Responsive image
博碩士論文 etd-1208111-163255 詳細資訊
Title page for etd-1208111-163255
論文名稱
Title
養殖型軟珊瑚 Klyxum simplex 與台灣野生型軟珊瑚 Cladiella hirsuta 所含Eunicellin-Based 雙萜化合物及生物活 性研究
Eunicellin-Based Diterpenoids from the Soft Corals of Cultured Klyxum simplex and Wild-Type Cladiella hirsuta and Their Bioactivities
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
468
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-10-05
繳交日期
Date of Submission
2011-12-08
關鍵字
Keywords
養殖型
simplex, hirsute, eunicellin, diterpenoid
統計
Statistics
本論文已被瀏覽 5702 次,被下載 225
The thesis/dissertation has been browsed 5702 times, has been downloaded 225 times.
中文摘要
本研究主要是從養殖型Klyxum simplex 與野生型珊瑚Cladiella hirsute的有機溶劑萃取物中尋找具有生物活性的化學成分。從養殖型軟珊瑚K.simplex 中分離出二十七個新的eunicellin-type diterpenoids 類化合物klysimplexins A–X (1–24) 和klysimplexin sulfoxides A–C (25–27),另外從野
生型軟珊瑚Cladiella hirsuta 中分離出八個新的eunicellin-type diterpenoids 類化合物hirsutalins C (28) 和F–L (29–35)。所有化合物的化學成分均藉由光譜數據的分析(IR、MS、1D、2D NMR 和X-ray)之光譜資料圖譜而決定。化合物1、3、12 和 22 的絕對立體構型,則經由Mosher’s 方法之酯化反應加以確定,此外化合物1 的結構則更經由X-ray 晶體繞射加以確立。在細胞毒殺活性測試結果顯示化合物2、8、17、20 和 29 對部分癌細胞株都具有中等的細胞毒殺活性。而化合物在濃度為10 μM 化合物10–14,18, 19, 25–28 和 31,可有效的抑制發炎蛋白質iNOS 的表現,其中化合物
18、19 和27 對於COX-2 也具有良好的抑制效果。
Abstract
In order to discover new bioactive compounds, the chemical constituents from the organic extracts of the cultured soft coral Klyxum simplex and wild-type soft coral Cladiella hirsute were studied. 27 new eunicellin-based
diterpenoids, klysimplexins A–X (1–24) and klysimplexin sulfoxides A–C (25–27), were isolated from a cultured soft coral Klyxum simplex. Furthermore, eight new eunicellin-base diterpenoids, hirsutalins C (28) and F–L (29–35), were isolated from the soft coral Cladiella hirsuta. The structures of compounds 1–35 were elucidated by spectroscopic methods, in particular 1D and 2D NMR
experiments. The absolute stereochemistries of 1, 3, 12, and 22 were determined by Mosher’s method. The structure of 1 was further confirmed by a single-crystal X-ray diffraction analysis. The absolute configurations of 1, 3, 12, and 22 were determined by Mosher’s method. Compounds 2, 8, 17, 20, and 29 have been shown to exhibit cytotoxicity toward a limited panel of cancer cell
lines. Compounds 10–14, 18, 19, 25–28, and 31 were found to display significant in vitro anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells by inhibiting the expression of the iNOS protein. Compounds
18, 19, and 27 also could effectively reduce the level of the COX-2 protein.
目次 Table of Contents
Abstract (English) 1
Abstract (Chinese) 2
Chapter 1 Introduction 7
Chapter 2 Literature Review 10
Chapter 3 Experimental Section 40
Section I General Experimental Procedures 40
Section II Organism and Extraction 41
Section III Cytotoxicity Assay 49
Section IV Anti-inflammatory Assay 50
Chapter 4 Compound Identification 52
Structure Elucidation of Klysimplexin A (1) 52
Structure Elucidation of Klysimplexin B (2) 64
Structure Elucidation of Klysimplexin C (3) 73
Structure Elucidation of Klysimplexin D (4) 84
Structure Elucidation of Klysimplexin E (5) 93
Structure Elucidation of Klysimplexin F (6) 102
Structure Elucidation of Klysimplexin G (7) 111
Structure Elucidation of Klysimplexin H (8) 120
Structure Elucidation of Klysimplexin I (9) 130
Structure Elucidation of Klysimplexin J (10) 142
Structure Elucidation of Klysimplexin K (11) 148
Structure Elucidation of Klysimplexin L (12) 154
Structure Elucidation of Klysimplexin M (13) 166
Structure Elucidation of Klysimplexin N (14) 174
Structure Elucidation of Klysimplexin O (15) 183
Structure Elucidation of Klysimplexin P (16) 192
Structure Elucidation of Klysimplexin Q (17) 202
Structure Elucidation of Klysimplexin R (18) 212
Structure Elucidation of Klysimplexin S (19) 221
Structure Elucidation of Klysimplexin T (20) 230
Structure Elucidation of Klysimplexin U (21) 240
Structure Elucidation of Klysimplexin V (22) 250
Structure Elucidation of Klysimplexin W (23) 261
Structure Elucidation of Klysimplexin X (24) 271
Structure Elucidation of Klysimplexin Sulfoxide A (25) 281
Structure Elucidation of Klysimplexin Sulfoxide B (26) 291
Structure Elucidation of Klysimplexin Sulfoxide C (27) 301
Structure Elucidation of Hirsutalin C (28) 310
Structure Elucidation of Hirsutalin F (29) 320
Structure Elucidation of Hirsutalin G (30) 329
Structure Elucidation of Hirsutalin H (31) 338
Structure Elucidation of Hirsutalin I (32) 347
Structure Elucidation of Hirsutalin J (33) 357
Structure Elucidation of Hirsutalin K (34) 366
Structure Elucidation of Hirsutalin L (35) 375
Chapter 5 Bioactivities 384
Section I: Cytotoxicity Assay 384
Section II: Anti-inflammatory Assay 386
Chapter 6 Conclusion 390
Chapter 7 Physical Properties and Data collections 393
Chapter 8 Reaction and X-ray Data 403
Chapter 9 References 431
List of Figures
Figure 3-1. The isolated processes of the cultured soft coral Klyxum simplex. 42
Figure 3-2. The isolated processes of the soft coral Cladiella hirsuta. 47
Figure 4-1-1. 1H-1H COSY and HMBC correlations for 1 53
Figure 4-1-2. Molecular structure of 1 based on X-ray analysis. 54
Figure 4-1-3. 1H NMR chemical shift differences (Δδ) for the MTPA esters of 1 55
Figure 4-1-4. IR spectrum of 1 57
Figure 4-1-5. ESIMS spectrum of 1 57
Figure 4-1-6. HRESIMS spectrum of 1 58
Figure 4-1-7. 1H NMR spectrum of 1 in Pyridine-d5 58
Figure 4-1-8. 1H NMR (3.3~6.3 ppm) spectrum of 1 in d5-Pyridine-d5 59
Figure 4-1-9. 13C NMR spectrum of 1 in d5-Pyridine-d5 59
Figure 4-1-10. DEPT spectrum of 1 in d5-Pyridine-d5 60
Figure 4-1-11. HSQC spectrum of 1 in d5-Pyridine-d5 60
Figure 4-1-12. COSY spectrum of 1 in d5-Pyridine-d5 61
Figure 4-1-13. HMBC spectrum of 1 in d5-Pyridine-d5 61
Figure 4-1-14. NOESY spectrum of 1 in d5-Pyridine 62
Figure 4-1-15. 1H-NMR spectrum for the S-MTPA ester of 1 in CDCl3 62
Figure 4-1-16. 1H-NMR spectrum for the R-MTPA ester of 1 in CDCl3 63
Figure 4-2-1. 1H–1H COSY and selective HMBC correlations of 2 65
Figure 4-2-2. Selected NOESY correlations of 2 65
Figure 4-2-3. IR spectrum of 2 67
Figure 4-2-4. ESIMS spectrum of 2 67
Figure 4-2-5. HRESIMS spectrum of 2 68
Figure 4-2-6. 1H NMR spectrum of 2 in d6-Benzene 68
Figure 4-2-7. 1H NMR (2.5~5.7 ppm) spectrum of 2 in d6-Benzene 69
Figure 4-2-8. 13C NMR spectrum of 2 in d6-Benzene 69
Figure 4-2-9. DEPT spectrum of 2 in d6-Benzene 70
Figure 4-2-10. HSQC spectrum of 2 in d6-Benzene 70
Figure 4-2-11. COSY spectrum of 2 in d6-Benzene 71
Figure 4-2-12. HMBC spectrum of 2 in d6-Benzene 71
Figure 4-2-13. NOESY spectrum of 2 in d6-Benzene 72
Figure 4-3-1. 1H–1H COSY and selective HMBC correlations of 3 74
Figure 4-3-2. Selected NOESY correlations of 3 74
Figure 4-1-3. 1H NMR chemical shift differences (Δδ) for the MTPA esters
of 3
75
Figure 4-3-4. IR spectrum of 3 77
Figure 4-3-5. ESIMS spectrum of 3 77
Figure 4-3-6. HRESIMS spectrum of 3 78
Figure 4-3-7. 1H NMR spectrum of 3 in CDCl3 78
Figure 4-3-8. 1H NMR (2.6~4.5 ppm) spectrum of 3 in CDCl3 79
Figure 4-3-9. 13C NMR spectrum of 3 in CDCl3 79
Figure 4-3-10. DEPT spectrum of 3 in CDCl3 80
Figure 4-3-11. HSQC spectrum of 3 in CDCl3 80
Figure 4-3-12. COSY spectrum of 3 in CDCl3 81
Figure 4-3-13. HMBC spectrum of 3 in CDCl3. 81
Figure 4-3-14. NOESY spectrum of 3 in CDCl3 82
Figure 4-3-15. 1H-NMR spectrum for the S-MTPA ester of 3 in CDCl3 82
Figure 4-3-16. 1H-NMR spectrum for the R-MTPA ester of 3 in CDCl3 83
Figure 4-4-1. 1H–1H COSY and selective HMBC correlations of 4 85
Figure 4-4-2. Selected NOESY correlations of 4 85
Figure 4-4-3. IR spectrum of 4 87
Figure 4-4-4. ESIMS spectrum of 4 87
Figure 4-4-5. HRESIMS spectrum of 4 88
Figure 4-4-6. 1H NMR spectrum of 4 in CDCl3 88
Figure 4-4-7. 1H NMR (2.4~6.0 ppm) spectrum of 4 in CDCl3 89
Figure 4-4-8. 13C NMR spectrum of 4 in CDCl3 89
Figure 4-4-9. DEPT spectrum of 4 in CDCl3 90
Figure 4-4-10. HSQC spectrum of 4 in CDCl3 90
Figure 4-4-11. COSY spectrum of 4 in CDCl3 91
Figure 4-4-12. HMBC spectrum of 4 in CDCl3 91
Figure 4-4-13. NOESY spectrum of 4 in CDCl3 92
Figure 4-5-1. 1H–1H COSY and selective HMBC correlations of 5 94
Figure 4-5-2. Selected NOESY correlations of 5 94
Figure 4-5-3. IR spectrum of 5 96
Figure 4-5-4. ESIMS spectrum of 5 96
Figure 4-5-5. HRESIMS spectrum of 5 97
Figure 4-5-6. 1H NMR spectrum of 5 in CDCl3 97
Figure 4-5-7. 1H NMR (2.5~5.5 ppm) spectrum of 5 in CDCl3 98
Figure 4-5-8. 13C NMR spectrum of 5 in CDCl3 98
Figure 4-5-9. DEPT spectrum of 5 in CDCl3 99
Figure 4-5-10. HSQC spectrum of 5 in CDCl3 99
Figure 4-5-11. COSY spectrum of 5 in CDCl3 100
Figure 4-5-12. HMBC spectrum of 5 in CDCl3 100
Figure 4-5-13. NOESY spectrum of 5 in CDCl3 101
Figure 4-6-1. 1H–1H COSY and selective HMBC correlations of 6 103
Figure 4-6-2. Selected NOESY correlations of 6 103
Figure 4-6-3. IR spectrum of 6 105
Figure 4-6-4. ESIMS spectrum of 6 105
Figure 4-6-5. HRESIMS spectrum of 6 106
Figure 4-6-6. 1H NMR spectrum of 6 in CDCl3 106
Figure 4-6-7. 1H NMR (2.5~5.0 ppm) spectrum of 6 in CDCl3 107
Figure 4-6-8. 13C NMR spectrum of 6 in CDCl3 107
Figure 4-6-9. DEPT spectrum of 6 in CDCl3 108
Figure 4-6-10. HSQC spectrum of 6 in CDCl3 108
Figure 4-6-11. COSY spectrum of 6 in CDCl3 109
Figure 4-6-12. HMBC spectrum of 6 in CDCl3 109
Figure 4-6-13. NOESY spectrum of 6 in CDCl3 110
Figure 4-7-1 1H-1H COSY and selective HMBC correlations of 7 112
Figure 4-7-2. Selected NOESY correlations of 7 112
Figure 4-7-3. IR spectrum of 7 114
Figure 4-7-4. ESIMS spectrum of 7 114
Figure 4-7-5. HRESIMS spectrum of 7 115
Figure 4-7-6 1H NMR spectrum of 7 in CDCl3 115
Figure 4-7-7. 1H NMR (2.0~4.7 ppm) spectrum of 7 in CDCl3 116
Figure 4-7-8. 13C NMR spectrum of 7 in CDCl3 116
Figure 4-7-9. DEPT spectrum of 7 in CDCl3 117
Figure 4-7-10. HSQC spectrum of 7 in CDCl3 117
Figure 4-7-11. COSY spectrum of 7 in CDCl3 118
Figure 4-7-12. HMBC spectrum of 7 in CDCl3 118
Figure 4-7-13. NOESY spectrum of 7 in CDCl3 119
Figure 4-8-1. 1H-1H COSY and selective HMBC correlations of 8 119
Figure 4-8-2. Selected NOESY correlations of 8 122
Figure 4-8-3. IR spectrum of 8 124
Figure 4-8-4. ESIMS spectrum of 8 124
Figure 4-8-5. HRESIMS spectrum of 8 125
Figure 4-8-6. 1H NMR spectrum of 8 in CDCl3 125
Figure 4-8-7. 1H NMR (2.3~6.0 ppm) spectrum of 8 in CDCl3 126
Figure 4-8-8. 13C NMR spectrum of 8 in CDCl3 126
Figure 4-8-9. HSQC spectrum of 8 in CDCl3 127
Figure 4-8-10. COSY spectrum of 8 in CDCl3 127
Figure 4-8-11. HMBC spectrum of 8 in CDCl3 128
Figure 4-8-12. NOESY spectrum of 8 in CDCl3 128
Figure 4-8-13. 1H-NMR spectrum of acetylaction 8a in CDCl3 129
Figure 4-9-1. 1H-1H COSY and selective HMBC correlations of 9 131
Figure 4-9-2. IR spectrum of 9 135
Figure 4-9-3. ESIMS spectrum of 9 135
Figure 4-9-4. HRESIMS spectrum of 9 136
Figure 4-9-5. 1H NMR spectrum of 9 in CDCl3 136
Figure 4-9-6. 1H NMR (1.5~5.5 ppm) spectrum of 9 in CDCl3 137
Figure 4-9-7. 13C NMR spectrum of 9 in CDCl3 137
Figure 4-9-8. DEPT spectrum of 9 in CDCl3 138
Figure 4-9-9. HSQC spectrum of 9 in CDCl3 138
Figure 4-9-10. COSY spectrum of 9 in CDCl3 139
Figure 4-9-11. HMBC spectrum of 9 in CDCl3 139
Figure 4-9-12. NOESY spectrum of 9 in CDCl3 140
Figure 4-9-13. 1H NMR spectrum of base-catalyized hydrolysis 9 in CD3Cl3 140
Figure 4-9-3. LC-ESI MS/MS spectrum of 9 in CDCl3 141
Figure 4-10-1. ESIMS spectrum of 10 145
Figure 4-10-2. HRESIMS spectrum of 10 145
Figure 4-10-3. LC-ESI MS/MS spectrum of 10 in CDCl3 146
Figure 4-10-4. 1H NMR spectrum of 10 in CDCl3 146
Figure 4-10-5. 13C NMR spectrum of 10 in CDCl3 147
Figure 4-11-1. ESIMS spectrum of 11 151
Figure 4-11-2. HRESIMS spectrum of 11 151
Figure 4-11-3. LC-ESI MS/MS spectrum of 11 in CDCl3 152
Figure 4-11-4. 1H NMR spectrum of 11 in CDCl3 152
Figure 4-11-5. 1H NMR (2.0~5.7 ppm) spectrum of 11 in CDCl3 153
Figure 4-11-6. 13C NMR spectrum of 11 in CDCl3 153
Figure 4-12-1. 1H-1H COSY and selective HMBC correlations of 12 155
Figure 4-12-2. Selected NOESY correlations of 12 156
Figure 4-12-3. 1H NMR chemical shift differences (Δδ) for the MTPA
esters of 12 157
Figure 4-12-4. IR spectrum of 12 159
Figure 4-12-5. ESIMS spectrum of 12 159
Figure 4-12-6. HRESIMS spectrum of 12 160
Figure 4-12-7. 1H NMR spectrum of 12 in CDCl3 160
Figure 4-12-8. 1H NMR (2.0~5.6 ppm) spectrum of 12 in CDCl3 161
Figure 4-12-9. 13C NMR spectrum of 12 in CDCl3 161
Figure 4-12-10. DEPT spectrum of 12 in CDCl3 162
Figure 4-12-11. HSQC spectrum of 12 in CDCl3 162
Figure 4-12-12. COSY spectrum of 12 in CDCl3 163
Figure 4-12-13. HMBC spectrum of 12 in CDCl3 163
Figure 4-12-14. NOESY spectrum of 12 in CDCl3 164
Figure 4-12-15. 1H-NMR spectrum for the S-MTPA ester of 12 in CDCl3 164
Figure 4-12-16. 1H-NMR spectrum for the R-MTPA ester of 12 in CDCl3 165
Figure 4-13-1. 1H-1H COSY and selective HMBC correlations of 13 167
Figure 4-13-2. Selected NOESY correlations of 13 167
Figure 4-13-3. IR spectrum of 13 169
Figure 4-13-4. ESIMS spectrum of 13 169
Figure 4-13-5. HRESIMS spectrum of 13 170
Figure 4-13-6. 1H NMR spectrum of 13 in CDCl3 170
Figure 4-13-7. 1H NMR (2.3~5.6 ppm) spectrum of 13 in CDCl3 171
Figure 4-12-8. 13C NMR spectrum of 13 in CDCl3 171
Figure 4-13-9. HSQC spectrum of 13 in CDCl3 172
Figure 4-13-10. COSY spectrum of 13 in CDCl3 172
Figure 4-13-11. HMBC spectrum of 13 in CDCl3 173
Figure 4-13-12. NOESY spectrum of 13 in CDCl3 173
Figure 4-14-1. 1H-1H COSY and selective HMBC correlations of 14 175
Figure 4-14-2. Selected NOESY correlations of 14 175
Figure 4-14-3. IR spectrum of 14 177
Figure 4-14-4. ESIMS spectrum of 14 177
Figure 4-14-5. HRESIMS spectrum of 14 178
Figure 4-14-6. 1H NMR spectrum of 14 in CDCl3 178
Figure 4-14-7. 1H NMR (2.0~5.8 ppm) spectrum of 14 in CDCl3 179
Figure 4-14-8. 13C NMR spectrum of 14 in CDCl3 179
Figure 4-14-9. DEPT spectrum of 14 in CDCl3 180
Figure 4-14-10. HSQC spectrum of 14 in CDCl3 180
Figure 4-14-11. COSY spectrum of 14 in CDCl3 181
Figure 4-14-12. HMBC spectrum of 14 in CDCl3 181
Figure 4-14-13. NOESY spectrum of 14 in CDCl3 182
Figure 4-15-1. 1H-1H COSY and selective HMBC correlations of 15 184
Figure 4-15-2. Selected NOESY correlations of 15 184
Figure 4-15-3. IR spectrum of 15 186
Figure 4-15-4. ESIMS spectrum of 15 186
Figure 4-15-5. HRESIMS spectrum of 15 187
Figure 4-15-6. 1H NMR spectrum of 15 in CDCl3 187
Figure 4-15-7. 1H NMR (3.3~5.7 ppm) spectrum of 15 in CDCl3 188
Figure 4-15-8. 13C NMR spectrum of 15 in CDCl3 188
Figure 4-15-9. DEPT spectrum of 15 in CDCl3 189
Figure 4-15-10. HSQC spectrum of 15 in CDCl3 189
Figure 4-15-11. COSY spectrum of 15 in CDCl3 190
Figure 4-15-12. HMBC spectrum of 15 in CDCl3 190
Figure 4-15-13. NOESY spectrum of 15 in CDCl3 191
Figure 4-16-1. 1H-1H COSY and selective HMBC correlations of 16 193
Figure 4-16-2. Selected NOESY correlations of 16 194
Figure 4-16-3. IR spectrum of 16 196
Figure 4-16-4. ESIMS spectrum of 16 196
Figure 4-16-5. HRESIMS spectrum of 16 197
Figure 4-16-6. 1H NMR spectrum of 16 in CDCl3 197
Figure 4-16-7. 1H NMR (2.2~5.7 ppm) spectrum of 16 in CDCl3 198
Figure 4-16-8. 13C NMR spectrum of 16 in CDCl3 198
Figure 4-16-9. DEPT spectrum of 16 in CDCl3 199
Figure 4-16-10. HSQC spectrum of 16 in CDCl3 199
Figure 4-16-11. COSY spectrum of 16 in CDCl3 200
Figure 4-16-12. HMBC spectrum of 16 in CDCl3 200
Figure 4-16-13. NOESY spectrum of 16 in CDCl3 201
Figure 4-17-1. 1H-1H COSY and selective HMBC correlations of 17 203
Figure 4-17-2. Selected NOESY correlations of 17 204
Figure 4-17-3. IR spectrum of 17 206
Figure 4-17-4. ESIMS spectrum of 17 206
Figure 4-17-5. HRESIMS spectrum of 17 207
Figure 4-17-6. 1H NMR spectrum of 17 in CDCl3 207
Figure 4-17-7. 1H NMR (3.3~6.3 ppm) spectrum of 17 in CDCl3 208
Figure 4-17-8. 13C NMR spectrum of 17 in CDCl3 208
Figure 4-17-9. DEPT spectrum of 17 in CDCl3 209
Figure 4-17-10. HSQC spectrum of 17 in CDCl3 209
Figure 4-17-11. COSY spectrum of 17 in CDCl3 210
Figure 4-17-12. HMBC spectrum of 17 in CDCl3 210
Figure 4-17-13. NOESY spectrum of 17 in CDCl3 211
Figure 4-18-1. 1H-1H COSY and selective HMBC correlations of 18 213
Figure 4-18-2. Selected NOESY correlations of 18 213
Figure 4-18-3. IR spectrum of 18 215
Figure 4-18-4. EIMS spectrum of 18 215
Figure 4-18-5. HREIMS spectrum of 18 216
Figure 4-18-6. 1H NMR spectrum of 18 in CDCl3 216
Figure 4-18-7. 1H NMR (3.0~5.4 ppm) spectrum of 18 in CDCl3 217
Figure 4-18-8. 13C NMR spectrum of 18 in CDCl3 217
Figure 4-18-9. DEPT spectrum of 18 in CDCl3 218
Figure 4-18-10. HSQC spectrum of 18 in CDCl3 218
Figure 4-18-11. COSY spectrum of 18 in CDCl3 219
Figure 4-18-12. HMBC spectrum of 18 in CDCl3 219
Figure 4-18-13. NOESY spectrum of 18 in CDCl3 220
Figure 4-19-1. 1H-1H COSY and selective HMBC correlations of 19 222
Figure 4-19-2. Selected NOESY correlations of 19 222
Figure 4-19-3. IR spectrum of 19 224
Figure 4-19-4. ESIMS spectrum of 19 224
Figure 4-19-5. HRESIMS spectrum of 19 225
Figure 4-19-6. 1H NMR spectrum of 19 in CDCl3 225
Figure 4-19-7. 1H NMR (2.0~4.8 ppm) spectrum of 19 in CDCl3 226
Figure 4-19-8. 13C NMR spectrum of 19 in CDCl3 226
Figure 4-19-9. DEPT spectrum of 19 in CDCl3 227
Figure 4-19-10. HSQC spectrum of 19 in CDCl3 227
Figure 4-19-11. COSY spectrum of 19 in CDCl3 228
Figure 4-19-12. HMBC spectrum of 19 in CDCl3 228
Figure 4-19-13. NOESY spectrum of 19 in CDCl3 229
Figure 4-20-1. 1H-1H COSY and selective HMBC correlations of 20 231
Figure 4-20-2. Selected NOESY correlations of 20 232
Figure 4-20-3. IR spectrum of 20 234
Figure 4-20-4. ESIMS spectrum of 20 234
Figure 4-20-5. HRESIMS spectrum of 20 235
Figure 4-20-6. 1H NMR spectrum of 20 in CDCl3 235
Figure 4-20-7. 1H NMR (3.3~5.6 ppm) spectrum of 20 in CDCl3 236
Figure 4-20-8. 13C NMR spectrum of 20 in CDCl3 236
Figure 4-20-9. DEPT spectrum of 20 in CDCl3 237
Figure 4-20-10. HSQC spectrum of 20 in CDCl3 237
Figure 4-20-11. COSY spectrum of 20 in CDCl3 238
Figure 4-20-12. HMBC spectrum of 20 in CDCl3 238
Figure 4-20-13. NOESY spectrum of 20 in CDCl3 239
Figure 4-21-1. 1H-1H COSY and selective HMBC correlations of 21 242
Figure 4-21-2. Selected NOESY correlations of 21 242
Figure 4-21-3. IR spectrum of 21 244
Figure 4-21-4. ESIMS spectrum of 21 244
Figure 4-21-5. HRESIMS spectrum of 21 245
Figure 4-21-6. 1H NMR spectrum of 21 in CDCl3 245
Figure 4-21-7. 1H NMR (3.0~5.7 ppm) spectrum of 21 in CDCl3 246
Figure 4-21-8. 13C NMR spectrum of 21 in CDCl3 246
Figure 4-21-9. DEPT spectrum of 21 in CDCl3 247
Figure 4-21-10. HSQC spectrum of 21 in CDCl3 247
Figure 4-21-11. COSY spectrum of 21 in CDCl3 248
Figure 4-21-12. HMBC spectrum of 21 in CDCl3 248
Figure 4-21-13. NOESY spectrum of 21 in CDCl3 249
Figure 4-22-1. 1H-1H COSY and selective HMBC correlations of 22 251
Figure 4-22-2. Selected NOESY correlations of 22 252
Figure 4-22-3. 1H NMR chemical shift differences (Δδ) for the MTPA
esters of 22 252
Figure 4-22-4. IR spectrum of 22 254
Figure 4-22-5. ESIMS spectrum of 22 254
Figure 4-22-6. HRESIMS spectrum of 22 255
Figure 4-22-7. 1H NMR spectrum of 22 in CDCl3 255
Figure 4-22-8. 1H NMR (3.0~6.0 ppm) spectrum of 22 in CDCl3 256
Figure 4-22-9. 13C NMR spectrum of 22 in CDCl3 256
Figure 4-22-10. DEPT spectrum of 22 in CDCl3 257
Figure 4-22-11. HSQC spectrum of 22 in CDCl3 257
Figure 4-22-12. COSY spectrum of 22 in CDCl3 258
Figure 4-22-13. HMBC spectrum of 22 in CDCl3 258
Figure 4-22-14. NOESY spectrum of 22 in CDCl3 259
Figure 4-22-15. 1H-NMR spectrum for the S-MTPA ester of 22 in CDCl3 259
Figure 4-22-16. 1H-NMR spectrum for the R-MTPA ester of 22 in CDCl3 260
Figure 4-23-1. 1H-1H COSY and selective HMBC correlations of 23 262
Figure 4-23-2. Selected NOESY correlations of 23 263
Figure 4-23-3. IR spectrum of 23 265
Figure 4-23-4. ESIMS spectrum of 23 265
Figure 4-23-5. HRESIMS spectrum of 23 266
Figure 4-23-6. 1H NMR spectrum of 23 in CDCl3 266
Figure 4-23-7. 1H NMR (3.3~5.8 ppm) spectrum of 23 in CDCl3 267
Figure 4-23-8. 13C NMR spectrum of 23 in CDCl3 267
Figure 4-23-9. DEPT spectrum of 23 in CDCl3 268
Figure 4-23-10. HSQC spectrum of 23 in CDCl3 268
Figure 4-23-11. COSY spectrum of 23 in CDCl3 269
Figure 4-23-12. HMBC spectrum of 23 in CDCl3 269
Figure 4-23-13. NOESY spectrum of 23 in CDCl3 270
Figure 4-24-1. 1H-1H COSY and selective HMBC correlations of 24 272
Figure 4-24-2. Selected NOESY correlations of 24 273
Figure 4-24-3. IR spectrum of 24 275
Figure 4-24-4. ESIMS spectrum of 24 275
Figure 4-24-5. HRESIMS spectrum of 24 276
Figure 4-24-6. 1H NMR spectrum of 24 in CDCl3 276
Figure 4-24-7. 1H NMR (2.6~5.0 ppm) spectrum of 24 in CDCl3 277
Figure 4-24-8. 13C NMR spectrum of 24 in CDCl3 277
Figure 4-24-9. DEPT spectrum of 24 in CDCl3 278
Figure 4-24-10. HSQC spectrum of 24 in CDCl3 278
Figure 4-24-11. COSY spectrum of 24 in CDCl3 279
Figure 4-24-12. HMBC spectrum of 24 in CDCl3 279
Figure 4-24-13. NOESY spectrum of 24 in CDCl3 280
Figure 4-25-1. 1H-1H COSY and selective HMBC correlations of 25 283
Figure 4-25-2. Selected NOESY correlations of 25 283
Figure 4-25-3. IR spectrum of 25 285
Figure 4-25-4. ESIMS spectrum of 25 285
Figure 4-25-5. HRESIMS spectrum of 25 286
Figure 4-25-6. 1H NMR spectrum of 25 in CDCl3 286
Figure 4-25-7. 1H NMR (2.3~4.2 ppm) spectrum of 25 in CDCl3 287
Figure 4-25-8. 13C NMR spectrum of 25 in CDCl3 287
Figure 4-25-9. DEPT spectrum of 25 in CDCl3 288
Figure 4-25-10. HSQC spectrum of 25 in CDCl3 288
Figure 4-25-11. COSY spectrum of 25 in CDCl3 289
Figure 4-25-12. HMBC spectrum of 25 in CDCl3 289
Figure 4-25-13. NOESY spectrum of 25 in CDCl3 290
Figure 4-26-1. 1H-1H COSY and selective HMBC correlations of 26 292
Figure 4-26-2. Selected NOESY correlations of 26 293
Figure 4-26-3. IR spectrum of 26 295
Figure 4-26-4. ESIMS spectrum of 26 295
Figure 4-26-5. HRESIMS spectrum of 26 296
Figure 4-26-6. 1H NMR spectrum of 26 in CDCl3 296
Figure 4-26-7. 1H NMR (2.9~6.0 ppm) spectrum of 26 in CDCl3 297
Figure 4-26-8. 13C NMR spectrum of 26 in CDCl3 297
Figure 4-26-9. DEPT spectrum of 26 in CDCl3 298
Figure 4-26-10. HSQC spectrum of 26 in CDCl3 298
Figure 4-26-11. COSY spectrum of 26 in CDCl3 299
Figure 4-26-12. HMBC spectrum of 26 in CDCl3 299
Figure 4-26-13. NOESY spectrum of 26 in CDCl3 300
Figure 4-27-1. 1H-1H COSY and selective HMBC correlations of 27 302
Figure 4-27-2. Selected NOESY correlations of 27 302
Figure 4-27-3. IR spectrum of 27 304
Figure 4-27-4. ESIMS spectrum of 27 304
Figure 4-27-5. HRESIMS spectrum of 27 305
Figure 4-27-6. 1H NMR spectrum of 27 in CDCl3 305
Figure 4-27-7. 1H NMR (3.3~5.6 ppm) spectrum of 27 in CDCl3 306
Figure 4-27-8. 13C NMR spectrum of 27 in CDCl3 306
Figure 4-27-9. DEPT spectrum of 27 in CDCl3 307
Figure 4-27-10. HSQC spectrum of 27 in CDCl3 307
Figure 4-27-11. COSY spectrum of 27 in CDCl3 308
Figure 4-27-12. HMBC spectrum of 27 in CDCl3 308
Figure 4-27-13. NOESY spectrum of 27 in CDCl3 309
Figure 4-28-1. 1H-1H COSY and selective HMBC correlations of 28 312
Figure 4-28-2. Selected NOESY correlations of 28 312
Figure 4-28-3. IR spectrum of 28 314
Figure 4-28-4. ESIMS spectrum of 28 314
Figure 4-28-5. HRESIMS spectrum of 28 315
Figure 4-28-6. 1H NMR spectrum of 28 in CDCl3 315
Figure 4-28-7. 1H NMR (2.5~6.8 ppm) spectrum of 28 in CDCl3 316
Figure 4-28-8. 13C NMR spectrum of 28 in CDCl3 316
Figure 4-28-9. DEPT spectrum of 28 in CDCl3 317
Figure 4-28-10. HSQC spectrum of 28 in CDCl3 317
Figure 4-28-11. COSY spectrum of 28 in CDCl3 318
Figure 4-28-12. HMBC spectrum of 28 in CDCl3 318
Figure 4-28-13. NOESY spectrum of 28 in CDCl3 319
Figure 4-29-1. 1H-1H COSY and selective HMBC correlations of 29 321
Figure 4-29-3. IR spectrum of 29 323
Figure 4-29-4. ESIMS spectrum of 29 323
Figure 4-29-5. HRESIMS spectrum of 29 324
Figure 4-29-6. 1H NMR spectrum of 29 in CDCl3 324
Figure 4-29-7. 1H NMR (1.7~4.7 ppm) spectrum of 29 in CDCl3 325
Figure 4-29-8. 13C NMR spectrum of 29 in CDCl3 325
Figure 4-29-9. DEPT spectrum of 29 in CDCl3 326
Figure 4-29-10. HSQC spectrum of 29 in CDCl3 326
Figure 4-29-11. COSY spectrum of 29 in CDCl3 327
Figure 4-29-12. HMBC spectrum of 29 in CDCl3 327
Figure 4-29-13. NOESY spectrum of 29 in CDCl3 328
Figure 4-30-1. 1H-1H COSY and selective HMBC correlations of 30 330
Figure 4-30-2. Selected NOESY correlations of 30 330
Figure 4-30-3. IR spectrum of 30 332
Figure 4-30-4. ESIMS spectrum of 30 332
Figure 4-30-5. HRESIMS spectrum of 30 333
Figure 4-30-6. 1H NMR spectrum of 30 in CDCl3 333
Figure 4-30-7. 1H NMR (3.3~5.8 ppm) spectrum of 30 in CDCl3 334
Figure 4-30-8. 13C NMR spectrum of 30 in CDCl3 334
Figure 4-30-9. DEPT spectrum of 30 in CDCl3 335
Figure 4-30-10. HSQC spectrum of 30 in CDCl3 335
Figure 4-30-11. COSY spectrum of 30 in CDCl3 336
Figure 4-30-12. HMBC spectrum of 30 in CDCl3 336
Figure 4-30-13. NOESY spectrum of 30 in CDCl3 337
Figure 4-31-1. 1H-1H COSY and selective HMBC correlations of 31 338
Figure 4-31-2. Selected NOESY correlations of 31 339
Figure 4-31-3. IR spectrum of 31 341
Figure 4-31-4. ESIMS spectrum of 31 341
Figure 4-31-5. HRESIMS spectrum of 31 342
Figure 4-31-6. 1H NMR spectrum of 31 in CDCl3 342
Figure 4-31-7. 1H NMR (2.0~4.5 ppm) spectrum of 31 in CDCl3 343
Figure 4-31-8. 13C NMR spectrum of 31 in CDCl3 343
Figure 4-31-9. DEPT spectrum of 31 in CDCl3 344
Figure 4-31-10. HSQC spectrum of 31 in CDCl3 344
Figure 4-31-11. COSY spectrum of 31 in CDCl3 345
Figure 4-31-12. HMBC spectrum of 31 in CDCl3 345
Figure 4-31-13. NOESY spectrum of 31 in CDCl3 346
Figure 4-32-1. 1H-1H COSY and selective HMBC correlations of 32 348
Figure 4-32-2. Selected NOESY correlations of 32 349
Figure 4-32-3. IR spectrum of 32 351
Figure 4-32-4. ESIMS spectrum of 32 351
Figure 4-32-5. HRESIMS spectrum of 32 352
Figure 4-32-6. 1H NMR spectrum of 32 in CDCl3 352
Figure 4-32-7. 1H NMR (2.0~4.5 ppm) spectrum of 32 in CDCl3 353
Figure 4-32-8. 13C NMR spectrum of 32 in CDCl3 353
Figure 4-32-9. DEPT spectrum of 32 in CDCl3 354
Figure 4-32-10. HSQC spectrum of 32 in CDCl3 354
Figure 4-32-11. COSY spectrum of 32 in CDCl3 355
Figure 4-32-12. HMBC spectrum of 32 in CDCl3 355
Figure 4-32-13. NOESY spectrum of 32 in CDCl3 356
Figure 4-33-1. 1H-1H COSY and selective HMBC correlations of 33 358
Figure 4-33-2. Selected NOESY correlations of 33 358
Figure 4-33-3. IR spectrum of 33 360
Figure 4-33-4. ESIMS spectrum of 33 360
Figure 4-33-5. HRESIMS spectrum of 33 361
Figure 4-33-6. 1H NMR spectrum of 33 in CDCl3 261
Figure 4-33-7. 1H NMR (2.0~4.5 ppm) spectrum of 33 in CDCl3 362
Figure 4-33-8. 13C NMR spectrum of 33 in CDCl3 362
Figure 4-33-9. DEPT spectrum of 33 in CDCl3 363
Figure 4-33-10. HSQC spectrum of 33 in CDCl3 363
Figure 4-33-11. COSY spectrum of 33 in CDCl3 364
Figure 4-33-12. HMBC spectrum of 33 in CDCl3 364
Figure 4-33-13. NOESY spectrum of 33 in CDCl3 365
Figure 4-34-1. 1H-1H COSY and selective HMBC correlations of 34 366
Figure 4-34-2. Selected NOESY correlations of 34 367
Figure 4-34-3. IR spectrum of 34 369
Figure 4-34-4. ESIMS spectrum of 34 369
Figure 4-34-5. HRESIMS spectrum of 34 370
Figure 4-34-6. 1H NMR spectrum of 34 in CDCl3 370
Figure 4-34-7. 1H NMR (2.0~4.5 ppm) spectrum of 34 in CDCl3 371
Figure 4-34-8. 13C NMR spectrum of 34 in CDCl3 371
Figure 4-34-9. DEPT spectrum of 34 in CDCl3 372
Figure 4-34-10. HSQC spectrum of 34 in CDCl3 372
Figure 4-34-11. COSY spectrum of 34 in CDCl3 373
Figure 4-34-12. HMBC spectrum of 34 in CDCl3 373
Figure 4-34-13. NOESY spectrum of 34 in CDCl3 374
Figure 4-35-1. 1H-1H COSY and selective HMBC correlations of 35 376
Figure 4-35-2. Selected NOESY correlations of 35 376
Figure 4-35-3. IR spectrum of 35 378
Figure 4-35-4. ESIMS spectrum of 35 378
Figure 4-35-5. HRESIMS spectrum of 35 379
Figure 4-35-6. 1H NMR spectrum of 35 in CDCl3 379
Figure 4-35-7. 1H NMR (2.0~4.5 ppm) spectrum of 35 in CDCl3 380
Figure 4-35-8. 13C NMR spectrum of 35 in CDCl3 380
Figure 4-35-9. DEPT spectrum of 35 in CDCl3 381
Figure 4-35-10. HSQC spectrum of 35 in CDCl3 381
Figure 4-35-11. COSY spectrum of 35 in CDCl3 382
Figure 4-35-12. HMBC spectrum of 35 in CDCl3 382
Figure 4-35-13. NOESY spectrum of 35 in CDCl3 383
Figure 5-1. Effect of compounds 9–20 on iNOS and COX-2 protein expression
of RAW264.7 macrophage cells by immunoblot analysis. 387
Figure 5-2. Effect of compounds 25–27 on iNOS and COX-2 protein
expression of RAW264.7 macrophage cells by immunoblot
analysis. 387
Figure 5-3. Effect of compounds 28–31 on iNOS protein expression of
RAW264.7 macrophage cell by immunoblot analysis.
參考文獻 References
(1) “Marine natural products as anticancer drugs” T. L. Simmons, E.
Andrianasolo, K. McPhail, P. Flatt, W. H. Gerwick, Molecular
Cancer Therapeutics, 2005, 4, 333–342.
(2) “Marine natural products and related compounds in clinical and
advanced preclinical trials” D. J. Newman, G. M. Cragg, J. Nat.
Prod. 2004, 67, 1216–1238.
(3) “Statistical Research on Marine Natural Products Based on Data
Obtained between 1985 and 2008” G.-P. Hu, J. Yuan, L. Sun, Z.-G
She, J.-H. Wu, X. Zhu, Y.-C. Lin, S.-P. Chen, Mar. Durgs, 2011, 9,
514–525.
(4) “Natural products as sources of new drugs over the period
1981–2002” D. J. Newman, G. M. Gragg, K. M. Snader, J. Nat.
Prod., 2003, 66, 1022–1037.
(5) “臺灣產軟珊瑚Lobophytum crassum與Dendronephthyagriffini所
含天然物及Lobohedleolide化合物之化學修飾之研究” 趙子
華,國立中山大學海洋生物科技暨資源學系博士論文,中華民
國九十六年。
(6) “Survey of oxygenated 2,11-cyclized cembranoids of marine
origin” P. Bernardelli, Leo A. Paquette, Heterocycles, 1998, 49,
531–556.
(7) “Labiatamides A, B, and other eunicellan diterpenoids from the
Senegalese gorgonian Eunicella labiata” V. Roussis, W. Fenical,
C. Vagias, J.-M. Kornprobst, and J. Miralles, Tetrahedron, 1996,
52, 2735–2742.
(8) “Chemical studies of marine invertebrates. IV. Terpenoids LXII.
Eunicellin, a diterpenoid of the gorgonian Eunicella stricta. X-ray
diffraction analysis of Eunicellin dibromide.” O. Kennard, D. G.
Watson, L. Riva di Sanseverino, B. Tursch, R. Bosmans, and C.
Djerassi, Tetrahedron Lett., 1968, 9, 2879–2884.
(9) “A New Cladiellane Diterpenoid from Eunicella labiata” M. J.
Ortega, E. ZubÍa, and J. Salvá, J. Nat. Prod., 1997, 60, 485–487.
(10) “Two new diterpenes related to eunicellin from a cladiella species
(soft coral)” R. Kazlauskas, P. T. Murphy, R. J. Wells, and P.
Schönholzer, Tetrahedron Lett., 1977, 18, 4643–4646.
(11) “Isolation of diterpenoids of the Cladiellane class from gorgonians
of the genus Muricella” Y. Seo, j.-R. Rho, K. W. Cho, and J. Shin,
J. Nat. Prod., 1997, 60, 171–174.
(12) “Litophynin A and B, two new insect growth inhibitory
diterpenoids from the soft coral Litophyton sp.” M. Ochi, K.
Futatsugi, H. Kotsuki, M. Ishii, and K. Shibata, Chem. Lett., 1987,
16, 2207–2210.
(13) “Litophynin C, a new insect growth inhibitory diterpenoid from a
Soft Coral Litophyton sp.” M. Ochi, K. Futatsugi, Y. Kume, H.
Kotsuki, K. Asao, and K. Shibata, Chem. Lett., 1988, 17,
1661–1662.
(14) “Sclerophytin C-F: isolation and structures of four new diterpenes
from the soft coral Sclerophytum capitalis” M. Alam, P. Sharma,
A. S. Zektzer, G. E. Martin, X. Ji, and D. Van der Helm, J. Org.
Chem., 1989, 54, 1896–1900.
(15) “New cladiellane diterpenes from the soft coral Cladiella australis
of the Andaman and Nicobar Islands” C. Bheemasankara Rao, D.
Sreenivasa Rao, C. Satyanarayana, D. Venkata Rao, K. E.
Kassühlke,and D. J. Faulkner, J. Nat. Prod., 1994, 57, 574–580.
(16) “Two new cladiellane diterpenes from the soft coral Cladiella
australis of the Indian Ocean” D. Sreenivasa Rao, C. Sreedhara
Rao, D. Venkata Rao, and C. Bheemasankara Rao, Ind. J. Chem.,
Sect. B, 1994, 33B, 198–199.
(17) “Crystal and molecular structure of sclerophytin F methyl ether
from the soft coral Cladiella krempfi” N. S. Sarma, R. Chavakula,
I. Nageswara Rao, R. Kadirvelraj, T. N. Guru Row, and I. Saito, J.
Nat. Prod., 1993, 56, 1977–1980.
(18) “Patagonicol: A diterpenoid from the Chinese soft coral
Alcyonium patagonicum” J. Su, Y. Zheng, L. Zeng, E. O.
Pordesimo, F. J. Schmitz, M. B. Hossain, and D. Van der Helm, J.
Nat. Prod., 1993, 56, 1601–1604.
(19) “Bioactive terpenoids from octocorallia, I. bioactive diterpenoids:
litophynols A and B from the mucus of the soft coral Litophyton
sp.” T. Miyamoto, K. Yamada, N. Ikeda, T. Komori, and R.
Higuchi, J. Nat. Prod., 1994, 57, 1212–1219.
(20) “Litophynin D and E, two new diterpenoids from a soft coral
Litophyton sp.” M. Ochi, K. Yamada, K. Futatsugi, H. Kotsuki, and
K. Shibata, Chem. Lett., 1990, 19, 2183–2186.
(21) “Bioactive terpenoids from octocorallia. 3. A new eunicellin-based
diterpenoid from the soft coral Cladiella sphaeroides” K. Yamada,
N. Ogata, K.Ryu, T. Miyamoto, T. Komori, and R. Higuchi, J. Nat.
Prod., 1997, 60, 393–396.
(22) “A new diterpene from the soft coral Cladiella similis” J. Liu, L.
Zemg, and D. Wu, Chin. Sci. Bull., 1992, 37, 1627–1630.
(23) “Litophynins F, G, and H, three new diterpenoids from a soft coral
Litophyton sp.” M. Ochi, K. Yamada, K. Futatsugi, H. Kotsuki,
and K. Shibata, Heterocycles, 1991, 32, 29–32.
(24) “Enantioselective total synthesis of (-)-7-deacetoxyalcyonin
acetate. First synthesis of a eunicellin diterpene” D. W. C.
MacMillan and L. Overman, J. Am. Chem. Soc., 1995, 117,
10391–10392.
(25) “Sclerophytins A and B. Isolation and structures of novel cytotoxic
diterpenes from the marine coral Sclerophytum capitalis” P.
Sharma and M. Alam, J. Chem. Soc., Perkin Trans. 1, 1998,
2537–2540.
(26) “Litophynins I and J, two new biologically active diterpenoids
from the soft coral Litophyton sp.” M. Ochi, K. Yamada, K.
Kataoka, H. Kotsuki, and K. Shibata, Chem. Lett., 1992, 155–158
(27) “Studies of australian soft corals. XLIII. The structure elucidation
of a new diterpene from Alcyonium molle” B. F. Bowden, J. C.
Coll, and M. C. Dai, Aust. J. Chem., 1989, 42, 665–673.
(28) “Calicophirins A and B, two new insect growth inhibitory
diterpenoids from a gorgonian coral Calicogorgia sp.” M. Ochi, K.
Yamada, H. Shirase, H. Kotsuki, and K. Shibata, Heterocycles,
1991, 32, 19–21.
(29) “Astrogorgiadiol and astrogorgin, inhibitors of cell division in
fertilized starfish eggs, from a gorgonian astrogorgia sp.” N.
Fusetani, H. Nagata, H. Hirota, and T. Tsuyuki, Tetrahedron Lett.,
1989, 30, 7079–7082.
(30) “A new diterpenoid related to eunicellin and cladiellin from a
Muricella sp.” Y. Kashman, Tetrahedron Lett., 1980, 21, 879–880.
(31) “A diterpene related to cladiellin from a pacific soft coral” J. E.
Hochlowski and D. J. Faulkner, Tetrahedron Lett., 1980, 21,
4055–4056.
(32) “Alcyonin, a new cladiellane diterpene from the soft coral
Sinularia flexibilis” T. Kusumi, H. Uchida, M. O. Ishitsuka, H.
Yamamoto, and H. Kakisawa, Chem. Lett., 1988, 17, 1077–1078.
(33) “Three new eunicellin-based diterpenoids from an Okinawan
Cladiella species of soft coral” Y. Uchio, M. Kodama, S. Usui, and
Y. Fukazawa, Tetrahedron Lett., 1992, 33, 1317–1320.
(34) “A new eunicellin-based diterpene from an okinawan soft coral,
Cladiella sp.” Y. Uchio, M. Nakatani, T. Hase, M. Kodama, S.
Usui, and Y. Fukazawa, Tetrahedron Lett., 1989, 30, 3331–3332.
(35) “A new eunicellin-type diterpene from the gorgonian Eunicella
cavolini” S. de Rosa, G. Cimino, A. de Giulio, A. Milone, A.
Crispino, and C. Iodice, Nat. Prod. Lett., 1995, 7, 259–265.
(36) “New eunicellin-based diterpenoids from the gorgonian eunicella
verrucosa” M. J. Ortega, E. Zubía, H.-Y. He, and J. Salvá,
Tetrahedron, 1993, 49, 7823–7828.
(37) “Structure and absolute configuration of palmonine F, a new
eunicellin-based diterpene from the gorgonian Eunicella
verrucosa” M. J. Ortega, E. Zubía, and J. Salvá, J. Nat. Prod.,
1994, 57, 1584–1586.
(38) “Studies of Australian soft corals. XLVI. New diterpenes from a
Briareum species (Anthozoa, Octocorallia, Gorgonacea)” B. F.
Bowden, J. C. Coll, and I. M. Vasilescu, Aust. J. Chem., 1989, 42,
1705–1726.
(39) “Diterpenoids from the gorgonian Solenopodium stechei” S. J.
Bloor, F. J. Schmitz, M. B. Hossain, and D. Van der Helm, J. Org,
Chem., 1992, 57, 1205–1216.
(40) “New eunicellin type diterpenoids from the gorgonian coral
Eunicella labiata” C. Kakonikos, C. Vagias, V. Roussis, C.
Roussakis and J.-M. Kornprobst, Nat. Prod. Lett., 1999, 13,
89–95.
(41) “A novel type of a second epoxy bridge in eunicellane diterpenes:
Isolation and characterization of massileunicellins A–C from the
gorgonian Eunicella cavolinii” I. Mancini, G. Guella, H.
Zibrowius, D. Laurent and F. Pietra, Helv. Chim. Acta, 1999, 82,
1681–1689.
(42) “A new cladiellin diterpenoid from the gorgonian Muricella sp.”
Y. Seo, K. W. Cho, S. Chung and J. Shin, Nat. Prod. Lett., 2000,
14, 197–203.
(43) “Configuration, conformation, and reactivity of highly
functionalized eunicellane diterpenes isolated from the gorgonians
Eunicella cavolinii and Eunicella singularis from Marseille” I.
Mancini, G. Guella, H. Zibrowius and F. Pietra, Helv. Chim. Acta,
2000, 83, 1561–1575.
(44) “Structural and stereochemical reassessment of sclerophytin-type
diterpenes” D. Friedrich and L. A. Paquette, J. Nat. Prod., 2002,
65, 126–130.
(45) “Bioactive compounds from the gorgonian Briareum polyanthes.
correction of the structures of four asbestinane-type diterpenes” C.
A. Ospina and A. D. Rodríguez, J. Nat. Prod., 2006, 69,
1721–1727.
(46) “Eunicellin diterpenes from two Kenyan soft corals” L. Chill, N.
Berrer, Y. Benayahu and Y. Kashman, J. Nat. Prod., 2005, 68,
19–25.
(47) “Vigulariol, a new metabolite from the sea pen Vigularia juncea”
J.-H. Su, H.-C. Huang, C.-H. Chao, L.-Y. Yan, Y.-C. Wu, C.-C.
Wu and J.-H. Shen, Bull. Chem. Soc. Jpn., 2005, 78, 877–879.
(48) “Eunicellin-based diterpenoids, australins A−D, isolated from the
soft coral Cladiella australis” A. F. Ahmed, M.-H. Wu, G.-H.
Wang, Y.-C. Wu and J.-H. Sheu, J. Nat. Prod., 2005, 68,
1051–1055.
(49) “A homologous series of eunicellin-based diterpenes from
Acalycigorgia sp. characterised by tandem mass spectrometry” K.
Kyeremeh, T. C. Baddeley, B. K. Stein and M. Jaspars,
Tetrahedron, 2006, 62, 8770–8778.
(50) “Simplexins A−I, eunicellin-based diterpenoids from the soft coral
Klyxum simplex” S.-L. Wu, J.-H. Su, Z.-H. Wen, C.-H. Hus, B.-W.
Chen, C.-F. Dai, Y.-H Kuo, Y.-H. Kuo, J.-H. Sheu, J. Nat. Prod.,
2009, 72, 994–1000.
(51) “Simplexins J–O, eunicellin-based diterpenoids from a Dongsha
Atoll soft coral Klyxum simplex” S.-L. Wu, J.-H. Su, Y. Lu, B.-W.
Chen, C.-Y. Huang, Z.-H. Wen, Y.-H. Kuo, J.-H. Sheu, Bull.
Chem. Soc. Jpn., 2011, 84, 626–632.
(52) “Cladielloides C and D: Novel eunicellin-based diterpenoids from
an Indonesian octocoral Cladiella sp.” C.-Y. Tai, Y.-H. Chen,
T.-L. Hwang, L.-S. Fang, W.-H. Wang, M.-C. Liu, J.-H Su, Y.-C.
Wn, P.-J Sung, Bull. Chem. Soc. Jpn., 2011, 84, 531–536.
(53) “Cladielloides A and B: New eunicellin-type diterpenoids from an
Indonesian octocoral Cladiella sp.” Y.-H. Chen, C.-Y. Tai, T.-L.
Hwang, C.-F. Wang, J.-J. Li, L.-S. Fang, W.-H. Wang, Y.-C. Wu,
P.-J Sung, Mar. Drugs, 2010, 8, 2936–2945.
(54) “Pachycladins A−E, prostate cancer invasion and migration
inhibitory eunicellin-based diterpenoids from the red sea soft coral
Cladiella pachyclados” H. M. Hassan, M. A. Khanfar, A. Y.
Elnagar, R. Mohammed, L. A. Shaala, D. T. A. Youssef, M. S.
Hifnawy, K. A. El Sayed, J. Nat. Prod. 2010, 73, 848–853.
(55) “The briarellins, new eunicellin-based diterpenoids from a
Caribbean gorgonian, Briareum asbestinum” A. D. Rodríguez and
M. O. Cóbar, Tetrahedron, 1995, 51, 6869–6880.
(56) “Studies on the minor constituents of the caribbean gorgonian
octocoral briareum asbestinum PALLAS. Isolation and structure
determination of the eunicellin-based diterpenoids briarellins E-I”
A. D. Rodríguez and M. O. Cóbar, Chem. Pharm. Bull., 1995, 43,
1853–1858.
(57) “Pachyclavulariaenones A–C, three novel diterpenoids from the
soft coral Pachyclavularia violacea” G. H. Wang, J. H. Sheu, M.
Y. Chiang and T. J. Lee, Tetrahedron Lett., 2001, 42, 2333–2336.
(58) “Pachyclavulariaenones D−G, new diterpenoids from the soft
coral Pachyclavularia violacea” G.-H. Wang, J.-H. Sheu, C.-Y.
Duh and M. Y. Chiang, J. Nat. Prod., 2002, 65, 1475–1478.
(59) “Briarellins J−P and polyanthellin A: New eunicellin-based
diterpenes from the gorgonian coral Briareum polyanthes and their
antimalarial activity” C. A. Ospina, A. D. Rodríguez, E.
Ortega-Barria and T. L. Capson, J. Nat. Prod., 2003, 66, 357–363.
(60) “Sarcodictyin A and sarcodictyin B, novel diterpenoidic alcohols
esterified by (E)-N(1)-methylurocanic acid. Isolation from the
mediterranean stolonifer Sarcodictyon roseum” M. D’Ambrosio,
A. Guerriero, and F. Pietra, Helv. Chim. Acta, 1987, 70,
2019–2027.
(61) “Sarcodictyin A and two novel diterpenoid glycosides,
eleuthosides A and B, from the soft coral Eleutherobia aurea” S.
Ketzinel, A. Rudi, M. Schlever, Y. Benavahu, and Y. Kashman, J.
Nat. Prod., 1996, 59, 873–875.
(62) “Isolation from the Mediterranean Stolonifern coral Sarcodictyon
roseum of sarcodictyin C, D, E, and F, novel diterpenodic alcohols
esterified by (E)- or (Z)-N(1)-methylurocanic acid. Failure of the
carbon-skeleton type as a classification criterion” M. D’Ambrosio,
A. Guerriero, and F. Pietra, Helv. Chim. Acta, 1988, 71, 964–976.
(63) “The valdivones, anti-inflammatory diterpene esters from the
South African soft coral alcyonium valdivae” Y. Lin, C. A.
Bewley, and D. J. Faulkner, Tetrahedron, 1993, 49, 7977–7984.
(64) “Eleutherobin, a new cytotoxin that mimicspaclitaxel (taxol) by
stabilizing microtubules” T. Lindel, P. R. Jensen, W. Fenical, B. H.
Long, A. M. Casazza, J. Carboni, and C. R. Fairchild, J. Am.
Chem. Soc., 1997, 119, 8744–8745.
(65) “Antimitotic diterpenes from Erythropodium caribaeorum test
pharmacophore models for microtubule stabilization” B. Cinel, M.
Roberge, H. Behrisch, L. van Ofwegen, C. B. Castro and R. J.
Andersen, Org. Lett., 2000, 2, 257–260.
(66) “The structure and conformational properties of a cembranolide
diterpene from Pachyclavularia violacea” W. Inman and P.
Crews, J. Org. Chem., 1989, 54, 2526–2529.
(67) “Feasibility of drug screening with panels of human tumor cell
lines using a microculture tetrazolium assay” M. C. Alley, D. A.
Scudiero, A. Monks, M. L. Hursey, M. J. Czerwinski, D. L. Fine,
B. J. Abbott, J. G. Mayo, R. H. Shoemaker and M. R. Boyd,
Cancer Res., 1988, 48, 589–601.
(68) “Evaluation of a soluble tetrazolium/formazan assay for cell
growth and drug sensitivity in culture using human and other
tumor cell lines” D. A. Scudiero, R. H. Shoemaker, K. D. Paull, A.
Monks, S. Tierney, T. H. Nofziger, M. J. Currens, D. Seniff and M.
R. Boyd, Cancer Res., 1988, 48, 4827–4833.
(69) “Capnellene, a natural marine compound derived from soft coral,
attenuates chronic constriction injury-induced neuropathic pain in
rats” Y.-H. Jean, W.-F. Chen, C.-S. Sung, C.-Y. Duh, S.-Y. Huang,
C.-S. Lin, M.-H. Tai, S.-F. Tzeng and Z.-H. Wen, Br. J.
Pharmacol., 2009, 158, 713–725.
(70) “Inducible nitric oxide synthase and cyclooxygenase-2 participate
in anti-inflammatory and analgesic effects of the natural marine
compound lemnalol from Formosan soft coral Lemnalia
cervicorni” Y.-H. Jean, W.-F. Chen, C.-Y. Duh, S.-Y.Huang, C.-H.
Hsu, C.-S. Lin, C.-S. Sung, I.-M. Chen and Z.-H. Wen, Eur. J.
Pharmacol., 2008, 578, 323–331.
(71) “Protein measurement with the folin phenol reagent” O. H. Lowry,
N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem., 1951,
193, 265–275.
(72) “High-field FT NMR application of Mosher's method. The
absolute configurations of marine terpenoids” I. Ohtani, T.
Kusumi, Y. Kashman and H. Kakisawa, J. Am. Chem. Soc., 1991,
113, 4092–4096.
(73) “A new aspect of the high-field NMR application of Mosher's
method. The absolute configuration of marine triterpene
sipholenol A” I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa,
(74) “Pyridine-induced solvent shifts in the nuclear magnetic resonance
spectra of hydroxylic compounds” P. V. Demarco, E. Farkas, D.
Doddrell, B. L. Mylari, E. Wenkert, J. Am. Chem. Soc., 1968, 90,
5480–5486.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code