranslational modification that antedates the divergence of molluscs, arthropods, and chordates. Proc. Natl. Acad. Sci. U. S. A. 99, 1264–1269.
Barbier, J., Lamthanh, H., Le Gall, F., Favreau, P., Benoit, E., Chen, H., Gilles, N., Ilan, N., Heinemann, S. H., Gordon, D., Ménez, A., and Molgó, J. (2004) A δ-conotoxin from Conus ermineus venom inhibits inactivation in vertebrate neuronal Na+ channels but not in skeletal and cardiac muscles. J. Biol. Chem. 279, 4680–4685.
Becker, S., Prusak-Sochaczewski, E., Zamponi, G., Beck-Sickinger, A. G., Gordon, R. D., and French, R. J. (1992) Action of derivatives of μ-conotoxin GIIIA on sodium channels. Single amino acid substitutions in the toxin separately affect association and dissociation rates. Biochemistry 31, 8229–8238.
Begley, G. S., Furie, B. C., Czerwiec, E., Taylor, K. L., Furie, G. L., Bronstein, L., Stenflo, J., and Furie, B. (2000) A conserved motif within the vitamin K-dependent carboxylase gene is widely distributed across animal phyla. J. Biol. Chem. 275, 356245–36249.
Bezard, E., Brotchie, J. M., and Gross, C. E. (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat. Rev. Neurosci. 2, 577–588.
Bhargava, P., Marshall, J. L., Dahut, W., Rizvi, N., Trocky, N., Williams, J. I., Hait, H., Song, S., Holroyd, K. J., and Hawkins, M. J. (2001) A phase I and pharmacokinetic study of squalamine, a novel antiangiogenic agent, in patients with advanced cancers. Clin. Cancer Res. 7, 3912–3919.
Blackhall, F. H., Ranson, M., Radford, J. A., Hancock, B. W., Soukop, M., McGown, A. T., Robbins, A., Halbert, G., and Jayson, G. C. (2001) A phase II trial of bryostatin 1 in patients with non-Hodgkin’s lymphoma. Br. J. Cancer 84, 465–469.
Blandl, T., Prorok, M., and Castellino, F. J. (1998) NMDA-receptor antagonist requirements in conantokin-G. FEBS Lett. 435, 257–262.
Blandl, T., Zajicek, J., Prorok, M., and Castellino, F. J. (2001) Sequence requirements for the N-methyl-D-aspartate receptor antagonist activity of conantokin-R. J. Biol. Chem. 276, 7391–7396.
Bowersox, S. S., Gadbois, T., Singh, T., Pettus, M., Wang, Y. X., and Luther, R. R. (1996) Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J. Pharmacol. Exp. Ther. 279, 1243–1249.
Bowersox, S. S., and Luther, R. (1998) Pharmacotherapeutic potential of ω-conotoxin MVIIA (SNX-111), an N-type neuronal calcium channel blocker found in the venom of Conus magus. Toxicon 36, 1651–1658.
Bulaj, G., DeLaCruz, R., Azimi-Zonooz, A., West, P., Watkins, M., Yoshikami, D., and Olivera, B. M. (2001) δ-conotoxin structure/function through a cladistic analysis. Biochemistry 40, 13201–13208.
Bundgaard, J. R., Vuust, J., and Rehfeld, J. F. (1997) New consensus features for tyrosine O-sulfation determined by mutational analysis. J. Biol. Chem. 272, 21700–21705.
Burke, S. P., Adams, M. E., and Taylor, C. P. (1993) Inhibition of endogenous glutamate release from hippocampal tissue by Ca2+ channel toxins. Eur. J. Pharmacol. 238, 383–386.
Canine, C. (1997) Pain, profit, and sweet relief. Worth Mag (March 76–82), 151–158.
Carter C, Poignet H, Carboni S, Fage D, Voltz C and Scatton B (1995) Release of spermidine from the rat cortex following permanent middle cerebral artery occlusion. Fundam. Clin. Pharmacol. 9, 129–140.
Cartier, G. E., Yoshikami, D., Gray, W. R., Luo, S., Olivera, B. M., and McIntosh, J. M. (1996) A new α-conotoxin which targets α3β2 nicotinic acetylcholine receptors. J. Biol. Chem. 271, 7522–7528.
Castaneda, O., Sotolongo, V., Amor, A. M., Stocklin, R., Anderson, A. J., Harvey, A. L., Engstrom, A., Wernstedt, C., and Karlsson, E. (1995) Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. Toxicon 33, 603–613.
Chahine, M., Sirois, J., Marcotte, P., Chen, L., and Kallen, R. G. (1998) Extrapore residues of the S5-S6 loop of domain 2 of the voltage-gated skeletal muscle sodium channel (rSkM1) contribute to the μ-conotoxin GIIIA binding site. Biophys. J. 75, 236–246.
Chaplan, S. R., Pogrel, J. W., and Yaksh, T. L. (1994) Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J. Pharmacol. Exp. Ther. 269, 1117–1123.
Cheng, S., Craig, W. S., Mullen, D., Tschopp, J. F., Dixon, D., and Pierschbacher, M. D. (1994) Design and synthesis of novel cyclic RGD-containing peptides as highly potent and selective integrin α IIb β 3 antagonists. J. Med. Chem. 37, 1–8.
Christadoss, P., Poussin, M., and Deng, C. (2000) Animal models of myasthenia gravis. Clin. Immunol. 94, 75–87.
Civera, C., Vazquez, A., Sevilla, J. M., Bruix, M., Gago, F., Garcia, A. G., and Sevilla, P. (1999) Solution structure determination by two-dimensional 1H NMR of ω-conotoxin MVIID, a calcium channel blocker peptide. Biochem. Biophys. Res. Commun. 254, 32–35.
Colgan, D. J., Ponder, W. F., and Eggler, P. E. (2000) Gastropod evolutionary rates and phylogenetic relationships assessed using partial 28S rDNA and histone H3 sequences. Zoologica Scripta 29, 29–63.
Colquhoun, L. M., and Patrick, J. W. (1997) Pharmacology of neuronal nicotinic acetylcholine receptor subtypes. Adv. Pharmacol. 39, 191–220.
Conticello, S. G., Gilad, Y., Avidan, N., Ben-Asher, E., Levy, Z., and Fainzilber, M. (2001) Mechanisms for evolving hypervariability: the case of conopeptides. Mol. Biol. Evol. 18, 120–131.
Corringer, P. J., Le Novere, N., and Changeux, J. P. (2000) Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431–458.
Cortez, L. M., del Canto, S. G., Testai, F. D., and Biscoglio de Jiménez Bonino M. J. (2002) Conotoxin MI inhibits the α-δ acetylcholine binding site of the Torpedo marmorata receptor. Biochem. Biophys. Res. Commun. 295, 791–795.
Coulson, F. R., and O’Donnell, S. R. (2000) The effects of contignasterol (IZP-94,005) on allergen-induced plasma protein exudation in the tracheobronchial airways of sensitized guinea-pigs in vivo. Inflamm. Res. 49, 123–127.
Cousins M. J., Goucke R. C., Cher, L. M., Brooker, C. D., Amor. P. E., and Crump D. E. (2002) Proc. 10th World Congress, Pain A615–P249.
Cox, B. (2000) Calcium channel blockers and pain therapy. Curr. Rev. Pain 4, 488–498.
Craig, A. G, Jimenez, E. C., Dykert, J., Nielsen, D. B., Gulyas, J., Abogadie, F. C., Porter, J., Rivier, J. E., Cruz, L. J., Olivera, B. M., and McIntosh, J. M. (1997) A novel posttranslational modification involving bromination of tryptophan: identification of the residue, L-6-bromotryptophan, in peptides from Conus imperialis and Conus radiatus venom. J. Biol. Chem. 272, 4689–4698.
Craig, A. G., Zafaralla, G., Cruz, L. J., Santos, A. D., Hillyard, D. R., Dykert, J., Rivier, J. E., Gray, W. R., Imperial, J., DelaCruz, R. G., West, P., Yoshikami, D., and Olivera, B. M. (1998) An O-glycosylated neuroexcitatory Conus peptide. Biochemistry 37, 16019–16025.
Craig, A. G., Bandyopadhyay, P., and Olivera, B. M. (1999a) Post-translationally modified neuropeptides from Conus venoms. Eur. J. Biochem. 264, 271–275.
Craig, A. G., Norberg, T., Griffin, D., Hoeger, C., Akhtar, M., Schmidt, K., Low, W., Dykert, J., Richelson, E., Navarro, V., Mazella, J., Watkins, M., Hillyard, D., Imperial, J., Cruz, L. J., and Olivera, B. M. (1999b) Contulakin-G, an O-glycosylated invertebrate neurotensin. J. Biol. Chem. 274, 13752–13759.
Craig, A. G. (2000) The characterization of conotoxins. J. Toxicol. Toxin Rev. 19, 53–93.
Cruz, L. J., Corpuz, G., and Olivera, B. M. (1976) A preliminary study of Conus venom protein. Veliger, 18, 302–308.
Cruz, L. J., Gray, W. R., Olivera, B. M., Zeikus, R. D., Kerr, L., Yoshikami, D., and Moczydlowski, E. (1985) Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J. Biol. Chem. 260, 9280–9288.
Cruz, L. J., and Olivera, B. M. (1986) Calcium channel antagonists. ω-conotoxin defines a new high affinity site. J. Biol. Chem. 261, 6230–6233.
Cruz, L. J., Kupryszewski, G., LeCheminant, G. W., Gray, W. R., Olivera, B. M., and Rivier, J. (1989) μ-conotoxin GIIIA, a peptide ligand for muscle sodium channels: chemical synthesis, radiolabeling, and receptor characterization. Biochemistry 28, 3437–3442.
Cruz, L. J., and White, J. (1995) Clinical toxicology of Conus snail stings. In: Meier, J., and White, J. (Eds.). Clinical Toxicology of Animal Venoms. CRC Press, Boca Raton, FL p. 117.
Cunningham, B. C., and Wells, J. A. (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244, 1081–1085.
Czerwiec, E., Begley, G. S., Bronstein, M., Stenflo, J., Taylor, K., Furie, B. C., and Furie, B. (2002) Expression and characterization of recombinant vitamin K-dependent γ-glutamyl carboxylase from an invertebrate, Conus textile. Eur. J. Biochem. 269, 6162–6172.
Dajas-Bailador, F., Costa, G., Dajas, F., and Emmett, S. (1998) Effects of α-erabutoxin, α-bungarotoxin, α-cobratoxin and fasciculin on the nicotine-evoked release of dopamine in the rat striatum in vivo. Neurochem. Int. 33, 307–312.
Daly, J. W. (2003) Ernest Guenther award in chemistry of natural products. Amphibian skin: a remarkable source of biologically active arthropod alkaloids. J. Med. Chem. 46, 445–452.
Daly, N. L., Ekberg, J. A., Thomas, L., Adams, D. J., Lewis, R. J., and Craik, D. J. (2004) Structures of μO-conotoxins from Conus marmoreus: Inhibitors of TTX-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J. Biol. Chem. 279, 25774–25782.
Dauplais, M., Lecoq, A., Song, J., Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., de Medeiros, C. L., Rowan, E. G., Harvey, A. L., and Menez, A. (1997) On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J. Biol. Chem. 272, 4302–4309.
De Rosa, M., Giordano, S., Scettri, A., Sodano, G., Soriente, A., Pastor, P. G., Alcaraz, M. J., and Paya, M. (1998) Synthesis and comparison of the antiinflammatory activity of manoalide and cacospongionolide B analogues. J. Med. Chem. 41, 3232–3238.
DeBin, J. A., Maggio, J. E., and Strichartz, G. R. (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 264, C361–369.
Delaloge, S., Yovine, A., Taamma, A., Riofrio, M., Brain, E., Raymond, E., Cottu, P., Goldwasser, F., Jimeno, J., Misset, J. L., Marty, M., and Cvitkovic, E. (2001) Ecteinascidin-743: a marine-derived compound in advanced, pretreated sarcoma patients–preliminary evidence of activity. J. Clin. Oncol. 19, 1248–1255.
Donevan, S. D., and McCabe, R. T. (2000) Conantokin G is an NR2B-selective competitive antagonist of N-methyl-D-aspartate receptors. Mol. Pharmacol. 58, 614–623.
Dounay, A. B., and Forsyth, C. J. (2002) Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor. Curr. Med. Chem. 9, 1939–1980.
Dowell, C., Olivera, B. M., Garrett, J. E., Staheli, S. T., Watkins, M., Kuryatov, A., Yoshikami, D., Lindstrom, J. M., and McIntosh, J. M. (2003) α-Conotoxin PIA is selective for α6 subunit-containing nicotinic acetylcholine receptors. J. Neurosci. 23, 8445–8452.
Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77.
Duda Jr, T. F. and Palumbi, S. R. (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc. Natl. Acad. Sci. USA 96, 6820–6823.
Duda Jr, T. F. and Palumbi, S. R. (2000) Evolutionary diversification of multi-gene families: allelic selection of toxins in predatory cone snails. Mol. Biol. Evol. 17, 1286–1293.
Duda Jr, T. F., Kohn, A. J., and Palumbi, S. R. (2001) Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biol. J. Linn. Soc. 73, 391–409.
Dudley, S. C. Jr., Todt, H., Lipkind, G., and Fozzard, H. A. (1995) A μ-conotoxin-insensitive Na+ channel mutant: possible localization of a binding site at the outer vestibule. Biophys. J. 69, 1657–1665.
Dutton, J. L., and Craik, D. J. (2001) α-Conotoxins: Nicotinic acetylcholine receptor antagonists as pharmacological tools and potential drug leads. Curr. Med. Chem. 8, 327–344.
Dutton, J. L., Bansal, P. S., Hogg, R. C., Adams, D. J., Alewood, P. F., and Craik, D. J. (2002) A new level of conotoxin diversity, a non-native disulfide bond connectivity in α-conotoxin AuIB reduces structural definition but increases biological activity. J. Biol. Chem. 277, 48849–48857.
Ellison, M., McIntosh, J. M., and Olivera, B. M. (2003) α-Conotoxins ImI and ImII. Similar α7 nicotinic receptor antagonists act at different sites. J. Biol. Chem. 278, 757–764.
Endean, R. and Rudkin, C. (1965) Further studies of the venoms of Conidae. Toxicon 2, 225–249.
Endean, R., Gyr, P., and Surridge, J. (1977) The pharmacological actions on guinea-pig ileum of crude venoms from the marine gastropods Conus striatus and Conus magus. Toxicon 15, 327–337.
England, L. J., Imperial, J., Jacobsen, R., Craig, A. G., Gulyas, J., Akhtar, M., Rivier, J., Julius, D., and Olivera, B. M. (1998) Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science 281, 575–578.
Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T. P., Tanabe, T., Birnbaumer, L., Tsien, R. W., and Catterall, W. A. (2000) The alternative designation for the N-type VGCC, Cav 2.2, is derived from a nomenclature system based on structural aspects of the channels, similar to that used for potassium channels. Neuron 25, 533–535.
Espiritu, D. J., Watkins, M., Dia-Monje, V., Cartier, G. E., Cruz, L. J., and Olivera, B. M. (2001) Venomous cone snails: molecular phylogeny and the generation of toxin diversity. Toxicon 39, 1899–1916.
Espiritu, D. J., Cruz, L. J., Cartier, G. E., and Olivera, B. M. (2002) Venomous gastropods: Conus, conoideans and other neogastropod families. Boll. Malacol. In press.
Fainzilber, M., Gordon, D., Hasson, A., Spira, M. E., and Zlotkin, E. (1991) Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur. J. Biochem. 202, 589–595.
Fainzilber, M., Hasson, A., Oren, R., Burlingame, A. L., Gordon, D., Spira, M. E., and Zlotkin, E. (1994a) New mollusc-specific α-conotoxins block Aplysia neuronal acetylcholine receptors. Biochemistry 33, 9523–9529.
Fainzilber, M., Kofman, O., Zlotkin, E., and Gordon, D. (1994b) A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. J. Biol. Chem. 269, 2574–2580.
Fainzilber, M., Lodder, J. C., Kits, K. S., Kofman, O., Vinnitsky, I., Van Rietschoten, J., Zlotkin, E., and Gordon, D. (1995a) A new conotoxin affecting sodium current inactivation interacts with the δ-conotoxin receptor site. J. Biol. Chem. 270, 1123–1129.
Fainzilber, M., van der Schors, R., Lodder, J. C., Li, K. W., Geraerts, W. P., and Kits, K.
S. (1995b) New sodium channel-blocking conotoxins also affect calcium currents in Lymnaea neurons. Biochemistry 34, 5364-5371.
Fainzilber, M., Nakamura, T., Gaathon, A., Lodder, J. C., Kits, K. S., Burlingame, A. L., and Zlotkin, E. (1995c) A new cysteine framework in sodium channel blocking conotoxins. Biochemistry 34: 8649–8656.
Fainzilber, M., Lodder, J. C., van der Schors, R. C., Li, K. W., Yu, Z., Burlingame, A. L., Geraerts, W. P., and Kits, K. S. (1996) A novel hydrophobic ω-conotoxin blocks molluscan dihydropyridine-sensitive calcium channels. Biochemistry 35, 8748–8752.
Fainzilber, M., Nakamura, T., Lodder, J. C., Zlotkin, E., Kits, K. S., and Burlingame, A. L. (1998) γ-Conotoxin-PnVIIA, a γ-carboxyglutamate-containing peptide agonist of neuronal pacemaker cation currents. Biochemistry 37, 1470–1477.
Fan, C. X., Chen, X. K., Zhang, C., Wang, L. X., Duan, K. L., He, L. L., Cao, Y., Liu, S. Y., Zhong, M. N., Ulens, C., Tytgat, J., Chen, J. S., Chi, C. W., and Zhou, Z. (2003) A novel conotoxin from Conus betulinus, κ-BtX, unique in cysteine pattern and in function as a specific BK channel modulator. J. Biol. Chem. 278, 12624–12633.
Favreau, P., Krimm, I., Le Gall, F., Bobenrieth, M. J., Lamthanh, H., Bouet, F., Servent, D., Molgo, J., Menez, A., Letourneux, Y., and Lancelin, J. M. (1999) Biochemical characterization and nuclear magnetic resonance structure of novel α-conotoxins isolated from the venom of Conus consors. Biochemistry 38, 6317–6326.
Fegan, D., and Andresen, D. (1997) Conus geographus envenomation. The Lancet 349, 1672.
Ferber, M., Sporning, A., Jeserich, G., DeLaCruz, R., Watkins, M., Olivera, B. M., and Terlau, H. (2003) A novel Conus peptide ligand for K+ channels. J. Biol. Chem. 278, 2177–2183.
Flinn, J. P., Pallaghy, P. K., Lew, M. J., Murphy, R., Angus, J. A., and Norton, R. S. (1999) Roles of key functional groups in ω-conotoxin GVIA synthesis, structure and functional assay of selected peptide analogues. Eur. J. Biochem. 262, 447–455.
Furukawa, K., Wang, Y., Yao, P. J., Fu, W., Mattson, M. P., Itoyama, Y., Onodera, H., D'Souza, I., Poorkaj, P. H., Bird, T. D., and Schellenberg, G. D. (2003) Alteration in calcium channel properties is responsible for the neurotoxic action of a familial frontotemporal dementia tau mutation. J. Neurochem. 87, 427–436.
Garcia-Calvo, M., Leonard, R. J., Novick, J., Stevens, S. P., Schmalhofer, W., Kaczorowski, G. J., and Garcia, M. L. (1993) Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J. Biol. Chem. 268, 18866–18874.
Gehrmann, J., Alewood, P. F., and Craik, D. J. (1998) Structure determination of the three disulfide bond isomers of α-conotoxin GI: a model for the role of disulfide bonds in structural stability. J. Mol. Biol. 278, 401–415.
Gehrmann, J., Daly, N. L., Alewood, P. F., and Craik, D. J. (1999) Solution structure of α-conotoxin ImI by 1H nuclear magnetic resonance. J. Med. Chem. 42, 2364–2372.
Gomez, S. G., Faircloth, G., Lopez-Lazaro, L., Jimeno, J., Bueren, J. A., and Albella, B. (2001) In vitro hematotoxicity of Aplidine on human bone marrow and cord blood progenitor cells. Toxicol In Vitro 15, 347–350.
Gouda, H., Yamazaki, K., Hasegawa, J., Kobayashi, Y., Nishiuchi, Y., Sakakibara, S., and Hirono, S. (1997) Solution structure of α-conotoxin MI determined by 1H-NMR spectroscopy and molecular dynamics simulation with the explicit solvent water. Biochim. Biophys. Acta 1343, 327–34.
Gouda, H., and Hirono, S. (1999) Solution structure of α-conotoxin ImI determined by two-dimensional NMR spectroscopy. Biochim. Biophys. Acta 1431, 384–394.
Gomperts, S. N. (1996) Clustering membrane proteins: It's all coming together with the PSD-95/SAP90 protein family. Cell, 84, 659–662.
Gray, W. R., Luque, A., Olivera, B. M., Barrett, J., and Cruz, L. J. (1981) Peptide toxins from Conus geographus venom. J. Biol. Chem. 256, 4734–4740.
Gray, W. R., Rivier, J. E., Galyean, R., Cruz, L. J., and Olivera, B. M. (1983) Conotoxin MI. Disulfide bonding and conformational states. J. Biol. Chem. 258, 12247–12251.
Groebe, D. R., Dumm, J. M., Levitan, E. S., and Abramson, S. N. (1995) α-Conotoxins selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors. Mol. Pharmacol. 48, 105–111.
Haack, J. A., River, J., Parks, T. N., Mena, E. E., Cruz, L. J., and Olivera, B. M. (1990) Conantokin-T. A γ-carboxyglutamate containing peptide with N-methyl-D-aspartate antagonist activity. J. Biol. Chem. 265, 6025–6029.
Hammerland, L. G., Olivera, B. M., and Yoshikami, D. (1992) Conantokin-G selectively inhibits N-methyl-D-aspartate-induced currents in Xenopus oocytes injected with mouse brain mRNA. Eur. J. Pharmacol. 226, 239–244.
Haubrich, C., Frielingsdorf, V., Herzig, S., Schroder, H., Schwarting, R., Sturm, V., and Voges, J. (2000) N-type calcium channel blockers —tools for modulation of cerebral functional units? Brain Res. 855, 225–234.
Hasson, A., Shon, K. J., Olivera, B. M., and Spira, M. E. (1995) Alterations of voltage-activated sodium current by a novel conotoxin from the venom of Conus gloriamaris. J. Neurophysiol. 73, 1295–1301.
Heading, C. (1999) Ziconotide. Curr. Opin. CPNS Invest. Drugs 1, 153–166.
Hider, R. C. (1985) A proposal for the structure of conotoxin--a potent antagonist of the nicotinic acetylcholine receptor. FEBS Lett. 184, 181–184.
Hill, J. M., Alewood, P. F., and Craik, D. J. (1996) Three-dimensional solution structure of μ-conotoxin GIIIB, a specific blocker of skeletal muscle sodium channels. Biochemistry 35, 8824–8835.
Hillyard, D. R., Olivera, B. M., Woodward, S., Gray, W. R., Corpuz, G. P., Ramilo, C. A., and Cruz, L. J. (1989) A molluskivorous Conus toxin: conserved frameworks in conotoxins. Biochemistry 28, 358–361.
Hillyard, D. R., Monje, V. D., Mintz, I. M., Bean, B. P., Nadasdi, L., Ramachandran,
J., Miljanich, G., Azimi-Zoonooz, A., McIntosh, J. M., Cruz, L. J., Imperial, J. S., and Olivera, B. M. (1992) A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron 9, 69–77.
Hu, S. H., Gehrmann, J., Guddat, L. W., Alewood, P. F., Craik, D. J., and Martin, J. L. (1996) The 1.1 Å crystal structure of the neuronal acetylcholine receptor antagonist, α-conotoxin PnIA from Conus pennaceus. Structure 4, 417–423.
Hu, S. H., Gehrmann, J., Alewood, P. F., Craik, D. J., and Martin, J. L. (1997) Crystal structure at 1.1 Å resolution of α-conotoxin PnIB: Comparison with α-conotoxins PnIA and GI. Biochemistry 36, 11323–11330.
Hu, S. H., Loughnan, M., Miller, R., Weeks, C. M., Blessing, R. H., Alewood, P. F., Lewis, R. J., and Martin, J. L. (1998) The 1.1 Å resolution crystal structure of [Tyr15]EpI, a novel α-conotoxin from Conus episcopatus, solved by direct methods. Biochemistry 37, 11425–11433.
Huang, C. C., Lyu, P. C., Lin, C. H., and Hsu, K. S. (1997) Conantokin-T selectively antagonizes N-methyl-D-aspartate-evoked responses in rat hippocampal slice. Toxicon 35, 355–363.
Ismail, M., Aly, M. H., Abd-Elsalam, M. A., and Morad, A. M. (1996) A three-compartment open pharmacokinetic model can explain variable toxicities of cobra venoms and their α toxins. Toxicon 34, 1011–1026.
Itier, V., and Bertrand, D. (2001) Neuronal nicotinic receptors: from protein structure to function. FEBS Lett. 504, 118–125.
Jacobsen, R., Jimenez, E. C., Grilley, M., Watkins, M., Hillyard, D., Cruz, L. J., and Olivera, B. M. (1998) The contryphans, a D-tryptophan-containing family of Conus peptides: interconversion between conformers. J. Pept. Res. 51, 173–179.
Jacobsen, R. B., Koch, E. D., Lange-Malecki, B., Stocker, M., Verhey, J., Van Wagoner, R. M., Vyazovkina, A., Olivera, B. M., and Terlau, H. (2000) Single amino acid substitutions in κ-conotoxin PVIIA disrupt interaction with the Shaker K+ channel. J. Biol. Chem. 275, 24639–24644.
Jain, K. K. (2000) An evaluation of intrathecal ziconotide for the treatment of chronic pain. Expert Opin. Investig. Drugs 9, 2403–2410.
Jakubowski, J. A., Keays, D. A., Kelley, W. P., Sandall, D. W., Bingham, J. P., Livett, B. G., Gayler, K. R., and Sweedler, J. V. (2004) Determining sequences and post-translational modifications of novel conotoxins in Conus victoriae using cDNA sequencing and mass spectrometry. J. Mass Spectrom. 39, 548–557.
Jan, L. Y., and Jan, Y. N. (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci. 20, 91–123.
Jimenéz, E. C., Olivera, B. M., Gray, W. R., and Cruz, L. J. (1996) Contryphan is a D-tryptophan containing Conus peptide. J. Biol. Chem. 271, 28002–28005.
Jimenéz, E. C., Craig, A. G., Marsh-Watkins, M., Hillyard, D. R., Gray, W. R., Gulyas, J., Rivier, J. E., Cruz, L. J., and Olivera, B. M. (1997) Bromocontryphan: post-translational bromination of tryptophan. Biochemistry 36, 989–994.
Jimenéz, E. C., Donevan, S., Walker, C., Zhou, L.-M, Nielsen, J., Cruz, L. J., Armstrong, H., White, H. S., and Olivera, B. M. (2002) Conantokin-L, a new NMDA receptor antagonist: determinants for anticonvulsant potency. Epilepsy Res. 52, 73–80.
Jimenéz, E. C., Shetty, R. P., Lirazan, M., Rivier, J., Walker, C., Abogadie, F. C., Yoshikami, D., Cruz, L. J., and Olivera, B. M. (2003) Novel excitatory Conus peptides define a new conotoxin superfamily. J. Neurochem. 85, 610–621.
Jobling, P., Gibbins, I. L., Lewis, R. J., and Morris, J. L. (2004) Differential expression of calcium channels in sympathetic and parasympathetic preganglionic inputs to neurons in paracervical ganglia of guinea-pigs. Neuroscience 127, 455–466.
Jones, R. M. and Bulaj, G. (2000) Conotoxins-new vistas for peptide therapeutics. Curr. Pharm. Des. 6, 1249–1285.
Jones, R. M., Cartier, G. E., McIntosh, J. M., Bulaj, G., Farrar, V. E., and Olivera, B. M. (2001) Composition and therapeutic utility of conotoxins from genus Conus. Patent status 1995–2000. Exp. Opin. Ther. Patents 11, 603–623.
Kaerner, A., and Rabenstein, D. L. (1999) Stability and structure-forming properties of the two disulfide bonds of α-conotoxin GI. Biochemistry 38, 5459–5470.
Kaiser SA, Soliakov L, Harvey SC, Luetje CW, Wonnacott S. (1998) Differential inhibition by α-conotoxin-MII of the nicotinic stimulation of [3H]dopamine release from rat striatal synaptosomes and slices. J. Neurochem. 70, 1069–1076.
Kalume, D. E., Stenflo, J., Czerwiec, E., Hambe, B., Furie, B.C., Furie, B., and Roepstorff, P. Structure determination of two conotoxins from Conus textile by a combination of matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization mass spectrometry and biochemical methods. (2000) J. Mass Spectrom. 35, 145–156.
Kauferstein, S., Huys, I., Lamthanh, H., Stocklin, R., Sotto, F., Menez, A., Tytgat, J., and Mebs, D. (2003) A novel conotoxin inhibiting vertebrate voltage-sensitive potassium channels. Toxicon 42, 43–52.
Karlin, A. (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102–114.
Kem, W. R. (2000) The brain α7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: studies with DMXBA (GTS-21). Behav. Brain Res. 113, 169–181.
Kent¬, S. B. H. (1988) Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 57, 957–989.
Kikuchi, A., Nieda, M., Schmidt, C., Koezuka, Y., Ishihara, S., Ishikawa, Y., Tadokoro, K., Durrant, S., Boyd, A., Juji, T., and Nicol, A. (2001) In vitro anti-tumour activity of α-galactosylceramide-stimulated human invariant Vα24+NKT cells against melanoma. Br. J. Cancer 85, 741–746.
Kim, M., Baro, D. J., Lanning, C. C., Doshi, M., Farnham, J., Moskowitz, H. S., Peck, J. H., Olivera, B. M., and Harris-Warrick, R. M. (1997) Alternative splicing in the pore-forming region of Shaker potassium channels. J. Neurosci. 17, 8213–8224.
Klein, R. C., Galdzicki, Z., and Castellino, F. J. (1999) Inhibition of NMDA-induced currents by conantokin-G and conantokin-T in cultured embryonic murine hippocampal neurons. Neuropharmacology 38, 1819–1829.
Kohn, A. J. (1982) Gastropod paleobiology and the evolution of taxonomic diversity. Third North American Paleontological Convention Proceedings 2, 313–317.
Kohn, A. J. (1990) Tempo and mode of evolution in Conidae. Malacologia 32, 57–67.
Kohn, A. J. (1992) A chronological taxonomy of Conus, 1758-1840. - Smithsonian Inst. Press, Washington D.C.
Kreil, G. (1997) D-Amino acids in animal peptides. Annu. Rev. Biochem. 66, 337–345.
Kulak, J. M., Nguyen, T. A., Olivera, B. M., and McIntosh, J. M. (1997) α-Conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. J. Neurosci. 17, 5263–5270.
Kuryatov, A., Olale, F., Cooper, J., Choi, C., and Lindstrom, J. (2000) Human α6 AChR subtypes: subunit composition, assembly, and pharmacological responses. Neuropharmacology 39, 2570–2590.
Lambert, E. H., Eaton, L. M., and Rooke, E. D. (1956) Defect of neuromuscular conduction associated with malignant neoplasm. Am. J. Physiol. 187, 612–613.
Lamthanh, H., Jegou-Matheron, C., Servent, D., Menez, A., and Lancelin, J. M. (1999) Minimal conformation of the α-conotoxin ImI for the α7 neuronal nicotinic acetylcholine receptor recognition: correlated CD, NMR and binding studies. FEBS Lett. 454, 293–298.
Lancelin, J. M., Foray, M. F., Poncin, M., Hollecker, M., and Marion, D. (1994) Proteinase inhibitor homologues as potassium channel blockers. Nat. Struct. Biol. 1, 246–250.
Lang, B., Newsom-Davis, J., Wray, D., Vincent, A., and Murray, N. (1981) Autoimmune aetiology for myasthenic (Eaton-Lambert) syndrome. Lancet 2, 224–226.
Lawson, K. (1996) Is there a therapeutic future for "potassium channel openers"? Clin. Sci. (Lond) 91, 651–663.
Léna, C., and Changeux, J. P. (1997) Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders. Curr. Opin. Neurobiol. 7, 674–682.
Le Novère, N., Corringer, P.-J., and Changeux, J.-P. (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J. Neurobiol. 53, 447–456.
Levin, T., Petrides, G., Weiner, J., Saravay, S., Multz, A. S., and Bailine, S. (2002) Intractable delirium associated with ziconotide successfully treated with electroconvulsive therapy. Psychosomatics 43, 63–66.
Lew, M. J., Flinn, J. P., Pallaghy, P. K., Murphy, R., Whorlow, S. L., Wright, C. E., Norton, R. S., and Angus, J. A. (1997) Structure-function relationships of ω-conotoxin GVIA. Synthesis, structure, calcium channel binding, and functional assay of alanine-substituted analogs. J. Biol. Chem. 272, 12014–12023.
Lewis, R. J., Nielsen, K. J., Craik, D. J., Loughnan, M. L., Adams, D. A., Sharpe, I. A., Luchian, T., Adams, D. J., Bond, T., Thomas, L., Jones, A., Matheson, J. L., Drinkwater, R., Andrews, P. R., and Alewood, P. F. (2000) Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J. Biol. Chem. 275, 35335–35344.
Lewis, R. J., Molgo, J., and Adams, D. J. (2000) Seafood and Freshwater Toxins (ed. Botana, L. Marcel Dekker, New York), 419–447.
Li, W. H. (1997) Molecular Evolution. Sinauer, Sunderland, MA.
Li, R. A., Ennis, I. L., French, R. J., Dudley, S. C. Jr., Tomaselli, G. F., and Marban, E. (2001) Clockwise domain arrangement of the sodium channel revealed by μ-conotoxin (GIIIA) docking orientation. J. Biol. Chem. 276, 11072–11077.
Lirazan, M. B., Hooper, D., Corpuz, G. P., Ramilo, C. A., Bandyopadhyay, P., Cruz, L. J., and Olivera, B. M. (2000) The spasmodic peptide defines a new conotoxin superfamily. Biochemistry 39, 1583–1588.
Livett, B. G., Gaylor, K. R., and Khalil, Z. (2004) Drugs from the sea: conopeptides as potential therapeutics. Curr. Med. Chem. 11, 1715–1723.
Loughnan, M., Bond, T., Atkins, A., Cuevas, J., Adams, D. J., Broxton, N. M., Livett, B. G., Down, J. G., Jones, A., Alewood, P. F., and Lewis, R. J. (1998) α-Conotoxin EpI, a novel sulfated peptide from Conus episcopatus that selectively targets neuronal nicotinic acetylcholine receptors. J. Biol. Chem. 273, 15667–15674.
Loughnan, M. L., Nicke, A., Jones, A., Adams, D. J., Alewood, P. F., and Lewis, R. J. (2004) Chemical and functional identification and characterization of novel sulfated α-conotoxins from the cone snail Conus anemone. J. Med. Chem. 47, 1234–1241.
Luo, S., Kulak, J. M., Cartier, G. E., Jacobsen, R. B., Yoshikami, D., Olivera, B. M., and McIntosh, J. M. (1998) α-conotoxin AuIB selectively blocks α3β4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J. Neurosci. 18, 8571–8579.
Lu, B. S., Yu, F., Zhao, D., Huang, P. T., and Huang, C. F. (1999) Conopeptides from Conus striatus and Conus textile by cDNA cloning. Peptides 20, 1139–1144.
Lu, B. S., Yu, F., Wang, J. H., Zhao, S. Q., Zhao, D., Dai, Q. Y., Huang, P. T., and Huang, C. F. (2000) New O-superfamily conotoxins from Conus striatus inhabited near Chinese Hainan Island. Chin. Sci. Bull. 45, 432–435.
Malmberg, A. B., Gilbert, H., McCabe, R. T., and Basbaum, A. I. (2003) Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 101, 109–116.
Magnelli, V., Grassi, C., Parlatore, E., Sher, E., and Carbone, E. (1996) Down-regulation of non-L-, non-N-type (Q-like) Ca2+ channels by Lambert-Eaton myasthenic syndrome (LEMS) antibodies in rat insulinoma RINm5F cells. FEBS Lett. 387, 47–52.
Malmberg, A. B., and Yaksh, T. L. (1994) Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N- and P-type channels inhibits formalin-induced nociception. J. Neurosci. 14, 4882–4890.
Mamalaki, A., and Tzartos, S. J. (1994) Nicotinic acetylcholine receptor: structure, function and main immunogenic region. Adv. Neuroimmunol. 4, 339–354.
Marshall, I. G., and Harvey, A. L. (1990) Selective neuromuscular blocking properties of α-conotoxins in vivo. Toxicon 28, 231–234.
Maslennikov, I. V., Sobol, A. G., Gladky, K. V., Lugovskoy, A. A., Ostrovsky, A. G., Tsetlin, V. I., Ivanov, V. T., and Arseniev, A. S. (1998) Two distinct structures of α-conotoxin GI in aqueous solution. Eur. J. Biochem. 254, 238–247.
Maslennikov, I. V., Shenkarev, Z. O., Zhmak, M. N., Ivanov, V. T., Methfessel, C., Tsetlin, V. I., and Arseniev, A. S. (1999) NMR spatial structure of α-conotoxin ImI reveals a common scaffold in snail and snake toxins recognizing neuronal nicotinic acetylcholine receptors. FEBS Lett. 444, 275–280.
Martinez, J. S., Olivera, B. M., Gray, W. R., Craig, A. G., Groebe, D. R., Abramson, S. N., and McIntosh, J. M. (1995) α-Conotoxin EI, a new nicotinic acetylcholine receptor antagonist with novel selectivity. Biochemistry 34, 14519–14526.
Martinez, K. L., Corringer, P. J., Edelstein, S. J., Changeux, J. P., and Mérola, F. (2000) Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy. Biochemistry 39, 6979–6990.
Marti-Renom, M. A., Stote, R. H., Querol, E., Aviles, F. X., and Karplus, M. (2000) Structures of scrambled disulfide forms of the potato carboxypeptidase inhibitor predicted by molecular dynamics simulations with constraints. Proteins 40, 482–493.
Mathur, V. S., McGuire, D., Bowersox, S., Miljanich, G. P., and Luther, R. R. (1998) Neuronal N-type calcium channels: New prospect in pain therapy. Pharm. News 5, 25–29.
Mayer, A. M. S., Jacobson, P. B., Fenical, W., Jacobs, R. S., and Glaser, K. B. (1998) Pharmacological characterization of the pseudopterosins: novel anti-inflammatory natural products isolated from the Caribbean soft coral, Pseudopterogorgia elisabethae. Life Sci. 62, PL401–PL407.
McGehee, D. S., and Role, L. W. (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol. 57, 521–546.
McIntosh, J. M., Cruz, L. J., Hunkapiller, M. W., Gray, W. R., and Olivera, B. M. (1982) Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch. Biochem. Biophys. 218, 329–334.
McIntosh, J. M., Olivera, B. M., Cruz, L. J., and Gray, W. R. (1984) γ-Carboxyglutamate in a neuroactive toxin. J. Biol. Chem. 259, 14343–14346.
McIntosh, J. M., Yoshikami, D., Mahe, E., Nielsen, D. B., Rivier, J. E., Gray, W. R., and Olivera, B. M. (1994) A nicotinic acetylcholine receptor ligand of unique specificity, α-conotoxin ImI. J. Biol. Chem. 269, 16733–16739.
McIntosh, J. M., Hasson, A., Spira, M. E., Gray, W. R., Li, W., Marsh, M., Hillyard, D. R., and Olivera, B. M. (1995) A new family of conotoxins that blocks voltage-gated sodium channels. J. Biol. Chem. 270, 16796–16802.
McIntosh, J. M., Olivera, B. M., and Cruz, L. J. (1999a) Conus peptides as probes for ion channels. Methods Enzymol. 294, 605–624.
McIntosh, J. M., Santos, A. D., and Olivera, B. M. (1999b) Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu. Rev. Biochem. 68, 59–88.
McIntosh, J. M., Dowell, C., Watkins, M., Garrett, J. E., Yoshikami, D., and Olivera, B. M. (2002) α-Conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors. J. Biol. Chem. 277, 33610–33615.
McManus, O. B., and Musick, J. R. (1985) Postsynaptic block of frog neuromuscular transmission by conotoxin GI. J. Neurosci. 5, 110–116.
Menzler, S., Bikker, J. A., Suman-Chauhan, N., and Horwell, D. C. (2000) Design and biological evaluation of non-peptide analogues of ω-conotoxin MVIIA. Bioorg. Med. Chem. Lett. 10, 345–347.
Merrifield, R. B. (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154.
Miles, G. B., Lipski, J., Lorier, A. R., Laslo, P., and Funk, G. D. (2004) Differential expression of voltage-activated calcium channels in III and XII motoneurones during development in the rat. Eur. J. Neurosci. 20, 903–913.
Miljanich, G. P., Bitner, R. S., Bowersox, S. S., Fox, J. A., Valentino, K. L., and Yamashiro, D. H. (1991) EMBL/Genbank/DDBJ Databases accession number P58914.
Miljanich, G. P., and Ramachandran, J. (1995) Antagonists of neuronal calcium channels: structure, function and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 35, 707–734.
Miljanich, G. (1997) Venom peptides as human pharmaceuticals. Sci. Med. (Sep-Oct), 6–15.
Millard, E. L., Daly, N. L., and Craik, D. J. (2004) Structure activity relationships of α-conotoxins targeting neuronal nicotinic acetylcholine receptors. Eur. J. Biochem. 271, 2320–2326.
Miller, C. (1995) The charybdotoxin family of K+ channel-blocking peptides. Neuron 15, 5–10.
Milne, T. J., Abbenante, G., Tyndall, J. D., Halliday, J., and Lewis, R. J. (2003) Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. J. Biol. Chem. 278, 31105–31110.
Mittelman, A., Chun, H. G., Puccio, C., Coombe, N., Lansen, T., and Ahmed, T. (1999) Phase II clinical trial of didemnin B in patients with recurrent or refractory anaplastic astrocytoma or glioblastoma multiforme (NSC 325319). Invest. New Drugs 17, 179–182.
Miyazawa, A., Fujiyoshi, Y., and Unwin, N. (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955.
Moczydlowski, E., Olivera, B. M., Gray, W. R., and Strichartz, G. R. (1986) Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and μ-conotoxins. Proc. Natl. Acad. Sci. U S A 83, 5321–5325.
Motomura, M., Lang, B., Johnston, I., Palace, J., Vincent, A., and Newsom-Davis, J. (1997) Incidence of serum anti-P/O-type and anti-N-type calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. J. Neurol. Sci. 147, 35–42.
Müller, W., Meske, V., Berlin, K., Scharnagl, H., Marz, W., and Ohm, T. G. (1998) Apolipoprotein E isoforms increase intracellular Ca2+ differentially through a ω-agatoxin IVa-sensitive Ca2+-channel. Brain Pathol. 8, 641–653.
Mulugeta, E., Karlsson, E., Islam, A., Kalaria, R., Mangat, H., Winblad, B., and Adem, A. (2003) Loss of muscarinic M4 receptors in hippocampus of Alzheimer patients. Brain Res. 960, 259–262.
Nadasdi, L., Yamashiro, D., Chung, D., Tarczy-Hornoch, K., Adriaenssens, P., and Ramachandran, J. (1995) Structure-activity analysis of a Conus peptide blocker of N-type neuronal calcium channels. Biochemistry 34, 8076–8081.
Nakamura, T., Yu, Z. G., Fainzilber, M., and Burlingame, A. L. (1996) Mass spectrometric-based revision of the structure of a cysteine-rich peptide toxin with γ-carboxyglutamic acid, TxVIIA, from the sea snail, Conus textile. Protein Sci. 5, 524–530.
Nakamura, M., Ishida, Y., Kohno, T., Sato, K., Oba, Y., and Nakamura, H. (2004) Effects of modification at the fifth residue of μ-conotoxin GIIIA with bulky tags on the electrically stimulated contraction of the rat diaphragm. J. Pept. Res. 64, 110–117.
Nebe, J., Vanegas, H., and Schaible, H. G. (1998) Spinal application of ω-conotoxin GVIA, an N-type calcium channel antagonist, attenuates enhancement of dorsal spinal neuronal responses caused by intra-articular injection of mustard oil in the rat. Exp. Brain Res. 120, 61–69.
Nemoto, N., Kubo, S., Yoshida, T., Chino, N., Kimura, T., Sakakibara, S., Kyogoku, Y., and Kobayashi, Y. (1995) Solution structure of ω-conotoxin MVIIC determined by NMR. Biochem. Biophys. Res. Commun. 207, 695–700.
Nicke, A., Loughnan, M. L., Millard, E. L., Alewood, P. F., Adams, D. J., Daly, N. L., Craik, D. J., and Lewis, R. J. (2003) Isolation, Structure and Activity of GID, a novel α-4/7-conotoxin with an extended N-terminal sequence. J. Biol. Chem. 278, 3137–3144.
Nielsen, K. J., Thomas, L., Lewis, R. J., Alewood, P. F., and Craik, D. J. (1996) A consensus structure for ω-conotoxins with different selectivities for voltage-sensitive calcium channel subtypes: Comparison of MVIIA, SVIB, and SNX-202. J. Mol. Biol. 263, 297–310.
Nielsen, K. J., Adams, D. A., Alewood, P. F., Lewis, R. J., Thomas, L., Schroeder, T., and Craik, D. J. (1999a) Effects of chirality at Tyr13 on the structure-activity relationships of ω-conotoxins from Conus magus. Biochemistry 38, 6741–6751.
Nielsen, K. J., Skjaerbaek, N., Dooley, M., Adams, D. A., Mortensen, M., Dodd, P. R., Craik, D. J., Alewood, P. F., and Lewis, R. J. (1999b) Structure-activity studies of conantokins as human N-methyl-D-aspartate receptor modulators. J. Med. Chem. 42, 415–426.
Nielsen, K. J., Schroeder, T., and Lewis, R. (2000) Structure-activity relationships of ω-conotoxins at N-type voltage-sensitive calcium channels. J. Mol. Recognit. 13, 55–70.
Nielsen, K. J., Watson, M., Adams, D. J., Hammarstrom, A. K., Gage, P. W., Hill, J. M., Craik, D. J., Thomas, L., Adams, D., Alewood, P. F., and Lewis, R. J. (2002) Solution structure of μ-conotoxin PIIIA, a preferential inhibitor of persistent tetrodotoxin-sensitive sodium channels. J. Biol. Chem. 277, 27247–27255.
Nirthanan, S., Charpantier, E., Gopalakrishnakone, P., Gwee, M. C., Khoo, H. E., Cheah, L. S., Bertrand, D., and Kini, R. M. (2002) Candoxin, a novel toxin from Bungarus candidus, is a reversible antagonist of muscle (αβγδ) but a poorly reversible antagonist of neuronal α7 nicotinic acetylcholine receptors. J. Biol. Chem. 277, 17811–17820.
Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127.
Noguchi, T., Hwang, D. F., Arakawa, O., Sugita, H., Deguchi, Y., Shida, Y., and Hashimoto, K. (1987) Vibrio alginolyticus, a tetrodotoxin-producing bacterium, in the intestines of the fish Fugu vermicularis vermicularis. Mar. Biol. 94, 625–630.
Norton, R. S., and Pallaghy, P. K. (1998) The cystine knot structure of ion channel toxins and related polypeptides. Toxicon 36, 1573–1583.
Norton, R. S., Pallaghy, P. K., Baell, J. B., Wright, C. E., Lew, M. J., and Angus, J. A. (1999) Polypeptide ω-conotoxin GVIA as a basis for new analgesic and neuroprotective agents. Drug Dev. Res. 46, 206–218.
Olivera, B. M., McIntosh, J. M., Cruz, L. J., Luque, F. A., and Gray, W. R. (1984) Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 23, 5087–5090.
Olivera, B. M., Gray, W. R., Zeikus, R., McIntosh, J. M., Varga, J., Rivier, J., de Santos, V., and Cruz, L. J. (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230, 1338–1343.
Olivera, B. M., Cruz, L. J., De Santos, V., Lecheminant, G., Griffin, D., Zeikus, R., McIntosh, J. M., Galyean, R., Varga, J., Gray, W. R., and Rivier, J. (1987) Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using ω-conotoxin from Conus magus venom. Biochemistry 26, 2086–2090.
Olivera, B. M., Hillyard, D. R., Rivier, J., Woodward, S., Gray, W. R., Corpuz, G., and Cruz, L. J. (1990a) Conotoxins: targeted peptide ligands from snail venoms. In: Marine toxins: origin, structure and molecular pharmacology (Hall S, Strichartz G, eds), pp 256–278. Washington, DC: American Chemical Society.
Olivera, B. M., Rivier, J., Clark, C., Ramilo, C. A., Corpuz, G. P., Abogadie, F. C., Mena, E. E., Woodward, S. R., Hillyard, D. R., and Cruz, L. J. (1990b) Diversity of Conus neuropeptides. Science 249, 257–263.
Olivera, B. M., Rivier, J., Scott, J. K., Hillyard, D. R., and Cruz, L. J. (1991) Conotoxins. J. Biol. Chem. 266, 22067–22070.
Olivera, B. M., Miljanich, G. P., Ramachandran, J., and Adams, M. E. (1994) Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins. Annu. Rev. Biochem. 63, 823–867.
Olivera, B. M. (1997) E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets and drug design: 50 million years of neuropharmacology. Mol. Biol. Cell 8, 2101–2109.
Olivera, B. M., Walker, C., Cartier, G. E., Hooper, D., Santos, A. D., Schoenfeld, R., Shetty, R., Watkins, M., Bandyopadhyay, P., and Hillyard, D. R. (1999) Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns. Ann. N. Y. Acad. Sci. 870, 223–237.
Olivera, B. M., and Cruz, L. J. (2001) Conotoxins, in retrospect. Toxicon 39, 7–14.
Olivera, B. M. (2002) CONUS VENOM PEPTIDES: Reflections from the Biology of Clades and Species. Ann. Rev. Ecology Systematics 33, 25–47.
O'Neil, K. T., Hoess, R. H., Jackson, S. A., Ramachandran, N. S., Mousa, S. A., and DeGrado, W. F. (1992) Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins 14, 509–515.
Ono, J. K., and Salvaterra, P. M. (1981) Snake α-toxin effects on cholinergic and noncholinergic responses of Aplysia californica neurons. J. Neurosci. 1, 259–270.
Ostrow, K. L., Mammoser, A., Suchyna, T., Sachs, F., Oswald, R., Kubo, S., Chino, N., and Gottlieb, P. A. (2003) cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon 42, 263–274.
Pallaghy, P. K., Duggan, B. M., Pennington, M. W., and Norton, R. S. (1993) Three-dimensional structure in solution of the calcium channel blocker ω-conotoxin. J. Mol. Biol. 234, 405–420.
Penn, R. D., and Paice, J. A. (2000) Adverse effects associated with the intrathecal administration of ziconotide. Pain 85, 291–296.
Picciotto, M. R., Zoli, M., Rimondini, R., Léna, C., Marubio, L. M., Pich, E. M., Fuxe, K., and Changeux, J.-P. (1998) Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391, 173–177.
Ponder, W. F. and Warén, A. (1988) Classification of the Caenogastropoda and Heterostropha - a list of the family group names and higher taxa. Malac. Rev. Suppl. 4: 288–326.
Ponder, W. F. and Lindberg, D. R. (1997) Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool. J. Linn. Soc., 119: 83–265.
Price-Carter, M., Gray, W. R., and Goldenberg, D. P. (1996a) Folding of omega-conotoxins. 2. Influence of precursor sequences and protein disulfide isomerase. Biochemistry 35, 15547–15557.
Price-Carter, M., Gray, W. R., and Goldenberg, D. P. (1996b) Folding of ω-conotoxins. 1. Efficient disulfide-coupled folding of mature sequences in vitro. Biochemistry 35, 15537–15546.
Price-Carter, M., Hull, M. S., and Goldenberg, D. P. (1998) Roles of individual disulfide bonds in the stability and folding of an ω-conotoxin. Biochemistry 37, 9851–9861.
Quik, M., Polonskaya, Y., Kulak, J. M., and McIntosh, J. M. (2001) Vulnerability of 125I-α-conotoxin MII binding sites to nigrostriatal damage in monkey. J. Neurosci. 21, 5494–5500.
Quik, M., Vailati, S., Bordia, T., Kulak, J. M., Fan, H., McIntosh, J. M., Clementi, F., and Gotti, C. (2004a) Subunit composition of nicotinic receptors in monkey striatum; effect of MPTP and L-dopa treatments. Mol. Pharmacol. [Epub ahead of print].
Quik, M., Bordia, T., Forno, L., and McIntosh, J. M. (2004b) Loss of α-conotoxinMII- and A85380-sensitive nicotinic receptors in Parkinson's disease striatum. J. Neurochem. 88, 668–679.
Quiram, P. A., McIntosh, J. M., and Sine, S. M. (2000) Pairwise interactions between neuronal α7 acetylcholine receptors and α-conotoxin PnIB. J. Biol. Chem. 275, 4889–4896.
Ragnarsson, L., Mortensen, M., Dodd, P. R., and Lewis, R. J. (2002) Spermine modulation of the glutamateNMDA receptor is differentially responsive to conantokins in normal and Alzheimer’s disease human cerebral cortex. J. Neurochem. 81, 765–779.
Ramilo, C. A., Zafaralla, G. C., Nadasdi, L., Hammerland, L. G., Yoshikami, D., Gray, W. R., Kristipati, R., Ramachandran, J., Miljanich, G., Olivera, B. M., and Cruz, L. J. (1992) Novel α- and ω-conotoxins from Conus striatus venom. Biochemistry 31, 9919–9926.
Ramsden, M., Henderson, Z., and Pearson, H. A. (2002) Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid β protein (1-40) is dependent on solubility status. Brain Res. 956, 254–261.
Ridgeway, B., Wallace, M., and Gerayli, A. (2000) Ziconotide for the treatment of severe spasticity after spinal cord injury. Pain 85, 287–289.
Rigby, A. C., Lucas-Meunier, E., Kalume, D. E., Czerwiec, E., Hambe, B., Dahlqvist, I., Fossier, P., Baux, G., Roepstorff, P., Baleja, J. D., Furie, B. C., Furie, B., and Stenflo J. (1999) A conotoxin from Conus textile with unusual posttranslational modifications reduces presynaptic Ca2+ influx. Proc. Natl. Acad. Sci. U S A 96, 5758–5763.
Rine
Robichaud, L. J., Wurster, S., and Boxer, P. A. (1994) The voltage-sensitive Ca2+ channel (VSCC) antagonists ω-Aga-IVA and ω-CTX-MVIIC inhibit spontaneous epileptiform discharges in the rat cortical wedge. Brain Res. 643, 352–356.
Röckel, D., Korn, W., and Kohn, A. J. (1995) Manual of the living Conidae. Vol. 1. Indo-Pacific region. Wiesbaden: Verlag Christa Hemmen, Germany.
Rodriguez-Puertas, R., Pascual, J., Vilaro, T., and Pazos, A. (1997) Autoradiographic distribution of M1, M2, M3, and M4 muscarinic receptor subtypes in Alzheimer's disease. Synapse 26, 341–350.
Rogers, J. P., Luginbuhl, P., Shen, G. S., McCabe, R. T., Stevens, R. C., and Wemmer, D. E. (1999) NMR solution structure of α-conotoxin ImI and comparison to other conotoxins specific for neuronal nicotinic acetylcholine receptors. Biochemistry 38, 3874–3882.
Rosenquist, G. L., and Nicholas, H. B. Jr. (1993) Analysis of sequence requirements for protein tyrosine sulfation. Protein Sci. 2, 215–222.
Runnegar, B., and Pojeta, J. (1985) Origin and diversification of the mollusca. In The Mollusca, Vol. 10: Evolution. Edited by Trueman, E. R., Clarke, M. R., and Orlando, F. L.: Academic Press, 1–57.
Safo, P., Rosenbaum, T., Shcherbatko, A., Choi, D. Y., Han, E., Toledo-Aral, J. J., Olivera, B. M., Brehm, P., and Mandel, G. (2000) Distinction among neuronal subtypes of voltage-activated sodium channels by μ-conotoxin PIIIA. J. Neurosci. 20, 76–80.
Salmon, S. E., Lam, K. S., Lebl, M., Kandola, A., Khattri, P. S., Wade, S., Patek, M., Kocis, P., Krchnak, V., Thorpe, D., and Felder, S. (1993) Proc. Natl. Acad. Sci. U S A 90, 11708–11712.
Sandall, D. W., Satkunanathan, N., Keays, D. A., Polidano, M. A., Liping, X., Pham, V., Down, J. G., Khalil, Z., Livett, B. G., and Gayler, K. R. (2003) A novel α-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42, 6904–6911.
Sangameswaran, L., Delgado, S. G., Fish, L. M., Koch, B. D., Jakeman, L. B., Stewart, G. R., Sze, P., Hunter, J. C., Eglen, R. M., and Herman, R. C. (1996) Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J. Biol. Chem. 271, 5953–5956.
Sato, S., Nakamura, H., Ohizumi, Y., Kobayashi, J., and Hirata, Y. (1983) The amino acid sequences of homologous hydroxyproline-containing myotoxins from the marine snail Conus geographus venom. FEBS Lett. 155, 277–280.
Savarin, P., Guenneugues, M., Gilquin, B., Lamthanh, H., Gasparini, S., Zinn-Justin, S., and Menez, A. (1998) Three-dimensional structure of κ-conotoxin PVIIA, a novel potassium channel-blocking toxin from cone snails. Biochemistry 37, 5407–5416.
Scanlon, M. J., Naranjo, D., Thomas, L., Alewood, P. F., Lewis, R. J., and Craik, D. J. (1997) Solution structure and proposed binding mechanism of a novel potassium channel toxin κ-conotoxin PVIIA. Structure 15, 1585–1597.
Schmidt, J. J., and Weinstein, S. A. (1995) Structure-function studies of waglerin I, a lethal peptide from the venom of Wagler's pit viper, Trimeresurus wagleri. Toxicon 33, 1043–1049.
Schnölzer, M., Alewood, P., Jones, A., Alewood, D., and Kent, S. B. H. (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int. J. Pept. Protein Res. 40, 180–193.
Scriabine, A. (1999) Advances in Ion Channel Research, San Francisco, March 14–17, 1999. CNS Drug Rev. 5, 177–184.
Sgard, F., Charpantier, E., Bertrand, S., Walker, N., Caput, D., Graham, D., Bertrand, D., and Besnard, F. (2002) A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit. Mol. Pharmacol. 61, 150–159.
Sharpe, I. A., Gehrmann, J., Loughnan, M. L., Thomas, L., Adams, D. A., Atkins, A., Palant, E., Craik, D. J., Adams, D. J., Alewood, P. F., and Lewis, R. J. (2001) Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nat Neurosci. 4, 902–907.
Shen, G. S., Layer, R. T., and McCabe, R. T. (2000) Conopeptides: from deadly venoms to novel therapeutics. Drug Discov. Today 5, 98–106.
Sher, E., Gotti, C., Canal, N., Scoppetta, C., Piccolo, G., Evoli, A., and Clementi, F. (1989) Specificity of calcium channel autoantibodies in Lambert-Eaton myasthenic syndrome. Lancet 2, 640–643.
Shimek, R. L. and Kohn, A. J. (1981) Functional morphology and evolution of the toxoglossan radula. Malacologia 20, 423–438.
Shon, K.-J., Hasson, A., Spira, M. E., Cruz, L. J., Gray, W. R., and Olivera, B. M. (1994)
δ-Conotoxin GmVIA, a Novel Peptide from the Venom of Conus gloriamaris. Biochemistry 33, 11420–11425.
Shon, K.-J., Grilley, M. M., Marsh, M., Yoshikami, D., Hall, A. R., Kurz, B., Gray, W. R., Imperial, J. S., Hillyard, D. R., and Olivera, B. M. (1995) Purification, characterization, synthesis, and cloning of the lockjaw peptide from Conus purpurascens venom. Biochemistry 34, 4913–4918.
Shon, K.-J., Olivera, B. M., Watkins, M., Jacobsen, R. B., Gray, W. R., Floresca, C. Z., Cruz, L. J., Hillyard, D. R., Brink, A., Terlau, H., and Yoshikami, D. (1998a) μ-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. J. Neurosci. 18, 4473–4481.
Shon, K.-J., Stocker, M., Terlau, H., Stuhmer, W., Jacobsen, R., Walker, C., Grilley, M., Watkins, M., Hillyard, D. R., Gray, W. R., and Olivera, B. M. (1998b) κ-Conotoxin PVIIA is a peptide inhibiting the Shaker K+ channel. J. Biol. Chem. 273, 33–38.
Sgard, F., Charpantier, E., Bertrand, S., Walker, N., Caput, D., Graham, D., Bertrand, D., and Besnard, F. (2002) A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit. Mol. Pharmacol. 61, 150–159.
Smith M. T., Cabot P. J., Ross F. B., Robertson A. D., and Lewis R. J. (2002) The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 96, 119–127.
Stenflo, J. (1999) Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors. Crit. Rev. Eukaryot. Gene Expr. 9, 59–88.
Smyth, J., Boneterre, M. E., Schellens, J., Calvert, H., Greim, G., Wanders, J., and Hanauske, A. (2001) Activity of the dolastatin analogue, LU103793, in malignant melanoma. Ann. Oncol. 12, 509–511.
Terlau, H., Shon, K.-J., Grilley, M., Stocker, M., Stühmer, W., and Olivera, B. M. (1996a) Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 381, 148–151.
Terlau, H., Stocker, M., Shon, K.-J., McIntosh, J. M., and Olivera, B. M. (1996b) μO-Conotoxin MrVIA inhibits mammalian sodium channels, but not through Site I. J. Neurophysiol. 76, 1423–1429.
Tikhonov, D. B., and Zhorov, B. S. (2004) Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands. Biophys. J. [Epub ahead of print].
Tornoe, C., Bai, D., Holden-Dye, L., Abramson, S. N., and Sattelle, D. B. (1995) Actions of neurotoxins (bungarotoxins, neosurugatoxin and lophotoxins) on insect and nematode nicotinic acetylcholine receptors. Toxicon 33, 411–424.
Tsetlin, V. I., Pluzhnikov, K. A., Karelin, A. A., Karlsson, E., and Ivanov, V. T. (1984) Relative localization of the bound acetylcholine receptor subunits and neurotoxin. Bioorg. Khim. 10, 176–187.
Tsetlin, V. I., and Hucho, F. (2004) Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications. FEBS Lett. 557, 9–13.
Tytgat, J., Chandy, K. G., Garcia, M. L., Gutman, G. A., Martin-Eauclaire, M. F., van der Walt, J. J., and Possani, L. D. (1999) A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. Trends Pharmacol. Sci. 20, 444–447.
Utkin, Y. N., Kukhtina, VV., Kryukova, E. V., Chiodini, F., Bertrand, D., Methfessel, C., and Tsetlin, V. I. (2001) "Weak toxin" from Naja kaouthia is a nontoxic antagonist of α7 and muscle-type nicotinic acetylcholine receptors. J. Biol. Chem. 276, 15810–15815.
Vaishampayan, U., Glode, M., Du, W., Kraft, A., Hudes, G., Wright, J., and Hussain, M. (2000) Phase II study of dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma. Clin. Cancer Res. 6, 4205–4208.
Valentino, K., Newcomb, R., Gadbois, T., Singh, T., Bowersox, S., Bitner, S., Justice, A., Yamashiro, D., Hoffman, B. B., Ciaranello, R., Miljanich, G., and Ramachandran, J. (1993) A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc. Natl. Acad. Sci. U S A 90, 7894–7897.
Van Wagoner, R. M., Jacobsen, R. B., Olivera, B. M., and Ireland, C. M. (2003) Characterization and three-dimensional structure determination of ψ-conotoxin PIIIF, a novel noncompetitive antagonist of nicotinic acetylcholine receptors. Biochemistry 42, 6353–6362.
Varterasian, M. L., Pemberton, P. A., Hulburd, K., Rodriguez, D. H., Murgo, A., and Al-Katib, A. M. (2001) Phase II study of bryostatin 1 in patients with relapsed multiple myeloma. Invest. New Drugs 19, 245–247.
Velez-Carrasco, W., Valdes, S., Agresar, L., Lettich, A., Guerra, A. Y., and Hann, R. M. (2004) α-conotoxin residues that interact at close range with γ-tyrosine-111 and mutant δ-tyrosine-113 on the Torpedo nicotinic acetylcholine receptor. Biochemistry 43, 12700–12708.
Vigh, J., and Lasater, E. M. (2004) L-type calcium channels mediate transmitter release in isolated, wide-field retinal amacrine cells. Vis. Neurosci. 21, 129–134.
Villalona-Calero, M. A., Eckhardt, S. G., Weiss, G., Hidalgo, M., Beijnen, J. H., van Kesteren, C., Rosing, H., Campbell, E., Kraynak, M., Lopez-Lazaro, L., Guzman, C., Von Hoff, D. D., Jimeno, J., and Rowinsky, E. K. (2002) A phase I and pharmacokinetic study of ecteinascidin-743 on a daily x 5 schedule in patients with solid malignancies. Clin. Cancer. Res. 8, 75–85.
Voltz, R., Carpentier, A. F., Rosenfeld, M. R., Posner, J. B., and Dalmau, J. (1999) P/Q-type voltage-gated calcium channel antibodies in paraneoplastic disorders of the central nervous system. Muscle Nerve 22, 119–122.
Wagstaff, J. D., Layer, R. T., Craig, A. G., Olivera, B. M., and McCabe, R. T. (1999) Contulakins: Potent, broad-spectrum analgesic conopeptides. In: Proceedings of the 29th Annual Meeting of the Society for Neuroscience, October 23–28, 25, 1944.
Walker, C. S., Steel, D., Jacobsen, R. B., Lirazan, M. B., Cruz, L. J., Hooper, D., Shetty, R., DelaCruz, R. C., Nielsen, J. S., Zhou, L. M., Bandyopadhyay, P., Craig, A. G., and Olivera, B. M. (1999) The T-superfamily of conotoxins. J. Biol. Chem. 274, 30664–30671.
Walker, C. S., Shetty, R. P., Clark, K., Kazuko, S. G., Letsou, A., Olivera, B. M., and Bandyopadhyay, P. K. (2001) On a potential global role for vitamin K-dependent γ-carboxylation in animal systems. J. Biol. Chem. 276, 7769–7774.
Wang, Y.-X., Bezprozvannaya, S., Bowersox, S. S., Nadasdi, L., Miljanich, G., Mezo, G., Silva, D., Tarczy-Hornoch, K., and Luther, R. R. (1999) Peripheral versus central potencies of N-type voltage-sensitive calci
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.3.154
論文開放下載的時間是 校外不公開

Your IP address is 3.15.3.154
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code