Responsive image
博碩士論文 etd-1128111-165718 詳細資訊
Title page for etd-1128111-165718
論文名稱
Title
利用分子束磊晶法成長摻鎂氧化鋅磊晶之研究
Epitaxial Growth of Mg-doped ZnO by Molecular Beam Epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-10-26
繳交日期
Date of Submission
2011-11-28
關鍵字
Keywords
退火、鋁酸鋰、氧化鋁、摻鎂氧化鋅、分子束磊晶
annealing, LAO, Al2O3, ZnMgO, MBE
統計
Statistics
本論文已被瀏覽 5703 次,被下載 9
The thesis/dissertation has been browsed 5703 times, has been downloaded 9 times.
中文摘要
本研究以分子束磊晶法在氧化鋁與鋁酸鋰基板成長不同鎂含量的摻鎂氧化鋅。藉由表面形貌、結晶性與光電特性分析,了解摻鎂氧化鋅的成長機制。並且探討退火處理對磊晶薄膜性質的影響。
成長溫度為400 oC、固定鋅流量1×10-7 mbar時,在氧化鋁基板上成長出的Zn1-xMgxO磊晶薄膜,當鎂流量由4×10-10增加至6.2×10-9 mbar時,其鎂含量(x)由<0.01增至0.17。掃描式電子顯微鏡觀察顯示磊晶表面平坦,與基板間有以下的方位關係:(0001)Zn1-xMgxO∥(0001)Al2O3和[101 ‾0] Zn1-xMgxO∥[112 ‾0] Al2O3。rocking curve量測顯示(0002)繞射峰的半高寬值介於3.83 o至4.81 o。光致螢光光譜分析顯示近能帶發光峰能量隨鎂含量升高而增加,半高寬介於0.16至0.21 eV。在2.20至2.24 eV的致深能階發光峰強度隨著鎂含量增加而增強。
成長溫度同為400 oC,在高鋅流量(5×10-7 mbar)與在氧化鋁和鋁酸鋰基板成長的Zn1-xMgxO磊晶薄膜,當鎂流量由2×10-9增至9.6×10-9 mbar時,鎂含量(x)由0.01增至0.04。薄膜表面呈波浪狀,粗糙度相當高。rocking curve量測顯示(0002)繞射峰的半高寬,在氧化鋁基板成長的磊晶為4.43 o與5.71 o;鋁酸鋰基板成長的磊晶則是介於6.88 o至8.18 o。光致螢光光譜分析顯示近能帶發光峰強度比低鋅流量試片高,但半高寬則偏大,介於0.22至0.31 eV。而致深能階發光峰則較不顯著。
在氧氣其半高寬和氮氣下於600 oC退火後的試片,其繞射峰的半高寬均略微下降。但顯微光致螢光光譜分析的結果顯示:鎂含量低於0.05的試片在氧氣下退火後的近能隙發光峰強度上升50至200 %不等,鎂含量為0.16的試片,其近能隙發光峰強度不變,但是深層能階的發光峰降低約50 %。此外,在氮氣下退火後,大部分試片的近能隙發光峰強度均不變。高鎂含量(x>0.6)的試片在氧氣下退火後,不但會出現六方最密堆積結構的(0002)繞射峰,且近能隙發光峰強度大幅度增強,其能階均在3.3-3.4 eV左右,顯示試片可能出現相分離。
Abstract
The present study aims at studying the surface morphology, crystallinity and optical emission property of Mg added ZnO grown by molecular beam epitaxy. Zn1-xMgxO epitaxial films were first grown at a fixed Zn flux of 1×10-7 mbar and Mg flux of 4×10-10 to 6.2×10-9 mbar on sapphire substrates at 400 oC. The corresponding Mg content (x) is in a range of <0.01 to 0.17. Scanning electron microscopy observations indicated that the surface of the films are flat. The orientation relationship between the film and the substrate is: (0001)Zn1-xMgxO∥(0001)Al2O3和[101 ‾0] Zn1-xMgxO∥[112 ‾0] Al2O3. The full width at half maximum (FWHM) of the (0002) reflection in rocking curve measurement is in a range of 3.83 o to 4.81 o. Photoluminescence results showed that the intensities of both the near band-gap emission and the deep level emission increases with increasing Mg content. The former has FWHM values of 0.16-0.21 eV.
While the epitaxial films were grown at a high Zn flux of 5×10-7 mbar and Mg flux of 2×10-9 to 9.6×10-9 mbar on sapphire and LiAlO2 substrates at 400 oC, the film surface are at high roughness. The FWHM of (0002) rocking curve is 4.43 o to 5.71 o for films grown on sapphire and is relatively larger of 6.88 o to 8.18 o for films grown on LiAlO2, respectively. These films possess a stronger near band-gap emission and a lower deep level emission as compared to the films grown at a low Zn flux.
After annealed at 600 oC in oxygen or nitrogen, the FWHMs of the (0002) rocking curve for most of the epilayers decreased slightly. The photoluminescence results were rather distinct. For samples having low Mg content (x<0.05), the intensity of the near band-gap emission increases 50-200 % after annealed in oxygen. The intensity of the near band-gap emission did not change but that of the deep level emission decreases ~50 % for the film having x=0.16 after annealing in oxygen. The emission characteristics basically do not change after annealed in nitrogen.
目次 Table of Contents
摘要 I
Abstract III
總目錄 V
圖目錄 VII
表目錄 XIII
第一章 緒論 1
第二章 文獻回顧與理論基礎 2
2.1分子束磊晶法(Molecular beam epitaxy, MBE) 2
2.1.1分子束磊晶法原理 2
2.1.2分子束磊晶法系統 3
2.1.3分子束磊晶法參數 4
2.2磊晶成長 5
2.2.1異質成核(Heterogeneous nucleation) 5
2.2.2層狀成長(Frank-van der Merwe mode) 5
2.2.3島狀成長(Volmer-Weber mode) 7
2.2.4混合成長(Stranski-Krastanov mode) 7
2.2.5磊晶薄膜與基板之晶格匹配 7
2.2.5.1氧化鋁(Al2O3)基板 8
2.2.5.2鋁酸鋰(LiAlO2, LAO)基板 8
2.3磊晶成長氧化鋅 8
2.4磊晶成長非極性氧化鋅 12
2.5磊晶成長摻鎂氧化鋅 17
第三章 實驗方法 29
3.1基板準備 29
3.2磊晶成長步驟與參數 29
3.3磊晶薄膜退火步驟與參數 30
3.4磊晶薄膜分析 34
3.4.1反射式高能量電子繞射儀觀察與分析 34
3.4.2 X光繞射分析 34
3.4.3 X光光電子能譜分析 34
3.4.4掃描式電子顯微鏡觀察與分析 35
3.4.5顯微光致螢光光譜儀分析 35
第四章 實驗結果 36
4.1在氧化鋁與鋁酸鋰基板成長摻鎂氧化鋅 36
4.1.1 X光電子能譜分析 36
4.1.2掃描式電子顯微鏡觀察與分析 41
4.1.3 X光繞射分析 48
4.1.4顯微光致螢光光譜分析 59
4.1.5反射式高能量電子繞射觀察與分析 66
4.2退火之氧化鋅與摻鎂氧化鋅 69
4.2.1掃描式電子顯微鏡觀察與分析 69
4.2.2 X光繞射分析 77
4.2.3顯微光致螢光光譜分析 82
第五章 討論 87
5.1在氧化鋁與鋁酸鋰基板成長摻鎂氧化鋅 87
5.2氧化鋅與摻鎂氧化鋅之退火 89
第六章 結論 93
第七章 參考文獻 94
參考文獻 References
1.Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys., 84(1998)3912.
2.H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, J. Appl. Phys., 91(2002)1993.
3.M. M. C. Chou, L. Chang, H. Y. Chung, T. H. Huang, J. J. Wu, C. W. Chen, J. Cryst. Growth, 308(2007)412.
4.D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Appl. Phys. Lett., 70(1997)2230.
5.S. Y. Chu, T. Y. Chen, W. Water, J. Cryst. Growth, 257(2003)280.
6.Z. Vashaei, T. Minegishi, T. Yao, J. Cryst. Growth, 306(2007)269.
7.T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett., 76(2000)3549.
8.S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, J. Vac. Sci. Technol. B, 22(2004)932.
9.C. Klingshirn, Phys. Stat. Sol. (b), 244 No.9(2007)3027.
10.C. Thiandoume, A. Lusson, P. Galtier, V. Sallet, J. Cryst. Growth, 312(2010)1529.
11.A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas, O. W. Holland, Appl. Phys. Lett., 75(1999)3327.
12.M.A.Herman and H.Sitter ,“Molecular Beam Epitaxy Fundamentals and Current Status”, Second, Revised and Updated Edition,(1996).
13.J. E. Ayers, “Heteroepitaxy of semiconductor”, CRC press (2006).
14.羅吉宗譯,“薄膜科技與應用(修訂版)”,全華科技圖書股份有限公司出版,(2005)。
15.K.N. Tu, J.W. Mayer, and L.C. Feldman, “Electronic Thin Film Science”,Macmillan(1992).
16.A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, A. Waag, Superlattices and Microstructures, 38(2005)265.
17.J. S. Park, S. K. Hong, T. Minegishi, I. H. Im, S. H. Park, T. Hanada, J. H. Chang, Appl. Surf. Sci., 254(2008)7786.
18.Y. Chen, S. K. Hong, H. J. Ko, V. Kirshnner, H. Wenisch, T. Yao, K. Inaba, Y. Segawa, Appl. Phys. Lett., 78(2001)3352.
19.A. Sasaki, W. Hara, A. Matsuda, N. Tateda, K. Saito, T. Yodo, M. Yoshimoto, Appl. Phys. Lett., 86(2005)231911.
20.K. Ogata, K. Sakurai, SZ. Fujita, Sg. Fujita, K. Matsushige, J. Cryst. Growth, 214(2000)312.
21.M. J. H. Henseler, W. C. T. Lee, P. Miller, S. M. Durbin, R. J. Reeves, J. Cryst. Growth, 287(2006)48.
22.S. P. Wang, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, X. W. Fan, Appl. Surf. Sci., 255(2009)4913.
23.J. Zou, S. Zhou, C. Xia, Y. Hang, J. Xu, S. Gu, R. Zhang, J. Cryst. Growth, 280(2005)185.
24.J. Zou, S. Zhou, C. Xia, X. Zhang, F. Su, G. Peng, X. Li, J. Xu, Thin Solid Films,496(2006)205.
25.C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, H. Shen, J. Appl. Phys., 85(1999)2595.

26.Y. Zhang, G. Du, H. Zhu, C. Hou, K. Huang, S. Yang, Opti. Mater., 27(2004)399.
27.T. Moriyama, S. Fujita, Phys. Stat. Sol. (c), 4(2006)726.
28.L. Chang, M. M. C. Chou, T. H. Hwang, C. W. Chen, Phys. Status Solidi A, 206(2009)215.
29.H. Lin, S. Zhou, T. Huang, H. Teng, X. Liu, S. Gu, S. Zhu, Z. Xie, P. Han, R. Zhang, J. Alloys Compd., 467(2009)L8.
30.H. Lin, S. Zhou, J. Zhou, X. Liu, S. Gu, S. Zhu, Z. Zie, P. Han, R. Zhang, Thin Solid Films, 516(2008)6079.
31.H. Lin, S. Zhou, H. Teng, X. Hou, T. Jia, S. Gu, S. Zhu, Z. Xie, P. Han, R. Zhang, R. Zhang, K. Xu, Appl. Surf. Sci., 255(2009)9146.
32.H. Lin, S. Zhou, H. Teng, J. Wang, J. Cryst. Growth, 311(2009)456.
33.S. Zhou, J. Zhou, T. Huang, S. Li, J. Zou, J. Wang, X. Li, R. Zhang, J. Cryst. Growth, 303(2007)510.
34.A. Ohtomo, M. Kawasaki, T. Koida, K.Masubuchi, H. Koinuma, Appl. Phys. Lett., 72(1998)2466.
35.W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, Appl. Phys. Lett., 82(2003)3424.
36.F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, Y. S. Yu, J. Appl. Phys., 95(2004)4772.
37.W. I. Park, G. C. Yi, H. M. Jang, Appl. Phys. Lett., 79(2001)2022.
38.S. Muthukumar, J. Zhong, Y. Chen, Y. Lu, T. Siegrist, Appl. Phys. Lett., 82(2003)742.
39.W. Liu, S. Gu, S. Zhu, J. Ye, F. Qin, S. Liu, X. Zhou, L. Hu, R. Zhang, Y. Shi, Y. Zheng, J. Cryst. Growth, 277(2005)416.
40.C. H. Ku, H. H. Chiang, J. J. Wu, Chem. Phys. Lett., 404(2005)132.
41.S. Ito, M. Sumiya, M. Mieno, H. Koinuma, Materials Science and Engineering B, 173(2010)11.
42.A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett., 75(1999)4088.
43.T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, M. Eickhoff, J. Appl. Phys., 105(2009)023505.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.45.137
論文開放下載的時間是 校外不公開

Your IP address is 3.144.45.137
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code