Responsive image
博碩士論文 etd-1208109-154308 詳細資訊
Title page for etd-1208109-154308
論文名稱
Title
高功率發光二極體模組光功率與光場高溫老化可靠度之研究
The Reliability Study of Optical Power and Radiation Pattern for High-Power Light-Emitting Diodes Modules in Aging Test
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-11-28
繳交日期
Date of Submission
2009-12-08
關鍵字
Keywords
高功率發光二極體、光功率、光場、可靠度、高溫老化
Optical Power, Reliability, LED, High-Power Light-Emitting Diodes, Aging Test, Radiation Pattern
統計
Statistics
本論文已被瀏覽 5672 次,被下載 9215
The thesis/dissertation has been browsed 5672 times, has been downloaded 9215 times.
中文摘要
隨著高功率發光二極體(LEDs)元件發光效率與可靠度的提高,及LED照明大量被使用在日常生活中,LED研發重點由原先LED元件發展,已逐漸轉向LED模組構裝技術可靠度之研發,即研發LED模組材料、光功率、光場、結構設計和可靠度之間的關係。本論文研究共分三部份,在高溫老化測試下,首先研究LED模組透鏡形狀和失效可靠度相關性,然後研討LED模組光功率與光場衰減之機制,最後研究白光LED模組摻雜Ce:YAG 螢光膠之衰減機制。
第一部份研究為研討不同透鏡形狀高功率LED模組,在高溫老化測試下光功率及透鏡形狀之改變。實驗顯示出半球形塑膠透鏡模組,比圓柱形和橢圓形塑膠透鏡,有更好的壽命,這是由於半球形塑膠透鏡,有更好的熱散效果。同時在老化溫度80℃測試條件下,半球形透鏡LED模組的壽命,是圓柱形透鏡LED模組的1.5倍,也是橢圓形透鏡LED模組的3倍。
第二部份研究為研討LED模組光場與光譜在高溫老化實驗下,測試結果及衰減機制。實驗結果顯示LED模組的光場,在± (15o~75o)兩個不同的角度,相較於其他的角度,隨著老化時間增加有更多的衰減量。同時透鏡材料經由高溫老化後會產生衰退,使得LED模組中心波長在光譜中會產生5 nm的偏移。此外,隨著老化時間的增加,塑膠透鏡曲率半徑會有6-70 μm的收縮。進一步實驗與模擬結果顯示,改善透鏡的結構與材料,可以延長高功率LED模組的操作壽命。
第三部份研究為研討白光LED模組在高溫老化下,不同濃度與厚度摻雜Ce:YAG螢光膠的衰減機制。實驗結果顯示LED模組流明損失、色度CIE偏移、光譜強度減少,都隨著Ce:YAG的濃度增加而衰減。我們發現在1mm厚的螢光膠中,摻雜5.5%的Ce:YAG,是造成94%流明損失的原因,而剩餘的6%損失為矽膠衰退所產生。因此在LED模組封裝,低的Ce:YAG螢光粉摻雜濃度(2.4%),調配厚度較薄的矽膠(1mm),為白光LED模組掺雜螢光粉,延長操作壽命的必要條件。
Abstract
Light-emitting diodes (LED) illumination takes considerable applications in nowadays daily lives due to the improvement on efficiency of the LED modules. The connections between the reliability and the lifetime, power efficiency, optical spectrum, and structure design of the LED modules are the major research topics.
In this study, high-power LED modules encapsulated with different lens shapes after a thermal-aging test were studied experimentally and numerically. The results showed that the LED modules encapsulated with a hemispherical-shaped plastic lens exhibited a better lifetime due to their better thermal dissipation than those with cylindrical- or elliptical-shaped plastic lenses. In the case of 80℃ aging test, the lifetime of hemispherical-shaped lens was 1.5 times better than the cylindrical- or elliptical-shaped lenses.
Decay of radiation pattern and optical spectrum of high-power LED modules fabricated by different manufacturers after a thermal-aging test were investigated experimentally and numerically. The results showed that the radiation pattern of the LED modules at the two view angles of ± (15o~75o) decreased more than the other angles as aging time increased. Due to the degradation of lens material after thermal aging, the center wavelength of the LED spectrum shifted 5 nm. Furthermore, the radius curvature of plastic lens was observed 6-70 μm contraction as aging times increased. Both experimental and simulated results clearly indicated that improving the lens structure and lens material is essential to extend the operating life of the high-power LED modules.
High-power phosphor-converted white-light-emitting diodes (PC-LEDs) with selected concentration and thickness of Ce:YAG phosphor-doped silicones were investigated to study the thermal degradation effect of the Ce:YAG phosphor-silicone layer. The experimental results showed that the lumen loss, chromaticity (CIE shift), and spectrum intensity reduction increased as the concentration of Ce:YAG phosphor doped silicone increased. We showed that 94% lumen loss was attributed to 5.5 wt% Ce:YAG doping and only 6% of the lumen loss was due to a 1mm thickness of silicone degradation. From practical points of view, we found that a lower doping concentration of the Ce:YAG phosphor in thin silicone is a better choice in terms of having less thermal degradation for use in packaging of the high-power PC-LEDs modules and is essential to extend the operating lifetime of the phosphor-based white LED modules.
目次 Table of Contents
中文摘要
英文摘要
誌 謝
內容目錄 I
圖目錄 V
表目錄 X
第一章 緒 論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 3
1.4 研究目標與章節介紹 6
1.5 參考文獻 7
第二章 LED構造及基本原理 10
2.1 LED 晶片發光原理 10
2.1.1 半導體基本原理 11
2.1.2 半導體之PN接合面 14
2.2 白光發光原理 17
2.2.1 LED白光發光方式 17
2.2.2 螢光粉發光原理 19
2.3 色彩學 23
2.3.1 光色度學簡論 24
2.3.2 光色度學顯色原理 27
2.4 幾何光學 37
2.4.1 基本幾何光學原理 37
2.4.2 模組幾何光路分析 39
2.5 LED構造介紹及發展 40
2.6 參考文獻 46
第三章 可靠度規範及儀器 49
3.1 可靠度測試規格 49
3.1.1 可靠度測試規範 49
3.1.2 可靠度失效率 54
3.2 儀器原理及說明 57
3.2.1 紫外光-可見光光譜原理 57
3.2.2 螢光光譜原理 59
3.2.3 螢光生命週期原理 62
3.2.4 視角機 64
3.2.5 積分球 67
3.3 參考文獻 70
第四章 高功率LED模組透鏡形狀和失效可靠度研究 73
4.1 實驗方法與架構 74
4.2 量測與結果 78
4.3 有限元素模擬與分析 78
4.4 結果與討論 80
4.4.1 模組實驗結果討論 80
4.4.2 有限元素分析結果討論 82
4.5 結論 87
4.6 參考文獻 89
第五章 高功率LED模組光功率與光場衰減機制研究 94
5.1 實驗方法與架構 95
5.2 量測與結果 99
5.3 光場模擬 102
5.4 結果與討論 103
5.4.1 模組實驗結果討論 103
5.4.2 光場模擬分析結果討論 111
5.4.3 光譜實驗結果討論 113
5.5 結論 115
5.6 參考文獻 116
第六章 高功率白光LED模組掺雜螢光膠衰減機制研究 117
6.1 實驗方法與架構 117
6.2 量測與結果 124
6.3 結果與討論 129
6.4 結論 135
6.5 參考文獻 137
第七章 結論與討論 140
7.1 結 論 140
7.2 未來可能研究方向 143
作者著作 147
作者簡介 149
參考文獻 References
第一章 緒 論
[1] http://tw.myblog.yahoo.com/jw!YJwUYKieGRYue253gSqIXoVs9K_r/article?mid=15121
[2] S. Nakamura and S. F. Chichibu, “Introduction to nitride semiconductor blue laser diodes and light emitting diodes”, London, UK: Taylor and Francis, 2000.
[3] P. Maaskant, M. Akhter, J. Lambkin, and L. Considine, “Failure mechanisms associated with the fabrication of InGaN-based LEDs”, IEEE Transactions on Electron Devices, vol. 48, No. 8, pp.1822-1825, 2001.
[4] E. F. Schubert, “Light-emitting diodes”, New York, Cambridge, chap. 11, 2006.
[5] Y. Lin, D.S. Wuu, K.F. Pan, S.H. Huang, C.E. Lee, W.K. Wang, S.C. Hsu, Y.Y. Su, S.Y. Huang, and R.H. Horng, “High-power GaN-mirror-Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques”, IEEE Photonics Technology Letters, vol. 17, no. 9, pp. 1809-1811, 2005.
[6] H. Luo, J.K. Kim, E.F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes”, Applied Physics Letters, vol. 86, pp. 24350-1-3, 2005.
[7] M. Fukuda, “Optical semiconductor device,” John Wiley and Sons, New York, 1999.
[8] M.T. Sheen, C.M. Chang, H.C. Teng, J.H. Kuang, K.C. Hsieh, and W.H. Cheng, “The influence of thermal aging on joint strength and fracture surface of PbSn and AuSn solders in laser diode packages”, Journal of Electronic Materials, vol. 31, pp. 895-902, 2002.
[9] M. T. Sheen, Y. H. Ho, C. L. Wang, K. C. Hsieh, and W. H. Cheng, “The joint strength and microstructure of fluxless Au/Sn solders in InP-based laser diode packages”, Journal of Electronic Materials, vol 34, pp. 1318-1323, 2005.
[10] G. Meneghesso, S. Levada, E. Zanoni, S. Podda, G. Mura, M. Vanzi, A. Cavallini and S. Du, I. Eliashevich, “Failure modes and mechanisms of DC-aged GaN LEDs”, Physica Status Solidi, vol.194, pp. 389-392, 2002.
[11] G. Meneghesso, S. Levada, E. Zanoni, G. Scamarcio, G. Mura, S. Podda, M. Vanzi, A. Cavallini, A. Castaldini, S. Du and I. Eliashevich, “Reliability of visible GaN LEDs in plastic package”, Microlelectronics reliability, vol. 43, pp. 1737-1742, 2003.
[12] T. Yanagisawa and T. Kojima, “Long-term accelerated current operation of white light-emitting diodes”, Journal of Luminescense, vol. 114, pp. 39-42, 2005.
[13] Y. Sato, N. Takahashi and S. Sato, “Full-color fluorescent display devices using a near-UV light-emitting diode”, Japanese Journal of Applied Physics, vol. 35, no. 7A, L838-L839, Jul. 1996.
[14] S. H. Lee and S. Y. Seo, “Optimization of yttrium aluminum garnet: Ce3+ phosphors for white light-emitting diodes by combinatorial chemistry method”, Journal of The Electrochemical Society, vol. 149, no. 11, pp. J85-J88, Sep. 2002.
[15] R. Mueller-Mach, G. O. Muller, M. R .Krames and T. Trottier, “High-power phosphor-converted light-emitting diodes based on Ⅲ-nitrides”, IEEE Journal of Selected Topics Quantum Electronics, vol. 8, no. 2, pp. 339-345, Apr. 2002.
[16] G. Elger, M. Hutter, H. Oppermann, R. Aschenbrenner, H. Reichl and E. Jager, “Developmant of an assembly process and reliability investigations for flip-chip LEDs using the AuSn soldering”, Journal of Lightwave Technology, vol. 7, pp. 239-243, Jul. 2002.
[17] J. Xie and M. Pecht, “Reliabilty prediction modeling of semiconductor light emitting device”, IEEE Transactions Devices and Materials Reliabity, vol. 3, no. 4, pp. 218-222, Dec. 2003.
[18] M. Fukuda, “Laser and LED reliability update”, Journal of Lightwave Technology, vol. 6, no. 10, pp. 1488-1495, Oct. 1988.
[19] H. S. Jang and D. Y. Jeon, “White light emission from blue and near ultraviolet light-emitting diodes precoated with a Sr3SiO5:Ce3+, Li+ phosphor”, Optics Letters, vol. 32, no. 23, pp. 3444-3446, Dec. 2007.
[20] G. Elger, M. Hutter, H. Oppermann, R. Aschenbrenner, H. Reichl and E. Jager, “Developmant of an assembly process and reliability investigations for flip-chip LEDs using the AuSn sold ering”, Journal of Lightwave Technology, pp. 239-243, Jul. 2002.
[21] T. Yanagisawa and T. Kojima, “Long-term accelerated current operation of white light-emitting diodes”, Journal of Luminescense, vol. 114, pp. 39-42, Jun. 2005.
[22] H. Luo, J.K. Kim,Y.A.Xi, E.F. Schubert, J. Cho, C. Sone, and Y. Park, “Trapped whispering-gallery optical modes in white light-emitting diode lamps with remote phosphor”, Applied Physics Letters, vol. 89, no. 4, pp. 041125-1-041125-3, Jul. 2006.
[23] Y. Gu and N. Narendran, “A non-contact method for determining junction temperature of phosphor-converted white LEDs”, Third International Conference on Solid State Lighting, Proceedings of SPIE, vol. 5187, pp. 107-114, 2004.

第二章 LED構造及基本原理

[1] S. Nakamura and S. F. Chichibu, “Introduction to nitride semiconductor blue laser diodes and light emitting diodes”, London, UK: Taylor and Francis, 2000.
[2] 許招墉譯, 最新圖解半導體製程槪論, 東芝セミコンダクタ-社普林斯頓國際有限公司, 2004.
[3] 蔡國猷, 發光二極體基礎技術, 建興出版社, 1992.
[4] 小山稔, 奧野保男, 柏原鳳一郎 執筆, 柏瑞芳 譯, 發光二極體及其應用, 工業技術硏究院工業材料硏究所, 1991.
[5] A. H. Mueller, M. A. Petruska, M. Achermann, D. J. Werder, E. A. Akhadov, D. D. Koleske, M. A. Hoffbauer and V. I. Klimov, “Multicolor Light-Emitting Diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers”, Nano Letters, vol. 5, pp. 1039-1044, 2005.
[6] S. Muthu, F. J. P. Schuurmans and M. D. Pashley, “Red, green, and blue LEDs for White Light illumination”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 333-338, 2002.
[7] C. M. Chang, Y. C. Fang and C. R. Lee, “A new design mixing R.G.B. LED (Red, Green, Blue Light Emitting Diode) for a modern LCD (Liquid Crystal Display) backlight system”, Proceedings of SPIE, vol. 6338, pp. 63380Q-1~11, 2006.
[8] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart”, Science, vol. 308, pp. 1274-1278, 2005.
[9] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Applied Physics Letters, vol. 64, pp. 1687-1689, 1994.
[10] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin and S. L. Rudaz, “Illumination with solid state lighting technology”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 310-320, 2002.
[11] S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer, Berlin, 1997.
[12] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Applied Physics Letters, vol. 64, pp.1687-1689, 1994.
[13] S. Nakamura, T. Mukai and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes”, Journal of Applied Physics, vol. 76, pp.8189-8191, 1994.
[14] S. Nakamura, N. Senoh, N. Iwasa and S. I. Nagahama, “High-brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with quantum well structures”, Japanese Journal of Applied Physics Part 2-Letters, vol. 34, pp. 797-799, 1995.
[15] T. Nishida, T. Ban and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors”, Applied Physics Letters, vol. 82, pp. 3817-3819, 2003.
[16] K. Takahashi, N. Hirosaki, R.-J. Xie, M. Harada, K.-i.Yoshimura and Y. Tomomura, “Luminescence properties of blue La1−xCexAl(Si6−zAlz)(N10−zOz) (z~1) oxynitride phosphors and their application in white light-emitting diode”, Applied Physics Letters, vol. 91, pp. 091923-091923, 2007.
[17] S, Muthu, Schuurmans, F. J. P. Schuurmans and M.D. Pashley, “Red, Green, and Blue LEDs for White Light illumination”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 333-338, 2002.
[18] 劉如熹, 劉宇??, 發光二極體用氧氮螢光粉介紹, 全華科技股份有限公司, 2006.
[19] D. A. Skoog, F. J. Holler and T. A. Niemen, Principles of instrumental analysis, Harcourt Brace & Company, Orlando, 1998.
[20] R. C. Ropp, Luminescence and the Solid State, Elservier, Amsterdam, 2004.
[21] G. H. Dieke and R. A. Satten, “Spectra and energy levels of rare earth ions in crystals”, American Journal of Physics, vol. 38, pp. 399-400. 1970.
[22] 原著:大田登,編譯:陳鴻興,陳詩涵, 色彩工程學:理論與應用, 全華圖書股份有限公司, 2008.
[23] H. J. A. Dartnall, J. K. Bowmaker and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons”, Proceedings of the Royal Society of London Series B-Biological Sciences, vol. 220, pp. 115-130, 1983.
[24] 徐敘瑢 與 蘇勉曾, 發光學與發光材料, 化學工業出版社, 北京, 2004.
[25] 郝允祥、陳遐舉 與 張保州, 光度學, 北京師範大學出版社, 北京, 1988.
[26] 羅俊仁, 固態照明與白光發光二極體, 行政院國科會光電小組編, 2004.
[27] 林盈君, "混合氮化物類螢光膠高演色性白光LED光學特性的探討", 中山大學光電工程研究所 (2009).
[28] 陳德請, 近代光電顯示工程導論, 全華科技圖書股份有限公司, 2006.
[29] Jr. N. Holonyak, “Active region in visible-light diode laser”, Electronics, vol. 36, no. 35, 1963.
[30] C. C. Tsai, C. C. Huang, J. Wang, M. C. Hsuh, and W. H. Cheng, “An optimum design and fabrication of focus lens for high intensity Light-Emitting Diodes”, Japanese Journal of Applied Physics, vol. 48, no. 094504, Oct. 2009.
[31] 薛名洲, "發光二極體(LED)透鏡之成形收縮對光學性質之影響 ", 高雄應用科技大學模具工程系碩士班 (2008).
[32] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting diodes”, Applied Physics Letters, vol. 62, no. 19, pp. 2390-2392, 1993.
[33] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes”, Applied Physics A, vol. 64, pp. 417-418, 1997.
[34] 湯友聖, “發光二極體之螢光材料及其封裝特性分析,” 碩士畢業論文, 國立台灣師範大學, 2008.
[35] 石景仁, “白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析,” 碩士畢業論文, 國立台灣大學, 2001
[36] 楊淑慧, LED產業新版圖, 財訊出版社, 2006.

第三章 可靠度規範及儀器

[1] Boulanger, M. and Escobar, “Experimental design for a class of accelerated degradation tests”, Technometrics, vol. 36, no.3, pp. 260-272, 1994.
[2] M. B. Carey and, R. H. Koenig, “Reliability assessment based on accelerated degradation: A case study”, IEEE Transactions on Reliability, vol. 40, no.5, pp. 499-506, 1991.
[3] D. S. Chang, “Analysis of accelerated degradation data in a Two-way design”, Reliability Engineering and System Safety, vol. 39, pp. 65-69, 1993.
[4] C. H. Chiao, and M. Hamada, “Robust reliabilitv for light emitting using degradation measurements”, Quality and Reliability Engineering International, vol. 12, pp. 89-94, 1996.
[5] Y. Dai, “An application of an artificial neural network to reliability screen classification from noise measurement”, Microelectronics and Reliability, vol. 33, pp. 451-453, 1993.
[6] G. J. Hann, and W. Nelson, “Comparison of methods for analyzing censored life data to estimate relationships between stress and product life”, IEEE Transactions on Reliability, vol. 23, pp. 2-11, 1974.
[7] G. Iuculano, and A. Zanini, “Evaluation of failure models through step-stress tests”, IEEE Transactions on Reliability, vol. R-35, no. 4, pp. 409-413, 1986.
[8] L. F. Lawless, “Statistical methods in reliability”, Technometrics, vol. 25, pp. 305-315, 1983.
[9] M. C. Liu, W. Kuo, and T. Sastri, “An exploratory study of a neural network approach for reliability data analysis”, Quality and Reliability Engineering International, vol. 11, pp. 107-112, 1995.
[10] C. J. Lu, and W. Q. Meeker, “Using degradation measures to estimate a time-To-failure distribution” , Technometrics, vol. 35, no.2, pp. 161-174, 1993.
[11] M. J. LuValle, “A note on experiment design for accelerated life tests”, Microelectronics and Reliability. vol. 30, pp. 591-603, 1990.
[12] W. Q. Meeker, “Planning life tests in which units are inspected for failure”, IEEE Transactions on Reliability. vol. 35, pp. 571-578, 1986.
[13] W. Q. Meeker, and L. A. Escobar, “A review of reserch and current issues in accelerated testing”, International Statistical Review, vol. 61, pp. 147-168, 1993.
[14] Nelson, W. Applied Life Data Analysis, New York: John Wiley. (1982)
[15] Nelson, W. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, New York: John Wiley. (1990)
[16] 張凱程, “已知產品壽命之加速壽命測試模式之探討~以2瓦燈泡為例,” 碩士畢業論文, 國立第一科技大學, 2003.
[17] LED照明標準及品質研發聯盟, LED模組光學與電性量測標準草案, 台灣半導體產業協會, 2008.
[18] LED照明標準及品質研發聯盟, LED元件與模組一般壽命試驗標準草案, 台灣半導體產業協會, 2008.
[19] U.S. Government Accountability Office, Military Handbooks and Standards Related to Reliability, www.gao.gov.
[20] CREE, CREE XLamp XR Family &4550 LED Reliability, www.cree.com/xlamp.
[21] PHILIPS LUMILEDS, Reliability Datasheet RD25, www.philipslumileds.com.
[22] L. R. Kapur and K. C Lamberson, Reliability engineering design, John Willey & Sons, New York, 1977.
[23] R. Confer and T. Trostle, “Use of highly accelerate life test (HALT) to determine reliability of multilayer ceramic capacitiors”, Materials Research Laboratory, pp. 320-322, 1991.
[24] H. Cramer, J. Oliver and G. Dix, “MMIC Capacitor reliability”, EIA/Electric Sensors and Systems Sector GaAs Product Departmant, pp. 46-51, 1998.
[25] J. M. Ralston, and J. W. Mann, “Temperature and current dependence of degradation in red-emitting GaP LED's”, Journal of Applied Physics, vol. 50, no.5, pp. 3630-3637, 1979.
[26] S. S. Rao, Reliability-based design, Macgraw-Hill. (1993)
[27] L. C. Tang, and D. S. Chang, “Reliability prediction using nondestructive accelerated degradation data: A Case Study on Power Supply Units”, IEEE Transactions on Reliability, vol. 44, pp. 562-566, 1995.
[28] G. B. Yang, “Optimum constant-ctress accelerated life test plans”, IEEE Transactions on Reliability, vol. 43, pp. 575-581, 1994.
[29] HITACHI , U-4100 UV-Vis-NIR ,http://www.hitachi-hitec.com/global/science/
uv_vis/u4100.html.
[30] Y. S. Fran and T. Y. Tseng, “Involvement of scattered UV light in the generation of photoluminescence in powdered phosphor screens”, Journal of Physics D-Applied Physics, vol. 32, pp.513-517, 1999.
[31] HITACHI , F-4500 Fluorescence ,http://www.hitachi-hitec.com/global/science/
[32] W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, CRC Press, Boca Raton, 2006.
[33] A. H. Kitai, Solid State Luminescence, Chapman & Hall, New York, 1993.
[34] K. D. Mielenz, Optical Radiation Measurement, Academic Press, New York, 1982.
[35] L. Porres, A. Holland, L. O. Palsson, A. P. Monkman, C. Kemp and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere”, Journal of Fluorescence, vol. 16, pp. 267-272. 2006.
[36] EDINBRUGH INSTRUMENTS, OB920 Time Resolved and Steady State Fluorescence Spectrometers, http://www.nano.nsysu.edu.tw/nano/V2007/
[37] Y. Haiping, L. Sam, R. Christine and M. Ray, Applied Physics Letters, vol. 69, pp. 4087, 1996.
[38] A. Yu. Kobitski, K. S. Zhuravlev, H. P.Wagner and D. R. T. Zahn, Phys. Rev. B vol. 63, pp. 115423, 2001.
[39] S. S. Kwang, F. Makoto, and O. Yoshimichi, Phys. Rev. B59, 1590, 1999.
[40] 謝嘉民、賴一凡、林永昌、枋志堯, 光激發螢光量測的原理、架構及應用, 奈米通訊期刊, vol. 12, no 2. pp. 28-39.
[41] WEI MIN industrial co., VA-286, http://www.weimin.com.tw/.
[42] HELIO co., Products, http://heliopto.com/ Products/.
[43] Lightports co., Products, http://www.lightports.com/index.htm/.

第四章 高功率LED模組透鏡形狀和失效可靠度研究

[1] S. Nakamura and S. F. Chichibu, “Introduction to nitride semiconductor blue laser diode and Light Emitting Diodes”, London, U.K: Taylor and Francis, 2000.
[2] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to solid state lighting”, New York: Wiley, 2002.
[3] M.R. Krames, J. Bhat, D. Collins, N. F. Gardner, W. Gotz, C. H. Lowery, M. Ludowise, P. S. Martin, G. Mueller, R. Mueller-Mach, S. Rudaz, D. A. Steigerwald, S. A. Stockman, and J. J. Wierer, “High-power III-Nitride emitters for solid-state lighting”, Physica Status Solidi (a), vol. 192, no. 2, pp. 237-245, 2002.
[4] Cai, S. J. Li, R. Chen, Y. L. Wong, L. Wu, W. G. Thomas, S. G. Wang and K.L., “High performance AlGaN/GaN HEMT with improved ohmic contacts”, Institution of Engineering and Technology, vol. 34, Issue.24, pp. 2354-2356, 1998.
[5] S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates”, Applied Physics Letters, vol. 42, pp. 427-429, 1983.
[6] H. Amino, N. Sawaki, I. Akasaki and Y. Toyota, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Applied Physics Letters, vol. 48, pp. 353-355, 1986.
[7] For a review, see S. Nakamura and G. Fasol, “The blue laser diode: GaN based light emitters and lasers”, Springer-Verlag, Heidelberg, 1997, 1st ed.
[8] S. Nakamura, “In situ monitoring of GaN growth using interference effects”, Japanese Journal of Applied Physics, vol. 30, pp. 1620-1627, 1991.
[9] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes”, Japanese Journal of Applied Physics, vol 35, pp. L74-L76, 1996.
[10] M. S. Shur and R. F. Davis, “GaN-based materials and devices: Growth fabrication, characterization and performance”, World Scientific, pp.6-11, 2004.
[11] S. Nadamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet lightemitting diodes”, Applied Physics Letters, vol. 62, pp. 2391-2392, 1993.
[12] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBarrs, and S. Nadamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Applied Physics Letters, vol. 84, pp. 855-857, 2004
[13] J. H. Cho, C. S. Sone, Y. J. Park and E. J. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift”, Physica Status Solidi (a), vol. 202, pp. 1869-1873, 2005.
[14] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology”, IEEE Journal of Selected Topics in Quantum Electronics , vol. 8, no.2, pp. 310-320, March/April, 2002.
[15] M. P. Liao, “DC current-induced rollover of illumination efficiency of GaN-based power LEDs”, IEEE Photonics Technology Letters, vol. 19, no. 24, pp. 2000-2002, 2007.
[16] S. Nadamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet lightemitting diodes”, Applied Physics Letters, vol. 62, pp. 2391-2392, 1993.
[17] F. S. Hwu, G. J. Sheu and J. C. Chen, “Thermal modeling and performance of LED packaging for illuminating device”, Proceedings of SPIE, vol. 6337, pp. 63371J-1~7, 2006.
[18] J. Hu, L. Yang, W. J. Hwang and M. W. Shin, “Thermal and mechanical analysis of delamination in GaN-based light-emitting diode packages”, Journal of Crystal Growth, vol. 288, pp. 157-161, 2006.
[19] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes”, Applied Physics Letters, vol. 86, pp. 243505-1~3, 2005.
[20] C. Tsou, Y. S. Huang and G. W. Lin, “Silicon-based packaging platform for light emitting diode”, IEEE 6th International Conference on Electronic Packaging Technology, 2005.
[21] A. M. Norris, Dow Corning, Midland, Michigan and M. E. Gladstone, “Silicone materials for chip-scale packaging”, Chip Scale Review, pp. 260-527, 1998.
[22] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductor”, Physics, vol. 34, pp.149, 1967.
[23] H. Y. Fan, “Temperature dependence of the energy gap in semiconductors”, Physics Review, vol 82, pp. 900-905, 1951.
[24] M. B. Panish, H. C. Casey, JR, “Temperature dependence of the energy gap in GaAs and GaP”, Journal of Applied Physics, vol. 40, no 1, 1969.
[25] L. Kim, G. W. Lee, W. J. Hwang, J. S. Yang and M.W. Shin, “Thermal analysis and design of GaN-based LEDs for high power applications”, Physica Status Solidi (c), vol. 0, pp. 2261-2264, 2003.
[26] T. H. Lee, L. Kim, W. J. Hwang, C. C. Lee and M. W. Shin, “Thermal analysis of GaN-based LEDs using the finite element method and unit temperature profile approach”, Physica Status Solidi (b), vol. 241, pp. 2681-2684, 2004.
[27] G. Murtaza, J. M. Senior, “Method for extracting thermally stable optical signals from a GaAlAs LED source”, IEEE Photonics Technology Letters, vol. 7, no. 5, pp. 479, 1995.
[28] V. Schwegler, S. S. Schad, C. Kirchner, M. Seyboth, M. Kamp, K. J. Ebeling, V. E. Kudryashov, A. N. Turkin, A. E. Yunovich, U. Stempfle, A. Link, W. Limmer and R. Sauer, “Ohmic heating of InGaN LEDs during operation: determination of the junction temperature and its influence on device performance”, Physica Status Solidi (a), vol. 176, pp. 783-786, 1999.
[29] W. D. V. Driel, G. Q. Zhang, J. H. J. Janssen and L. J. Ernst, “Response surface modeling for nonlinear packaging stresses”, Journal of Electronic Packaging, vol. 125, pp. 490-497, 2003.
[30] S. Nakamura, “In situ monitoring of GaN growth using interference effects”, Japanese Journal of Applied Physics, vol. 30, pp. 1620-1627, 1991.
[31] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart”, Science, vol. 308, pp. 1274-1278, 2005.
[32] O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, “Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes”, Applied Physics Letters, vol. 79, pp. 2895, 2001.
[33] Y. C. Kang, I. W. Lenggoro, S. B. Park and K. Okuyama, “YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis”, Materials Research Bulletin, vol. 35, pp. 789-798, 2000.
[34] P. C. P. Chao, L. D. Liao and C. W. Chiu, “Design of a novel LED lens cap and optimization of LED placement in a large area direct backlight for LCD-TVs”, Proceedings of SPIE, vol. 6196, pp. 61960-619609, 2006.
[35] D. R. Edwards, M. Hwang and B. Stearns, “Thermal enhancement of plastic IC packages”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, vol. 18, pp. 57-67, 1995.
[36] M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silverail, and J. J. Brown, “Organic light-emitting devices with extended operating lifetimes on plastic substrates”, Applied Physics Letters, vol. 81, pp. 2929-2931, 2002.
[37] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, “Degradation and failure of MEH-PPV light-emitting diodes”, Journal of Applied Physics, vol. 79, pp. 2745-2751, 1996.
[38] 林育寬, "高功率發光二極體高溫加速老化之失效分析\", 中山大學機械與機電工程研究所 (2007).
[39] 羅元村, "高功率藍光發光二極體高溫加速老化光場及電性研究\", 中山大學光電工程研究所 (2008).
[40] Y. C. Hsu, Y. K. Lin, M.H. Chen, C. C. Tsai, J. H. Hiang, S. B. Huang, W. L. Hu, Y. I. Su, and W. H. Cheng, “Failure mechanisms associated with lens shape of high-power LED modules in Aging Test”, IEEE Transactions Electron Devices, vol. 55, no. 2, pp. 689-691, Feb. 2008.
[41] C. C. Tsai, M. H. Chen, Y. C. Huang, Y. C. Hsu, Y. T Lo, Y. J. Lin, J. H. Kuang, S. B. Huang, H. L. Hu, Y. I. Su and W. H. Cheng, “Decay mechanisms of radiation pattern and optical spectrum of high-power LED modules in aging test”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 4, pp. 1156-1162, Jul./Aug. 2009.
[42] MARC Analysis Research Corporation, 2003, “Theory and user information”, vol. A, pp.403-404.

第五章 高功率LED模組光功率與光場衰減機制研究

[1] P. C. P. Chao, L. D. Liao and C. W. Chiu, “Design of a novel LED lens cap and optimization of LED placement in a large area direct backlight for LCD-TVs”, Proceedings of SPIE, vol. 6196, pp. 61960-619609, 2006.
[2] D. R. Edwards, M. Hwang and B. Stearns, “Thermal enhancement of plastic IC packages”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, vol. 18, pp. 57-67, 1995.
[3] M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silverail, and J. J. Brown, “Organic light-emitting devices with extended operating lifetimes on plastic substrates”, Applied Physics Letters, vol. 81, pp. 2929-2931, 2002.
[4] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, “Degradation and failure of MEH-PPV light-emitting diodes”, Journal of Applied Physics, vol. 79, pp. 2745-2751, 1996.
[5] 林育寬, "高功率發光二極體高溫加速老化之失效分析\", 中山大學機械與機電工程研究所 (2007).
[6] 羅元村, "高功率藍光發光二極體高溫加速老化光場及電性研究\", 中山大學光電工程研究所 (2008).
[7] Y. C. Hsu, Y. K. Lin, M.H. Chen, C. C. Tsai, J. H. Hiang, S. B. Huang, W. L. Hu, Y. I. Su, and W. H. Cheng, “Failure mechanisms associated with lens shape of high-power LED modules in Aging Test”, IEEE Transactions Electron Devices, vol. 55, no. 2, pp. 689-691, Feb. 2008.
[8] C. C. Tsai, M. H. Chen, Y. C. Huang, Y. C. Hsu, Y. T Lo, Y. J. Lin, J. H. Kuang, S. B. Huang, H. L. Hu, Y. I. Su and W. H. Cheng, “Decay mechanisms of radiation pattern and optical spectrum of high-power LED modules in aging test”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 4, pp. 1156-1162, Jul./Aug. 2009.

第六章 高功率白光LED模組掺雜螢光膠衰減機制研究

[1] Y. Gu and N. Narendran, “A non-contact method for determining junction temperature of phosphor-converted white LEDs”, Proceedings of SPIE, vol. 5187, pp. 107-114, 2004.
[2] Y. C. Kang, I. W. Lenggoro, S. B. Park and K. Okuyama, “YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis”, Materials Research Bulletin, vol. 35, pp. 789-798, 2000.
[3] D. J. Robbins, “The effect of crystal field and temperature on the photo- luminescence excitation efficiency of Ce3+ in YAG”, Journal of Electrochemical Society, vol. 126, no. 9, pp. 1550-1555, 1979.
[4] M. J. Weber, Phosphor Handbook, CRC Press, Boca Raton, 1999.
[5] G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, New York, 1994.
[6] J. A. Deluca, “An Introduction to luminescence in organic solids”, Journal of Chemical Education, vol. 57, no. 8, pp. 541-545, 1980.
[7] Q. Li, L. Gao, and D. Yan, “The crystal structure and spectra of nano- scale YAG:Ce3+”, Material Chemistry and Physics, vol. 64, pp. 41-44, 2000.
[8] G. D. Rosario, S. Ohara, L. Mancic and O. Milosevic, “Characterisation of YAG:Ce powders thermal treated at different temperatures”, Applied Surface Science, vol. 238, pp. 469-474, 2004.
[9] X. Li, H. Liu, J. Wang, H. Cui and F. Han, “YAG:Ce nano-sized phosphor particles prepared by a solvothermal method”, Materials Research Bulletin, vol. 39, pp. 1923-1930, 2004.
[10] Y. Pan, M. Wu and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor”, Materials Science and Engineering B, vol. 106, pp. 251-256, 2004.
[11] C. H. Lu and R. Jagannathan, “Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting”, Applied Physics Letters, vol. 80, no. 19, pp. 3608-3610, 2002.
[12] F. Yuan and H. Ryu, “Ce-doped YAG phosphor powders prepared by co- precipitation and heterogeneous precipitation”, Materials Science and Engineering B, vol. 107, pp. 14-18, 2004.
[13] HELIO co., Products, http://heliopto.com/ Products/inspection certificate.
[14] P. E. Burrows, S. R. Forrest, T. X. Zhou, and L. Michalski, “Operating lifetime of phosphorescent organic light emitting devices”, Applied Physics Letters, vol. 76, pp. 2493-2495, 2000.
[15] Sih-Etsu chemical, KE-2500/KER-260, http://www.silicone.jp/, 2006.
[16] 林育寬, "高功率發光二極體高溫加速老化之失效分析\", 中山大學機械與機電工程研究所 (2007).
[17] 羅元村, "高功率藍光發光二極體高溫加速老化光場及電性研究\", 中山大學光電工程研究所 (2008).
[18] C. C. Tsai, M. H. Chen, Y. C. Huang, Y. C. Hsu, Y. T Lo, Y. J. Lin, J. H. Kuang, S. B. Huang, H. L. Hu, Y. I. Su and W. H. Cheng, “Decay mechanisms of radiation pattern and optical spectrum of high-power LED modules in aging test”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 4, pp. 1156-1162, Jul./Aug. 2009.
[19] C. C. Tsai, J. Wang, M. H. Chen, Y. C. Hsu, Y. J. Lin, C. W. Lee, S. B. Huang, H. L. Hu, and W. H. Cheng, “Investigation of Ce:YAG doping effect on thermal aging for high-power phosphor-converted White-Light-Emitting Diode”, IEEE Transactions Devices and Materials Reliability, vol. 9, no. 3, pp. 367-371, Sept. 2009.
[20] 原著:大田登,編譯:陳鴻興,陳詩涵, 色彩工程學:理論與應用, 全華圖書股份有限公司, 2008.
[21] Y. Sato, S. Ichinosawa and H. kanai, “Operation characteristics and degradation”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, pp. 40-48, 1998.
[22] N. F. Gardner et al, “1.4 times efficiency improvement in transparent substrate (AlxGa1-x) 0.5 In 0.5 P light emitting diodes with thin active regions”, Applied Physics Letters, vol. 74, pp. 2230-2232, 1999.
[23] L. H. Lee, and W. C. Chen, “High refractive index thin films prepared from trialkoxysilane-capped poly (methyl methacrylate) -titania hybrid materials”, Chem. Mater. vol. 13, pp. 1137-1142, 2001.
[24] W. J. Hwang, T. H. Lee, L. Kim and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement”, Physica Sstatus Solidi (c), vol. 1, pp. 2429-2432, 2004.
[25] S. Chhajed, Y. Xi, Y. L. Li, Th. Gessmann and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properities of trichromatic white-light sources based on light-emitting diodes”, Journal of Applied Physics, vol. 97, pp. 054506-1~8, 2005.
[26] J. A. Deluca, “An introduction to luminescence in inorganic solids”, Journal of Chemical Education, vol. 57, pp. 541-545. 1980.
[27] S. Kuboniwa, H. Kawai and T. Hoshina, “Cathodoluminescence saturation and decay characteristics of ZnS: Cu, Al phosphor”, Japanese Journal of Applied Physics, vol 19, pp. 1647-1653. 1980.
[28] B. H. Cumpston, I. D. Parker, and K. F. Jensen, “In situ characterization of the oxidative degradation of a polymeric light emitting device”, Journal Applied Physics, vol. 81, pp. 3716-3720, 1997.
[29] A. M. Norris, Dow Corning, Midland, Michigan and M. E. Gladstone, “Silicone materials for chip-scale packaging”, Chip Scale Review, pp. 260-527, 1998.
[30] 陳遠帆, “(YXYb1-x)3Al5O12晶體的生長與物理性質研究,” 博士畢業論文, 國立中山大學, 2003.
[31] 石景仁, “白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析,” 碩士畢業論文, 國立台灣大學, 2001.

作 者 著 作
期刊論文:
1. Y. C. Hsu, Y. K. Lin, M. H. Chen, C. C. Tsai, J. H. Hiang, S. B. Huang, W. L. Hu, Y. I. Su, and W. H. Cheng, “Failure mechanisms associated with lens shape of high-power LED modules in Aging Test”, IEEE Transactions Electron Devices, vol. 55, no. 2, pp. 689-691, Feb. 2008.
2. C. C. Tsai, M. H. Chen, Y. C. Huang, Y. C. Hsu, Y. T Lo, Y. J. Lin, J. H. Kuang, S. B. Huang, H. L. Hu, Y. I. Su and W. H. Cheng, “Decay mechanisms of radiation pattern and optical spectrum of high-power LED modules in aging test”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 4, pp. 1156-1162, Jul./Aug. 2009.
3. C. C. Tsai, J. Wang, M. H. Chen, Y. C. Hsu, Y. J. Lin, C. W. Lee, S. B. Huang, H. L. Hu, and W. H. Cheng, “Investigation of Ce:YAG doping effect on thermal aging for high-power phosphor-converted White-Light-Emitting Diode”, IEEE Transactions Devices and Materials Reliability, vol. 9, no. 3, pp. 367-371, Sept. 2009.
4. C. C. Tsai, C. C. Huang, J. Wang, M. C. Hsuh, and W. H. Cheng, “An optimum design and fabrication of focus lens for high intensity Light-Emitting Diodes”, Japanese Journal of Applied Physics, vol. 48, no. 094504, Oct. 2009.

研討會論文:
1. C. C. Tsai, M. H. Chen, C. W Lee, Y. T. Lo, Y. C. Hsu, and W.H. Cheng, “Decay mechanisms of lumen and chromaticity for high-power phosphor-based white-light-emitting diodes in thermal aging”, Proceedings of SPIE, vol. 6910. Feb. 2008.
2. Y. C. Hsu, C. C. Tsai, M. H. Chen, Y. T. Lo, C. W. Lee, and W.H. Cheng, “Decay mechanisms of lumen and chromaticity for high-power phosphor-based white LED in thermal againg”, ECTC, May 27-30, Lake Buena Vista, Florida (2008).
3. C. Y. Cheng, Y. J. Lin, J. K. Chang, J. S. Wang, C. C. Tsai, C. W. Lee, H. L. Hu, and W. H. Cheng, “Effect of temperature and humidity on phosphor of concentration and efficiency”, Optics and Photonics Taiwan, Sat-P2-140, Taipei, Taiwan, 2008.
4. J. K. Chang, C. Y. Cheng, Y. J. Lin, C.C. Tsai, C. W. Lee, H. L. Hu, Y. C. Hsu, and W. H. Cheng, “The effect of high-power LED lens structure on the radiation patterns”, Optics and Photonics Taiwan, Sat-P2-290, Taipei, Taiwan, 2008.
5. Y. J. Lin, C. Y. Cheng, J. K. Chang, J. S. Wang, C. C. Tsai, C. W. Lee, H. L. Hu, and W. H. Cheng, “Characteristics and reliablity of red nitride phosphor used in White-Light Emitting Diodes”, Optics and Photonics Taiwan, Sat-P2-296, Taipei, Taiwan, 2008.
6. C. C. Tsai, Y. C. Hsu, M. H. Chen, Y. T. Lo, Y. J. Lin, J. H. Kuang, H. L. Hu, S. B. Huang, C. W. Lee, Y. I. Su, and W.H. Cheng, “Decay of radiation pattern and spectrum of hight-power LED modules in aging test”, IEEE Lasers & Elecrro-Optics Society (LEOS), B-FR-IV 4-2, Newport Beach, CA, USA, 2008.
7. J. S. Wang, C. C. Tsai, M. H. Chen, Y. C. Hsu, H. L. Hu, C. W Lee, and W.H. Cheng, “Decay of lumen and chromaticity of high-power phosphor-converted white-light-emitting diodes in thermal aging”, Proceedings of SPIE, vol. 7231. Feb. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code