Responsive image
博碩士論文 etd-1129114-095007 詳細資訊
Title page for etd-1129114-095007
論文名稱
Title
基於IEEE 802.15.4的資料傳輸之新式排程演算法
A Novel Scheduling Algorithm for Data Transmission based on IEEE 802.15.4
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-11-20
繳交日期
Date of Submission
2014-12-29
關鍵字
Keywords
感測器、BAN、Zigbee、排程、IEEE 802.15.4
Sensors, Body network, Zigbee, Scheduling, IEEE 802.15.4
統計
Statistics
本論文已被瀏覽 5677 次,被下載 1055
The thesis/dissertation has been browsed 5677 times, has been downloaded 1055 times.
中文摘要
隨著科技的日新月異,感測器的極小化使得其應用範圍越來越廣,舉凡居家影音與電器設備管理系統,我們可以以單一控制器來同時管理多個家用電子設備。在另一方面,近年內開始被應用並設計的穿戴式及植入式的生理感測器,也可以透過極小化的生理感測器來即時或定期的透過無線網路的方式回報資訊給遠端電腦或醫療體系。在本文中,我們以IEEE 802.15.4通訊協定為基礎,建構出一套感測裝置與中央處理節點的溝通系統,並模擬當多個感測器在使用時槽型CSMA/CA存取機制來競爭通道方式作為傳輸的唯一方式。該結果發現,當大量的感測器存在於系統中,耗電情形會因過長的監聽時間造成能源浪費,感測器內快閃記憶體則可能因為過長的等待時間使得資料無法傳送而造成記憶體癱瘓。

故本文中以IEEE 802.15.4中規範的保證時槽機制來設計一個能夠即時預測,並即時控制的演算法來避免上述問題。經由模擬後的結果發現,當多個裝置存在於系統中時,大流量的裝置在能源的消耗以及封包遺失的情況皆有更好的表現。
Abstract
In this thesis, we propose an improved communication protocol between sensor nodes and the central processing nodes based on IEEE 802.15.4. More specifically, we take the advantage of the guarantee time slot mechanism in the IEEE 802.15.4 specification to design a real-time forecasting mechanism for the central processing node to decide which the sensor nodes have priorities (and in what order) to access the shared channel. The protocol is implemented in a simulation program where multiple sensors can only compete to acquire a shared channel for transmitting data to a central processing node by the slotted CSMA/CA mechanism. Various scenarios were simulated to study the effectiveness of the proposed protocol.

The simulation results indicate that, without the real-time forecasting mechanism for assigning priority, many sensor nodes waste excessive energy on long-term channel monitoring. With the proposed protocol, it appears from the simulation results that the power consumption among the sensor nodes is equalized. Moreover, the results show that the high-data-flow sensors consume much less power with the proposed protocol, and the overall packet loss rate of the system is much improved.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 4
第二章 文獻探討 6
2.1 人體區域網路概述 6
2.2 通訊結構 8
2.2.1 Zigbee 簡介 9
2.2.2 藍芽 10
2.2.3 Wi-Fi 10
2.3 媒介存取方式 11
2.3.1 TDMA 12
2.3.2 CSMA 12
2.4 能源議題 13
2.4.1 被動式功率管理機制 14
2.4.2 其他功率管理機制 15
2.5 服務品質15
2.6 優先權 16
第三章 通訊平台 17
3.1 Zigbee 技術簡介 17
3.1.1 Zigbee 技術特色18
3.1.2 網路組成方式 18
3.1.3 網路拓樸 19
3.1.4 網路位址 20
3.1.5 實體層 21
3.2 媒介存取控制層 22
3.2.1 資料傳輸模型 22
3.2.2 超訊框(Superframe) 架構 23
3.2.3 CSMA/CA 機制 25
3.2.4 訊框類型 27
第四章 系統模型分析與控制方式 29
4.1 系統概述 29
4.2 系統限制 30
4.3 增強型MAC 協議IEEE 802.15.4 31
4.3.1 信標與時槽設定 31
4.4 控制演算 32
4.4.1 演算法權重 35
第五章 系統模擬與模擬方式 38
5.1 系統模擬 38
5.1.1 研究方式 38
5.1.2 離散事件模擬 39
5.1.3 事件排序機制 40
5.2 離散事件模擬之組成元件 41
5.3 模擬程式 43
5.3.1 初始化 44
5.3.2 裝置傳輸方式 44
第六章 模擬實驗 47
6.1 系統特性與基本假設 47
6.1.1 系統內容與設定 48
6.2 實驗一: 標準化測試 50
6.2.1 測試一: 中等流量測試 50
6.2.2 測試二: 高等流量測試 51
6.3 實驗二: 記憶體儲存比例的影響 51
6.4 實驗三:BAN 網路配置 53
6.5 實驗四: 環境監測配置 55
第七章 結論與未來展望 57
7.1 結論 57
7.2 未來展望 58
參考文獻 References
[1] C. Lee, H.-S. Lee, and S. Choi, “An enhanced MAC protocol of IEEE 802.15.4 for wireless body area networks,” Computer Sciences and Convergence Information Technology (ICCIT), 2010 5th International Conference on, pp. 916–919, Nov 2010.
[2] B. Zhen, H.-B. Li, and R. Kohno, “IEEE body area networks for medical applications,”Wireless Communication Systems, 2007. ISWCS 2007. 4th International Symposium on, pp. 327–331, Oct 2007.
[3] success stories,zigbee alliance inc. (http:// www.zigbee.org/ about/ successstories.aspx).
[4] N. Timmons and W. Scanlon, “Analysis of the performance of IEEE 802.15.4 formedical sensor body area networking,” Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on, pp. 16–24, Oct 2004.
[5] M. Patel and J. Wang, “Applications, challenges, and prospective in emerging body area networking technologies,” Wireless Communications, IEEE, vol. 17, no. 1, pp.80–88, February 2010.
[6] K. Van Dam, S. Pitchers, and M. Barnard, “Body area networks: Towards a wearable future,” In Proceedings of WWRF kick off meeting, pp. 6–7, 2001.
[7] R. Schmidt, T. Norgall, J. Morsdorf, J. Bernhard, and T. von der Grun, “Body area network ban - a key infrastructure element for patient-centered medical applications,” Biomedizinische Technik. Biomedical engineering, vol. 47, no. 1, pp. 365–368, 2002.
[8] B. Gyselinckx, C. Van Hoof, J. Ryckaert, R. Yazicioglu, P. Fiorini, and V. Leonov, “Human++: autonomous wireless sensors for body area networks,” Custom Integrated Circuits Conference, 2005. Proceedings of the IEEE 2005, pp. 13–19, Sept 2005.
[9] C. Otto, C. Milenkovic, A. Sanders, and E. Jovanov, “System architecture of a wireless body area sensor network for ubiquitous health monitoring,” Journal of Mobile Multimedia, vol. 1, no. 4, pp. 307–326, 2006.
[10] B. Lo and G.-Z. Yang, “Body sensor networks: Infrastructure for life science sensing research,” Life Science Systems and Applications Workshop, 2006. IEEE/NLM, pp. 1–2, July 2006.
[11] A. D. Jurik and A. C. Weaver, “Remote medical monitoring. computer„” Computer, vol. 41, no. 4, pp. 96–99, 2008.
[12] S. Park and S. Jayaraman, “Enhancing the quality of life through wearable technology,” Engineering in Medicine and Biology Magazine, IEEE, vol. 22, no. 3, pp. 41–48, May 2003.
[13] B. Andersson, N. Pereira, and E. Tovar, “Analyzing TDMA with slot skipping,” Industrial Informatics, IEEE Transactions on, vol. 4, no. 4, pp. 225–236, Nov 2008.
[14] C. Srisathapornphat and C.-C. Shen, “Coordinated power conservation for ad hoc networks,” Communications, 2002. ICC 2002. IEEE International Conference on, vol. 5, pp. 3330–3335, 2002.
[15] Wireless LAN medium access control and physical layer specificationm, LAN MAN Standard Committee of IEEE Computer Society Std., 1999.
[16] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless sensor networks,” INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1567–1576, 2002.
[17] T. V. Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for wireless sensor networks,” in SenSys’ 03, pp. 171–180, 2003.
[18] H. Su and X. Zhang, “Battery-dynamics driven TDMA MAC protocols for wireless body-area monitoring networks in healthcare applications,” Selected Areas in Communications, IEEE Journal on, vol. 27, no. 4, pp. 424–434, May 2009.
[19] H. K. C. Im and S. Ha, “Dynamic voltage scheduling technique for low-power,” Int’l. Symp. Low Power Electronics and Design, pp. 92–95, 2001.
[20] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage scaled microprocessor system,” Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC. 2000 IEEE International, pp. 294–295, Feb 2000.
[21] A. Sinha and A. Chandrakasan, “Dynamic power management in wireless sensor networks,” Design Test of Computers, IEEE, vol. 18, no. 2, pp. 62–74, Mar 2001.
[22] C. Fischione, K. Johansson, A. Sangiovanni-Vincentelli, and B. Ares, “Minimum energy coding in CDMA wireless sensor networks,” Wireless Communications, IEEE Transactions on, vol. 8, no. 2, pp. 985–994, Feb 2009.
[23] R. Cohen and B. Kapchits, “An optimal Wake-Up scheduling algorithm for minimizing energy consumption while limiting maximum delay in a mesh sensor network,” Networking, IEEE/ACM Transactions on, vol. 17, no. 2, pp. 570–581, April 2009.
[24] Y. Wu, S. Fahmy, and N. Shroff, “Energy efficient Sleep/Wake scheduling for multihop sensor networks: Non-convexity and approximation algorithm,” INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, pp. 1568–1576, May 2007.
[25] L. Shi and A. Fapojuwo, “TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks,” Mobile Computing, IEEE Transactions on, vol. 9, no. 7, pp. 927–940, July 2010.
[26] D. Chen and P. K. Varshney, “Qos support in wireless sensor networks: A survey,” In International conference on wireless networks, 2004.
[27] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. M. Leung, “Body area networks: A survey,” Mobile Networks and Applications, vol. 16, pp. 171–193, 2011.
[28] T. Penzel, B. Kemp, G. Klosch, A. Schlogl, J. Hasan, A. Varri, and I. Korhonen, “Acquisition of biomedical signals databases,” Engineering in Medicine and Biology Magazine, IEEE, vol. 20, no. 3, pp. 25–32, May 2001.
[29] S. Arnon, D. Bhastekar, D. Kedar, and A. Tauber, “A comparative study of wireless communication network configurations for medical applications,” Wireless Communications, IEEE, vol. 10, no. 1, pp. 56–61, Feb 2003.
[30] J. Chen, S.-H. Chan, Q. Zhang, W.-W. Zhu, and J. Chen, “PASA: power adaptation for starvation avoidance to deliver wireless multimedia,” Selected Areas in Communications, IEEE Journal on, vol. 21, no. 10, pp. 1663–1673, Dec 2003.
[31] E. S. Jung and N. Vaidya, “A power control MAC protocol for Ad-Hoc networks,” Wireless Networks, vol. 11, pp. 55–66, 2005.
[32] T. Nandagopal, T. F. K. Gao, and V. Bharghavan, “Achieving MAC layer fairness in wireless packet networks,” Proc. 6th Annual Int’l. Conf. Mobile Computing and Networking, 2000.
[33] C. L. Fullmer and J. Garcia-Luna-Aceves, “Solutions to hidden terminal problems in wireless networks,” Proc. ACM SIGCOMM’ 97 Conf. Applications, Technologies, Architectures,and Protocols for Computer Communication, pp. 39–49, 1977.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code