Responsive image
博碩士論文 etd-1128117-090733 詳細資訊
Title page for etd-1128117-090733
論文名稱
Title
以生物濾床工法改善海水養殖水體環境之研究
A Study of Water Quality Improvement in Seawater Aquaculture Using A Biofilter System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-12-26
繳交日期
Date of Submission
2017-12-28
關鍵字
Keywords
礦化作用、氮負荷、脫硝作用、生物濾床、營養鹽、養殖水體
Volatilization, Nitrogen load, Nenitration, Biofilter system, Nutrient, Aquaculture water quality
統計
Statistics
本論文已被瀏覽 5663 次,被下載 621
The thesis/dissertation has been browsed 5663 times, has been downloaded 621 times.
中文摘要
本研究主要利用生物濾床處理養殖廢水,並探討水體營養鹽在通過濾床時所產生的轉變,此外同時觀察實驗過程中養殖水體因子的變化,分析水體中各因子的關係與交互作用。本研究發現水力停留時間的設定影響生物濾床成效甚鉅,因此針對水力停留時間設計試驗,觀察整體處理效果,找出較符合實際需求的操作設定,並將試驗結果歸納與統整後推算出實際應用時所需之生物濾床規模與成本,供後續研究、實務上之參考。
本研究中顯示投入飼料會使水體中的總氮不斷增加,氮經由生物降解後,經藻類吸收、同化後部分會以有機物(藻類)的形式存在,其中養殖廢水中有機氮與無機氮的比例約為4:1。本研究設計之生物濾床經測試後,發現在溶氧較高的環境下仍有脫硝作用的發生,也確定可有效削減硝酸鹽。本研究經推算後可知以零換水的目標下,設定水力停留時間在八小時下能移除水體系統中35.5%的總氮,生物濾床體積約占整體水體體積5%,每日可處理水體總體積之20%。此外本研究之生物濾床能有效行礦化作用分解有機氮,若能在後續單元加入曝氣、好氧單元,更能有效改善養殖水體。
Abstract
The study mainly concentrates on dealing with fish farming wastewater through biofilter system and discusses the transformation when nutrients pass the biofilter system. Meanwhile, the interaction was analyzed and the variation of factors were observed during experiments. The study discovers the time interval of hydraulic retension time influences biofilter system result a lot. Hence, the tests was designed based on the time interval of hydraulic retension time and observe general results for finding which meets operation setting of the practical demand. Furthermore, the results are collected and summarized to calculate the scales and costs of biofilter system when used in practical application, and also be the references of research and practical use afterwards.
In the study it discovers the total of nitrogen keep raising if the feed is put into water,and also discovers it will exists as organic substance, which means algae, after degradation and absorption. The experiment results show the proportion of organic nitrogen to inorganic nitrogen is four to one. The biofilter system designed in the study discovers denitration still happens under high-dissolving oxygen condition and determines the elimination of nitrate effectively. After calculation implemented in this study, 35.5 % of the total nitrogen amount were removed from the water system if the time interval was under 8 hours. Without changing the water, biofilter system can treat 20 % of the general water volume per day, and it’s volume covers 5 % of total water amount.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
圖目錄 viii
表目錄 x
第一章、緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究流程 4
第二章、文獻回顧 5
2.1 養殖水體特性 5
2.1.1 水溫(Water Temperture, ℃) 5
2.1.2 水中溶氧(Dissolved Oxygen , DO) 5
2.1.3 鹽度(Salinity) 6
2.1.4 懸浮固體物(Suspended Solids , SS) 6
2.1.5 酸鹼值 7
2.1.6 磷酸鹽(Phosphate, P) 8
2.1.7 有機氮(Organic Nitrogen, Org-N) 8
2.1.8 氨氮(Total of Ammonia Nitrogen , TAN) 9
2.1.9 亞硝酸鹽(Nitrite , NO2-) 9
2.1.10 硝酸鹽(Nitrate , NO3-) 10
2.1.11 葉綠素甲(Chlorophyll a , Chl-a) 10
2.2 生物處理 11
2.2.1 生物處理原理 11
2.2.2 懸浮式處理方式 13
2.2.3 附著式處理方式 16
2.3 生物濾床機制 19
2.3.1 污染物的種類與去除機制 19
2.3.2 養殖水體之氮循環 20
2.3.3 氮轉換機制 21
2.4 生物濾床參數 23
2.4.1 體積流量 23
2.4.2 水力停留時間 23
2.4.3 有機負荷 24
2.4.4 氮負荷 24
2.4.5 水力負荷 25
2.4.6 濾材 25
第三章、研究方法 27
3.1 水質檢測方法 27
3.2 率定實驗 28
3.2.1 率定實驗流程 28
3.2.2 率定實驗槽體細節設定 28
3.2.3 率定實驗操作參數設定 29
3.3 模槽實驗 31
3.3.1 模槽實驗流程 31
3.3.2 模槽實驗槽體細節設定 32
3.3.3 模槽實驗操作參數設定 34
3.3.4 統計分析 35
第四章、結果與討論 36
4 .1 魚塭水體性質 36
4.1.1 率定實驗 36
4.1.2 模槽實驗 42
4.2 魚塭水體因子相關性 48
4.3 生物濾床處理成果 50
4.3.1 率定實驗 50
4.3.2 模槽實驗 54
4.4 生物濾床水體因子相關性 80
4.5 氮通量計算 84
4.6 結果分析 86
第五章、實際應用 87
5.1 水體污染源 87
5.2 污染量計算 88
5.2.1 文獻案例一:美國維吉尼亞州 88
5.2.2 文獻案例二:以色列 89
5.2.3 文獻案例三:沙烏地阿拉伯 89
5.3 實際案例 90
5.3.1魚塭背景資料 90
5.3.2 魚塭污染量計算 90
5.3.3 生物濾床處理量計算與尺度 91
第六章、 結論與建議 93
6.1 結論 93
6.2 建議 94
參考文獻 95
附錄 101
參考文獻 References
參考文獻
Alexander, K. A., Potts, T. P., Freeman, S., Israel, D., Johansen, J., Kletou, D., Meland, M., Pecorino, D., Rebours, C., Shorten, M., & Angel, D. L. (2015). The implications of aquaculture policy and regulation for the development of integrated multi-trophic aquaculture in Europe. Aquaculture, 443, 16-23. doi:10.1016/j.aquaculture.2015.03.005
Almeida, A., Carvalho, F., Imaginário, M. J., Castanheira, I., Prazeres, A. R., & Ribeiro, C. (2017). Nitrate removal in vertical flow constructed wetland planted with Vetiveria zizanioides: Effect of hydraulic load. Ecological Engineering, 99, 535-542. doi:10.1016/j.ecoleng.2016.11.069
Araneda, M., Pavez, J., Luza, B., & Jeison, D. (2017). Use of activated sludge biomass as an agent for advanced primary separation. J Environ Manage, 192, 156-162. doi:10.1016/j.jenvman.2017.01.030
Avnimelech, Y. (1999). Carbon / nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227-235.
Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4), 140-147. doi:10.1016/j.aquaculture.2006.11.025
B.Liao, D. P., & D.Mayo, R. (1974). Intensified fish culture combining water reconditioning with pollution abatement. Aquaculture, 3(1), 61-85.
Babatunde, A. O., Zhao, Y. Q., Yang, Y., & Kearney, P. (2008). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, 136(2-3), 108-115. doi:10.1016/j.cej.2007.03.013
Bassin, J. P., Dias, I. N., Cao, S. M. S., Senra, E., Laranjeira, Y., & Dezotti, M. (2016). Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: Assessing the activity of suspended and attached biomass fractions. Process Safety and Environmental Protection, 100, 131-141. doi:10.1016/j.psep.2016.01.007
Becke, C., Steinhagen, D., Schumann, M., & Brinker, A. (2016). Physiological consequences for rainbow trout ( Oncorhynchus mykiss ) of short-term exposure to increased suspended solid load. Aquacultural Engineering. doi:10.1016/j.aquaeng.2016.11.001
Bergheim, A., Drengstig, A., Ulgenes, Y., & Fivelstad, S. (2009). Production of Atlantic salmon smolts in Europe—Current characteristics and future trends. Aquacultural Engineering, 41(2), 46-52. doi:10.1016/j.aquaeng.2009.04.004
Boyd, C. E. (1998). Water Quality for Pond Aquaculture.
Brix, H. (1993). Wastewater Treatment in Constructed WetlandsSystem Design Removal Process and Treatment Performance. CRC Press.
Brown, M. N. (2013). Microbial resource management in indoor recirculating shrimp aquaculture systems University of Michigan.
Cabrera, G., Ramírez, M., & Cantero, D. (2011). Biofilters. 303-318. doi:10.1016/b978-0-08-088504-9.00408-6
Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2012). Immediate water quality assessment in shrimp culture using fuzzy inference systems. Expert Systems with Applications, 39(12), 10571-10582. doi:10.1016/j.eswa.2012.02.141
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270(1-4), 1-14. doi:10.1016/j.aquaculture.2007.05.006
Cui, B., Liu, X., Yang, Q., Li, J., Zhou, X., & Peng, Y. (2017). Achieving partial denitrification through control of biofilm structure during biofilm growth in denitrifying biofilter. Bioresour Technol, 238, 223-231. doi:10.1016/j.biortech.2017.04.034
Drizo, A., Frost, C. A., Grace, J., & Smith, K. A. (1999). Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Research, 33(17), 3595-3602.
Eding, E. H., Kamstra, A., Verreth, J. A. J., Huisman, E. A., & Klapwijk, A. (2006). Design and operation of nitrifying trickling filters in recirculating aquaculture: A review. Aquacultural Engineering, 34(3), 234-260. doi:10.1016/j.aquaeng.2005.09.007
Elalouf, H., Kaspi, M., Elalouf, A., & Halachmi, I. (2017). Optimal operation policy for a sustainable recirculation aquaculture system for ornamental fish: simulation and response surface methodology. Computers & Operations Research. doi:10.1016/j.cor.2017.05.002
Emparanza, E. J. M. (2009). Problems affecting nitrification in commercial RAS with fixed-bed biofilters for salmonids in Chile. Aquacultural Engineering, 41(2), 91-96. doi:10.1016/j.aquaeng.2009.06.010
Endut, A., Jusoh, A., Ali, N., Wan Nik, W. B., & Hassan, A. (2010). A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour Technol, 101(5), 1511-1517. doi:10.1016/j.biortech.2009.09.040
FAO. (2013). GlobalAquacultureProductionStatistics2011.
Ferreira, N. C., Bonetti, C., & Seiffert, W. Q. (2011). Hydrological and Water Quality Indices as management tools in marine shrimp culture. Aquaculture, 318(3-4), 425-433. doi:10.1016/j.aquaculture.2011.05.045
Fornshell, G. (2000). WaterQuality-keepingyourfishalive. Retrieved from
Halachmi, I. (2006). Systems engineering for ornamental fish production in a recirculating aquaculture system. Aquaculture, 259(1-4), 300-314. doi:10.1016/j.aquaculture.2006.05.046
Hargreaves, J. A. (1998). Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166(3-4), 181-212.
Hassard, F., Biddle, J., Cartmell, E., Jefferson, B., Tyrrel, S., & Stephenson, T. (2015). Rotating biological contactors for wastewater treatment – A review. Process Safety and Environmental Protection, 94, 285-306. doi:10.1016/j.psep.2014.07.003
Herath, S. S., & Satoh, S. (2015). Environmental impact of phosphorus and nitrogen from aquaculture. 369-386. doi:10.1016/b978-0-08-100506-4.00015-5
Jørgensen, E. H., Haatuft, A., Puvanendran, V., & Mortensen, A. (2017). Effects of reduced water exchange rate and oxygen saturation on growth and stress indicators of juvenile lumpfish ( Cyclopterus lumpus L.) in aquaculture. Aquaculture, 474, 26-33. doi:10.1016/j.aquaculture.2017.03.019
Jungblut, J., Sievers, M., Vogelpohl, A., Bracio, B. R., & Möller, D. P. F. (1997). Dynamic simulation of wastewater treatment the process of nitrification. Simulation Practice and Theory, 5(7-8), Pages 689-700.
Knowles, R. (1982). Denitrification. Microbiol Rev., 46, 43-70.
Kristensen, T., Åtland, Å., Rosten, T., Urke, H. A., & Rosseland, B. O. (2009). Important influent-water quality parameters at freshwater production sites in two salmon producing countries. Aquacultural Engineering, 41(2), 53-59. doi:10.1016/j.aquaeng.2009.06.009
Losordo, T. M., & Hobbs, A. O. (2000). Using computer spreadsheets for water flow and biofilter sizing in recirculating aquaculture production systems. Aquacultural Engineering, 23(1-3), pages 95-102.
Martins, C. I. M., Eding, E. H., Verdegem, M. C. J., Heinsbroek, L. T. N., Schneider, O., Blancheton, J. P., d’Orbcastel, E. R., & Verreth, J. A. J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering, 43(3), 83-93. doi:10.1016/j.aquaeng.2010.09.002
Meinelt, T., Kroupova, H., Stüber, A., Rennert, B., Wienke, A., & Steinberg, C. E. W. (2010). Can dissolved aquatic humic substances reduce the toxicity of ammonia and nitrite in recirculating aquaculture systems? Aquaculture, 306(1-4), 378-383. doi:10.1016/j.aquaculture.2010.06.007
Meyer-Reil, L.-A., & Köster, M. (2000). Eutrophication of Marine Waters Effects on Benthic Microbial Communities. Marine Pollution Bulletin, 41(1-6), 255-263.
Milhazes-Cunha, H., & Otero, A. (2016). Valorisation of aquaculture effluents with microalgae: The Integrated Multi-Trophic Aquaculture concept. Algal Research. doi:10.1016/j.algal.2016.12.011
Moreno, B., Gomez, M. A., Ramos, A., Gonzalez-Lopez, J., & Hontoria, E. (2005). Influence of inocula over start up of a denitrifying submerged filter applied to nitrate contaminated groundwater treatment. J Hazard Mater, 127(1-3), 180-186. doi:10.1016/j.jhazmat.2005.07.002
Ozbay, G., Blank, G., & Thunjai, T. (2014). Impacts of Aquaculture on Habitats and Best Management Practices (BMPs). In M. P. H. Vergara & C. I. Perez-Rostro (Eds.), Sustainable Aquaculture Techniques (pp. Ch. 01). Rijeka: InTech.
Philips, S., Laanbroek, H. J., & Verstraete, W. (2002). Origin, causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and BioTechnology, 1(2), 115-141. doi:10.1023/a:1020892826575
Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine Pollution Bulletin, 45(1-12), 17-23.
Reddy, K. R., Patrick, W. H., & Broadbent, F. E. (1984). nitrogen transformations and loss in flooded soils and sediments. C R C Critical Reviews in Environmental Control, 13(4), 273-309.
Ren, N., Chen, Z., Wang, A., & Hu, D. (2005). Removal of organic pollutants and analysis of MLSS–COD removal relationship at different HRTs in a submerged membrane bioreactor. International Biodeterioration & Biodegradation, 55(4), 279-284. doi:10.1016/j.ibiod.2005.03.003
Resley, M. J., Webb, K. A., & Holt, G. J. (2006). Growth and survival of juvenile cobia, Rachycentron canadum, at different salinities in a recirculating aquaculture system. Aquaculture, 253(1-4), 398-407. doi:10.1016/j.aquaculture.2005.08.023
Sandu, S., & Hallerm, E. (2013). Biodegradation of Nitrogen in a Commercial Recirculating Aquaculture Facility. doi:10.5772/55841
Scholz, M. (2016). Rotating Biological Contactors. 87-89. doi:10.1016/b978-0-444-63607-2.00014-9
Siddiqui, A. B., & Al-Harbi, A. H. (1999). Nutrient budgets in tanks with different stocking densities of hybrid tilapia. Aquaculture, 170, 245-252.
Solovchenko, A., Verschoor, A. M., Jablonowski, N. D., & Nedbal, L. (2016). Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnol Adv, 34(5), 550-564. doi:10.1016/j.biotechadv.2016.01.002
Strock, J. S. (2008). Ammonification (S. E. J. Fath Ed. 1st ed.). S.E. JorgensenBrian Fath.
Thiex, N. J., Manson, H., Anderson, S., & Persson, J. A. (2002). Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid collaborative study. Journal of the Association of Official Agricultural Chemists, 85, 309-317.
van Rijn, J. (2013). Waste treatment in recirculating aquaculture systems. Aquacultural Engineering, 53, 49-56. doi:10.1016/j.aquaeng.2012.11.010
Waite, R., Beveridge, M., Brummett, R., Castine, S., Chaiyawannakarn, N., Kaushik, S., Mungkung, R., Nawapakpilai, S., & Phillips, M. (2014). Improving productivity and environmental performance of aquaculture. Creating a Sustainable Food Future: WorldFish, 2014.
Yang, L., Chou, L.-S., & Shieh, W. K. (2001). Biofilter treatment of aquaculture water for reuse applications. Water Research, 35(13), 3097-3108.
Yogev, U., Sowers, K. R., Mozes, N., & Gross, A. (2017). Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating aquaculture system. Aquaculture, 467, 118-126. doi:10.1016/j.aquaculture.2016.04.029
Zhao, W., Ting, Y. P., Chen, J. P., Xing, C. H., & Shi, S. Q. (2000). Advanced primary treatment of waste water using a bio-flocculation-adsorption sedimentation process. Acta Biotechnologica, 20(1), 53-64. doi:10.1002/abio.370200109
王意婷. (2012). 虱目魚. Retrieved from http://www.shs.edu.tw/works/essay/2012/11/2012111009373728.pdf
石濤. (2012). 環境微生物. 鼎茂圖書出版股份有限公司.
朱敬平. (2004). 污泥中間處理技術. Retrieved from
行政院農業委員會水產試驗所. (2012). 漁業問答. Retrieved from http://www.tfrin.gov.tw/ct.asp?xItem=265561&ctNode=1225&mp=1
行政院農業委員會漁業署. (2014). 鹹水養殖. Retrieved from http://www.fa.gov.tw/cht/ForumsGuest/content.aspx?id=20107695&chk=68de0e04-3513-482e-b33d-82b9559e03be
行政院環境保護署. (2010). 環境水質溶氧過飽和現象說明.
佐野和生. (1997). 循環水工程的關鍵技術. 水產出版社.
李圭白, 馬忠漢, & 張自杰. (1998). 水處理工程理論與應用上冊. 科技圖書股份有限公司.
杜金蓮, 王姿文, & 曾福生. (2016). 養殖魚塭溶氧與氣候變動之關係-以南部吳郭魚養殖池為例. 水試專訊(56), 35-38.
柯清水. (2010). 養殖池中藻類過度生長之控制. 養魚世界, 4, 35-40.
柯清水. (2016). 養魚先養水. 翠湖水草栽培研究所.
張晉, & 劉力. (2013). 水處理工程(下)污水. 鼎茂圖書出版股份有限公司.
許晉榮. (2013). 耐高鹽性真骨魚類的滲透壓調節機制. 水試專訊, 42, 32-36.
許素惠, 萬于甄, & 王瑄琪. (2016). 冰雪風暴 全球警報. Retrieved from http://www.chinatimes.com/newspapers/20160125001409-260102
陳國誠. (2002). 廢水生物處理學. 茂昌圖書有限公司.
温鹏. (2015). 海虾生物凝絮系统. Retrieved from http://www.thefishsite.cn/articles/640/hai-xia-sheng-wu-ning-xu-xi-tong--ji-ben-guan-li-shi-jian/
劉文御, 黃世玲, 張正芳, 徐榮彬, 陳敏隆, & 林式修. (2003). 養殖水產生物病害防治. 水產試驗所特刊, 2-191.
蔡佩玲. (2016). 生態魚塭–多營養階的立體養殖系統. Retrieved from https://scitechvista.nat.gov.tw/c/7iEa.htm
謝介士, 葉瑾瑜, & 陳紫媖. (2010). 生物作用對水中pH值及鹼度之影響. 水試專訊, 32.
謝介士, & 廖一久. (1992). 紅尾蝦養殖池排放水中懸浮固體物的含量及對水質之影響研究初報. 農委會漁業特刊, 35, 17-28.
籍國東, & 謝崇寶. (2012). 污水多介質生態處理技術原理. 科學出版社.
蘇偉成. (2007). 虱目魚160 水產試驗所特刊, 9.
蘇偉成, & 劉富光. (2005). 台灣水產養殖的永續經營. 科學發展, 385, 8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code