Responsive image
博碩士論文 etd-1201109-194033 詳細資訊
Title page for etd-1201109-194033
論文名稱
Title
銅錫、金錫及鐵鋁界面初期反應之微結構研究
The Initial Reactions and Microstructures of the Cu-Sn, Au-Sn and Fe-Al Interfaces
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-11-30
繳交日期
Date of Submission
2009-12-01
關鍵字
Keywords
晶向關係、介金屬化合物、穿透式電子顯微鏡
orientation relationship, Intermetallic compound, TEM
統計
Statistics
本論文已被瀏覽 5661 次,被下載 30
The thesis/dissertation has been browsed 5661 times, has been downloaded 30 times.
中文摘要
本研究探討銅-錫、金-錫及鐵-鋁這三種系統所生成的介金屬化合物,包含Cu6Sn5(η')、Cu6Sn5(η)、Cu3Sn(ε)、Fe2Al5以及AuSn(δ)。將利用X光繞射儀、掃描式電子顯微鏡及穿透式電子顯微鏡等來觀察其生成相、微結構以及與底材的晶向關係。

第一章是研究介金屬化合物Cu6Sn5(η')在初期成長的微結構。在室溫下電鍍純錫到銅箔上並在150 ºC退火30秒以生成Cu6Sn5(η')。然後將銅與錫用電化學方法移除後,可直接以掃描式電子顯微鏡與穿透式電子顯微鏡進行分析。Cu6Sn5(η')的晶粒在向銅面可小至5奈米,而在向錫面快速成長到0.3~0.5微米。將銅熱蒸鍍在氯化鈉單晶(001)與(111)表面生成磊晶薄膜,再在室溫下蒸鍍錫到銅膜上生成Cu6Sn5(η')相。發現到兩組的晶向關係分別為(1) [204]η' // [001]Cu (晶軸),(40-2)η'// (110)Cu與(020)η' //(1-10)Cu;及(2) [204]η' // [111]Cu (晶軸),(40-2)η' // (1-10)Cu與(020)η' // (-1-12)Cu。二者間之界面並以晶格匹配來分析討論。

第二章將銅箔熱浸鍍至液態錫(240ºC)約1秒以生成高溫相Cu6Sn5(η)。然後將銅與錫以電化學方法移除。Cu6Sn5(η)晶粒在向錫面是蠕蟲狀,大小約0.3~0.5微米且最長可到2微米,但在向銅面則可小至5奈米。鑑定Cu6Sn5(η)與銅之間共生關係,發現(0001)η//(110)Cu為共有之晶向關係,而Cu6Sn5(η)的(11-20)平面是與銅(001)和(-111)面共同之界面。界面之結構並加以分析討論。

第三章則以熱蒸鍍生成平行磊晶銅膜在氯化鈉單晶(111)與(001)表面,並在適當溫度蒸鍍錫以生成ε-Cu3Sn。發現ε-Cu3Sn與(111)銅膜的晶向關係為Z=[001]ε // [111]Cu,(100)ε // (-110)Cu與(010)ε // (-1-12)Cu並以(001)ε/(111)Cu為界面。但在 (001) 銅膜上並無晶向關係。界面並以晶格匹配來分析討論。

第四章研究熱浸鍍鋅製程在低碳鋼多晶表面生成鐵鋁介金屬化合物。電子繞射圖譜顯示出唯有Fe2Al5生成;且與底材α-相鐵之晶向關係為[110]FA // [111]Fe,(001)FA // (0-11)Fe與(1-10)FA // (2-1-1)Fe其中FA為Fe2Al5。Fe2Al5晶粒最小約20奈米或更小,並快速成長至幾百奈米大小。界面結構並以各自表面結構與相互之間晶向關係加以分析。

第五章則研究δ-AuSn與金的晶向關係與界面。金的磊晶薄膜是以熱蒸鍍生成在氯化鈉單晶(001),(110)及(111)表面,隨之在室溫下蒸鍍錫以生成δ-AuSn相。結果發現兩組晶向關係分別為(1)(11-20)δ // (001)Au,(0001)δ // (110)Au與(1-100)δ // Au,其界面為(11-20)δ/(001)Au和(1-100)δ/(-110)Au;(2)(11-20)δ // (-111)Au,(0001)δ//(110)Au與(1-100)δ//(-11-2)Au,界面則是(11-20)δ/(-111)Au。這些界面關係也以各自表面結構與相互晶向關係來分析討論。
Abstract
The microstructure of η'-Cu6Sn5 during in the early stage of growth was studied. Sn was electroplated onto thin Cu foil at room temperature and the specimen was annealed at 150 ºC for 30 s. The Cu and Sn on the η'-Cu6Sn5 surfaces were removed electrolytically and the specimens were analyzed with scanning and transmission electron microscopes. The η'-Cu6Sn5 grains on the Cu side were as small as 5 nm but grew rapidly to 0.3 to 0.5 μm on the Sn side. The orientation relationships between η'-Cu6Sn5 and Cu were studied by a thin film technique. Cu was evaporated onto the NaCl (001) and (111) surfaces to form epitaxial Cu thin films and Sn was then evaporated onto the Cu films to form η'-Cu6Sn5. Two types of orientation relationships were found, i.e., (1) [204]η'//[001]Cu (zone axis), (40-2)η'//(110)Cu, and (020)η'//(1-10)Cu, and (2) [204]η'//[111]Cu (zone axis), (40-2)η'// Cu, and (020)η'//(-1-12)Cu. The interfaces were analyzed. (Chapter 1)

A very thin η-Cu6Sn5 layer was formed by dipping thin Cu foil into molten Sn at 240 ºC for 1 second and quenching in ice water. The Sn and Cu on the η-Cu6Sn5 surface were removed electrolytically to study the surface morphologies. The η-Cu6Sn5 grains on the Sn side had a worm-type shape, about 0.3-0.5 μm wide and up to 2 μm long, but those on the Cu side were very small, about 5 nm in size. The nucleation and growth of the η-Cu6Sn5 grains were discussed. The orientation relationships between η-Cu6Sn5 and Cu were determined by transmission electron microscopy. The (11-20) plane of η-Cu6Sn5 was found to be the interface with both the Cu (001) and (-111) surfaces, and a common orientation relationship of (0001)η//(110)Cu was observed. The match of atoms between η-Cu6Sn5 and Cu on the above interfaces were analyzed. (Chapter 2)

A thin film technique was developed to study the orientation relationship and interface between ε-Cu3Sn and Cu by transmission electron microscopy. Epitaxial Cu thin films were grown on the NaCl (001) and (111) surfaces and Sn was evaporated to form ε-Cu3Sn directly without breaking the vacuum. The orientation relationship Z=[001]ε//[111]Cu, (100) ε //(-110)Cu, and (010)ε //(-1-12)Cu was found on the Cu (111) surface, but none on the Cu (001) surface. The interface was analyzed. (Chapter 3)

The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This work presents a characterization result on the inhibition layer formed on a TiNb-stabilized interstitial-free steel after a short time galvanizing. The Fe-Al and steel interface was free from oxide, so that the Fe-Al intermetallic compound could directly nucleate on ferrite grains. TEM electron diffraction showed that only Fe2Al5 was formed and it had a well-defined orientation relationship of [110]FA// [111]Fe, (001)FA//(0-11)Fe and (1-10)FA//(2-1-1)Fe with Fe substrate where FA stands for Fe2Al5. The interfaces between Fe2Al5 and Fe are discussed. The Fe2Al5 grains nucleated epitaxially on Fe substrate had very small grain size, 20 nm or less, and several variants were intimately mixed. The grains grew rapidly to hundreds of nanometers toward the Zn side. (Chapter 4)


The orientation relationships and interfaces of δ-AuSn with the Au (001), (110) and (111) surfaces were studied with transmission electron microscopy. Au was evaporated onto the NaCl (001), (011) and (111) surfaces to form epitaxial Au thin films and Sn was evaporated onto the Au film to form δ-AuSn. Two types of orientation relationships were found: (1) (11-20)δ//(001)Au, (0001)δ//(110)Au, and (1-100)δ//(-110)Au, which was found on the (11-20)δ/(001)Au and the(1-100)δ/(-110)Au interfaces; and (2) (11-20)δ//(-111)Au, (0001)δ//(110)Au, and (1-100)δ//(-11-2)Au, which was found on the (11-20)δ/(-111)Au interface. The interfaces were analyzed by the structures of the surfaces and the orientation relationships. The nucleation of δ-AuSn on these interfaces was also discussed. (Chapter 5)
目次 Table of Contents
Contents
論文摘要內容 (中)..................................................................I
Abstract.................................................................................III
Contents...............................................................................VI
List of Figures......................................................................IX

Chapter 1...............................................................................1
The microstructure of η'-Cu6Sn5 and its orientation relationships with Cu in the early stage of growth
1.1. Introduction.................................................................1
1.2 Experimental Details.................................................4
1.2.1 Electroplation specimens..................................4
1.2.2 Evaporation specimens.....................................4
1.3. Results........................................................................5
1.3.1 Electroplation specimens..................................5
1.3.2. Evaporation specimens....................................7
1.4. Discussion.................................................................8
1.4.1 The orientation relationships and interfaces.8
1.4.2 The microstructure of η'-Cu6Sn5...................10
1.5. Conclusions............................................................12

Chapter 2............................................................................25
Orientation relationships, interfaces, and microstructure of η-Cu6Sn5 formed in the early-stage reaction between Cu and molten Sn
2.1. Introduction..............................................................25
2.2. Experimental Details..............................................27
2.3. Results.....................................................................28
2.3.1 XRD and SEM analysis....................................28
2.3.2. TEM analysis.....................................................29
2.4. Discussion...............................................................30
2.4.1. Orientation relationships and interfaces.....31
2.4.2. Microstructure of η-Cu6Sn5............................34
2.5. Conclusions............................................................35

Chapter 3............................................................................49
The orientation relationship and interface between ε-Cu3Sn and Cu
3.1. Introduction..............................................................49
3.2. Experimental procedure........................................50
3.3. Results and discussions......................................51
3.4. Conclusions............................................................54

Chapter 4............................................................................59
Heteroepitaxial Growth of Fe2Al5 Inhibition Layer in Hot-Dip Galvanizing of an Interstitial-Free Steel
4.1. Introduction..............................................................59
4.2. Experimental Details..............................................61
4.3. Results.....................................................................62
4.3.1 SEM and SAM characterization.......................62
4.3.2 TEM characterization.........................................63
4.4. Discussion...............................................................65
4.4.1 The phase and the morphology.....................65
4.4.2 The orientation relationship............................67
4.4.3 The interfaces....................................................68
4.5. Conclusions...............................................................71

Chapter 5............................................................................85
The orientation relationships and interfaces between δ-AuSn and Au
5.1. Introduction..............................................................85
5.2. Experimental procedure........................................87
5.3. Results.....................................................................88
5.4. Discussion...............................................................90
5.4.1 Orientation relationships and interfaces......90
5.4.2 Formation of δ-AuSn.........................................92
5.5. Conclusions............................................................93

References 105
參考文獻 References
-A-

Abel F., Cohen C., Davies J.A., Moulin J., Schmaus D., Appl. Surf. Sci., 44 (1990) 17.

ASM Handbook, vol. 3, Alloy Phase Diagrams, ASM International, Materials Park, OH, 1992.

-B-

Bader S., Gust W., Hieber H., Acta. Metal. Mater., 43 (1995) 329.

Baril E., L’Esperance G., Metall. Mater. Trans. A, 30A (1999) 681.

Bellhouse, E.M., McDermid, J.R., Mater. Sci. Eng. A, 491 (2008) 39.

Brooks P.L., Gillam E., Acta. Metall., 18, (1970) 1181.

Buene L., Thin Solid Films, 43 (1977) 285.

Buene L., Thin Solid Films, 47 (1977) 159.

Buene L., Jacobsen S.-T., Physica Scripta., 18 (1978) 397.

Buene L., Falkenberg-Arell H., Tafto J., Thin Solid Films, 65 (1980) 247.

Buene L., Falkenberg-Arell H., Gjonnes J., Tafto J., Thin Solid Films, 67 (1980) 95.

-C-

Chan Y.C., Alex C.K. So, J.K.L. Lai, Mater. Sci. Eng., B55 (1998) 5.

Charlton J.S., Cordey-Hayes M., Harris I.R., J. Less-Common Metals, 20 (1970) 105.

Chen L., Fourmentin R., McDermid J.R.,“Met. Mat. Trans. A, 39A (2008) 2128.

Chen S.W., Yen Y.W., J. Electron. Mater., 30 (2001) 1133.

Chopra R., Ohring M., Oswald R.S., Thin Solid Films, 94 (1982) 279.

Ciulik J., Notis M.R., J. Alloys and Compd, 191 (1993) 71.

Clevenger L.A., Arcot B., Ziegler W., Colgan E.G., Hong Q.Z., d’Heurle F.M., Cabral. Jr.C., Gallo T.A., Harper J.M.E., J. Appl. Phys., 83 (1) (1998) 90.

-D-

Deits S.H., Matlock D.K., in: Krauss G., Metlock D.K., (Eds.), Zinc-Based Steel Coating Systems: Metallurgy and Performance, TMS, Warrendale, PA, 1990, p.297.

Dhabal S., Ghosh T.B., Appl. Surf. Sci., 211 (2003) 13.

Dimyati A., Beste D., Weirich T.E., Richter S., Buckins M., Bleck W., and Mayer J., Z. Metallkunde, 96 (2005) 233.

Djurfors B., Ivey D.G., Mater. Sci. Eng. B., 90 (2002) 309.

Dufner D.C., Eyring L., J. Solid State Chem., 62 (1986) 112.

Dyson B.F., Anthony T.R., Turnbull D., J. Appl. Phys., 38 (1967) 3408.

-E-

Emren F., Von Schlippenbach U., Lucke K., Acta Metall., 34 (1986) 2105.

-F-

Feliu, Jr. S., Perez-Revenga M.L., Acta. Mater., 53 (2005) 2857.

Fujiwara K., Ohtani M., Isu T., Nango S., Kawanaka R., Shimizu K., Thin Solid Films, 70 (1980) 153.

-G-

Ghuman A.R.P., Goldstein J.I., Metall. Trans., 2 (1971) 2903.

Görlich J., Schmitz G., Tu K.N., Appl. Phys. Lett., 86 (2005) 053106.

Gregersen D., Buene L., Finstad T., Lonsjo O., Olsen T., Thin Solid Films, 78 (1981) 95.

Guttmann M., Mater. Sci. Forum, 155-156 (1994) 527.

Guttmann M., Lepretre Y., Aubry A., Roche M.-J., Moreau T., Drillet P., Mataigne J.M., Baudin H., in: Galvatech '95 Conference Proceedings: The Use and Manufacture of Zinc and Zinc Alloy Coated Sheet Steel Products into the 21st Century, Chicago, Illinois, USA, September 17-21, 1995, p.295.

-H-

Harvey G.J., Mercer P.D., Metall. Trans., 4 (1973) 619.

Hayashi A., Kao C. R., Chang Y. A., Scripta Mater., 37 (1997) 393.

Hugsted B., Buene L., Finstad T., Lonsjo O., Olsen T., Thin Solid Films, 98 (1982) 81.

Hutchinson W.B., Int. Mater. Rev., 29 (1984) 25.

Hwang C.W., Kim K.S., Suganuma K., J. Electron. Mater., 32 (11) (2003) 1249.

-J-

Jang J.W., Kim P.G., Tu K.N., Lee M., J. Mater. Res., 14 (1999) 3895.

JCPDS file 47-1575.

JCPDS files 45-1488, 65-2303.

-K-

Kao C. R., Mater. Sci. Eng., A238 (1997) 196.

Kim H.K., Tu K.N., Phy. Rev. B, 53 (23) (1996) 16027.

-L-

Labie R., Ruythooren W., Humbeeck J. V., Intermetallics, 15 (2007) 396.

Larsson A.K., Stenberg L., Lidin S., Acta Crystallogr., B50 (1994) 636.

Larsson A.K., Stenberg L., Lidin S., Z. Kristallogr., 210 (1995) 832.

Lee T.Y., Choi W.J., K.N. Tu, Jang J.W., Kuo S.M., Lin J.K., Frear D.R., Zeng K., Kivilahti J.K., J. Mater. Res., 17 (2002) 291.

Lee T.K., Zhang S., Wong C.C., Tan A.C., Hadikusuma D., Thin Solid Films, 504 (2006) 441.

Liao C.N., Wei C.T., Thin Solid Films, 515 (2006) 2781.

Lin C.S., Meshii M., in: Galvatech '95 Conference Proceedings: The Use and Manufacture of Zinc and Zinc Alloy Coated Sheet Steel Products into the 21st Century, Chicago, Illinois, USA, September 17-21, 1995, p.335.

Luryi S., Suhir E., Appl. Phys. Lett., 49 (1986) 140.

-M-

Ma F., Zhang J.M., Xu K.W., Appl. Surf. Sci., 242 (2005) 55.

Marder A.R., Prog. Mater. Sci., 45 (2000) 191.

Marinković Ž., Simić V., J. Less-Common Metals, 115 (1986) 225.

McDermid J.R., Kaye M.H., Thompson W.T., Metall. Mater. Trans. B, 38B (2007) 215.

McDevitt E., MorimotoY., Meshii M., ISIJ Int., 37 (1997) 776.

Mei Z., Sunwoo A.J., Morris, Jr. J.W., Metall. Trans. A, 23A (1992) 857.

Morimoto Y., McDevitt E., Meshii M., ISIJ Int., 37 (1997) 906.

Mintz B., Int. Mater. Rev., 46 (2001) 169.

-N-

Nakahara S., McCoy R.J., Appl. Phys. Lett., 37(1) (1980) 42.

Nakahara S., McCoy R.J., Thin Solid Films, 72 (1980) 457.

Nakahara S., McCoy R.J., Buene L., J. Vandenberg M., Thin Solid Films, 84 (1981) 185.

-P-

Prakash K.H., Sritharan T., Acta. Mater., 49 (2001) 2481.

-R-

Reniers F., Delpancke M.P., Asskali A., Rooryck V., Van Sinay O., Appl. Surf. Sci., 92 (1996) 35.

Riege S.P., Thompson C.V., Scripta Mater., 41 (1999) 403.

-S-

Safran G., Geszti O., Barna P.B., Thin Solid Films, 229 (1991) 37.

Safran G., Geszti,O. Barna P.B., Phys. Stat. Sol. (a) 150 (1995) 489.

Samajdar I., Verlinden B., Van Houtte P., Acta Mater., 46 (1998) 2751.

Shang P.J., Liu Z.Q., Li D.X., Shang J.K., Scripta Mater., 59 (2008) 317.

Simić V., Marinković Ž., J. Less-Common Metals, 51 (1977) 177.

Suh J.O., Tu K.N., Tamura N., J. Appl. Phys., 102 (2007) 063511.

Suh J.O., Tu K.N., Tamura N., Appl. Phys. Lett., 91 (2007) 051907.

Suh J.O., Tu K.N., Lutsenko G.V., Gusak A.M., Acta. Mater., 56 (2008) 1075.

Swaminathan S., Spiegel M., Appl. Surf. Sci., 253 (2007) 4607.

-T-

Tang W., He A.H., Liu Q., Ivey D.G., Acta Materialia, 56 (2008) 5818.

Tang N.Y., Adams G.R., in: Marder, A.R., (Ed.), The Physical Metallurgy of Zinc Coated Steels, TMS, Warrendale, PA, 1994, p.41.

Tang N.Y., J. Phase Equil., 17 (1996) 396.

Takenaka T., Kano S., Kajihara M., Kurokawa N., Sakamoto K., Mater. Sci. Eng., A396 (2005) 115.

Tomita Y., Tago M., Nemoto Y., Takahashi K., IEEE 2001 Int’l Symposium on Electonic Materials and Packing, p.107.

Treacy M.M.J., Haushalter R.C., Rice S.B., Ultramicroscopy., 23 (1987) 135.

Tu K.N., Acta. Metall., 21 (1973) 347.

Tu K.N., Thompson R.D., Acta Metall., 30 (1982) 947.

Tu K.N., Mater. Chem. Phys., 46 (1996) 217.

Tu K.N., Ku F., Lee T.Y., J. Electron. Mater., 30 (2001) 1129.

Tu K.N., Rosenberg R., Jpn. J. Appl. Phys., 2 (1974) 633.

-W-

Wang H.P., Master Thesis, Department of Materials and Optoelectronic Science of National Sun Yat-Sen University (2008).

Watanabe Y., Fujinaga Y., Iwasaki H., Acta. Cryst. B39 (1983) 306.

-Y-

Yamada, Miura K., Kajihara M., Kurokawa N., Sakamoto K., Mater. Sci. Eng. A, 390 (2005) 118.

Yoon J.W., Jung S.B., J. Alloys and Compd, 396 (2005) 122.

-Z-

Zeng K., Siterman R., Chiu T.-C., Edwards D., Ano K., Tu K.N., J. Appl. Phys., 97 (2005) 024508-1.

Zou H.F., Yang H.J., Zhang Z.F., Acta Mater., 56 (2008) 2649.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.27.244
論文開放下載的時間是 校外不公開

Your IP address is 3.141.27.244
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code