Responsive image
博碩士論文 etd-1212111-135934 詳細資訊
Title page for etd-1212111-135934
論文名稱
Title
大鵬灣近十年來的生地化環境變遷:人為作用影響
Environmental and Biogeochemical Changes in the Dapeng Bay over the Last Decade : Influence of Human Activities.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-24
繳交日期
Date of Submission
2011-12-12
關鍵字
Keywords
滯留時間、通量、大鵬灣、營養鹽、生地化作用
biogeochemical processes, Dapeng Bay, nutrients, water exchange time, fluxes
統計
Statistics
本論文已被瀏覽 5668 次,被下載 558
The thesis/dissertation has been browsed 5668 times, has been downloaded 558 times.
中文摘要
大鵬灣潟湖於未整治前灣內佈滿了牡蠣蚵架和養殖箱網,隨著「大鵬灣國家風景管理處」的成立,陸續進行了蚵架移除和環境水質整治的工作,現今並持續進行「底泥浚渫施工計畫」。因此本研究分為三個階段進行生地化環境改變之探討,包括第一階段蚵架拆除前,第二階段蚵架拆除後,以及第三階段底泥浚渫工程開始執行之後。
大鵬灣水體第一階段之年平均滯留時間為10.0天;第二及第三階段之年平均滯留時間各為6.2天及8.3天,變化趨勢與海水日交換量變化相似,從變異數分析方法來看第二及第三階段並無顯著差異。三個階段採樣時期,顯示出大鵬灣之Chl. a主要受到溫度及平均日輻射量的影響,而非受限於營養鹽含量之控制,其中第三階段Chl. a與DIN及DIP之變化趨勢顯得較為相似,但只有在秋季時才有較顯著的正相關。大鵬灣幾乎全年為有機碳生成(p-r>0),三個階段皆為自營性系統。蚵架拆除前年平均之ΔDICo為-5.64 mole C m-2 yr-1;蚵架拆除後年平均之ΔDICo為-11.64 mole C m-2 yr-1;底泥浚渫工程期間年平均之ΔDICo為-14.31 mole C m-2 yr-1,淨生產力在蚵架拆除後增加了106.38%,之後又經過了水質整治,淨生產力則又增加了22.94%,可見整治改善了環境狀況,對於淨生產力有明顯的影響。
營養鹽(DIN、DSi、DIP)濃度經過了蚵架的移除而顯著降低;顆粒態有機碳、氮濃度與溶解態有機碳、氮兩者濃度,在蚵架拆除後皆顯著增加。其中溶解態有機碳、氮、磷,在第三階段由於Chl. a濃度降低和水質整治之關係,於第三階段濃度呈現顯著下降現象。從營養鹽比值來看,大鵬灣第一階段為一磷過剩之生態系統(Si/N=1.8±1.2及N/P=7.4±5.2),第三階段(Si/N=1.0±1.2及N/P=22.2±18.7)顯示生態系統由磷過剩系統轉變為磷限制之生態系統。從顆粒有機物比值來看,POC/PN(三階段分別為7.7±1.1、8.0±1.0及6.5±1.3)逐漸趨近於Redfield ratio C/N = 6.6,顯示經由水質整治,陸源有機物來源影響逐漸減少而當地生物源之影響逐漸顯著。從時間及空間來看,DO的時間差異性大於空間差異性,營養鹽(DIN、DSi、DIP)、DOC及POC的時間差異性顯著,而空間差異性則是第一階段到第三階段差異性逐漸降低。
大鵬灣在這十多年來,從原本的水產養殖到蚵架拆除,以及目前正在進行的底泥浚渫工程,減少了過去人為活動對環境的影響,並已逐漸顯現環境水質整治的效果。

Abstract
Before January 2003, the Dapeng Bay lagoon was occupied by oyster culture racks and fish farming cages. Along with the development of the Dapeng Bay National Scenic Area Administration, the government has started taking actions on removing oyster culture racks, and has kept improving the quality of lagoon water. Nowadays, the government is implementing sediment dredging plan. As to discuss the change of biogeochemical processes, this study is divided by three parts, including the first stage, before the removal of oyster culture rafts; second stage, after the removal of oyster culture rafts, and the third stage, after implementation of sediment dredging.
At the first stage, the annual mean of water exchange time at the Dapeng Bay was approximately 10 days. At the second and third stage, the annual mean of water exchange time were 6.2 days and 8.3 days, respectively. The difference is not significant between the second stage and third stage. The trend of water exchange time is similar to the seawater exchange rate. Distributions of chlorophyll a were controlled by temperature and solar radiation, rather than by nutrient concentration throughout three-stage periods. Although the change tendency between chlorophyll a, DIN, and DIP at the third stage is similar, chlorophyll a correlated positively with DIN and DIP only in fall. The net ecosystem production (NEP) was positive (p-r > 0) at all three stages, so the Dapeng Bay was always an autotrophic system throughout the study period. Before the removal of the oyster culture racks, the NEP was 5.64 mole C m-2 yr-1, after that, it increase to 11.64 mole C m-2 yr-1. During the sediment dredging period, the NEP was 14.31 mole C m-2 yr-1. The NEP increases 106 % from the first stage to the second stage, and increases 23% from the second stage to the third stage. The environmental remediation appears to produce significant influence on NEP.
The concentration of DIN、DSi、DIP decreases by removing the oyster culture of racks. But the concentrations of particulate and dissolved organic carbon and nitrogen increase sharply after removing the oyster culture racks. Nevertheless, the concentration of dissolved organic carbon, nitrogen and the phosphorus decreases during the third stage, resulted mainly from the improvement of water quality. The system changed from the condition of phosphorus surplus (Si/N=1.8±1.2 and N/P=7.4±5.2) during the first and second stage to the condition of phosphorus limitation (Si/N=1.0±1.2 and N/P=22.2±18.7) during the third stage. The ratios of particulate organic carbon and nitrogen (POC/PN) are 7.7±1.1, 8.0±1.0, 6.5±1.3, respectively. The ratio at the third stage is very close to the Redfield ratio (C/N=6.6), which may result from the improvement of water quality.
In terms of temporal and spatial variation of various parameters, DO variability was strong in the time scale than in the spatial scale, but nutrients and POC show a decrease of spatial variability from the first stage to the third stage. The removal of oyster culture racks, and the implementation of sediment dredging plan at the Dapeng Bay have significant influence on the improvement of lagoon environment for the past ten years.
目次 Table of Contents
致謝……………………………………….……………………………….……..…... I
摘要……………………………………………………………………..………..….. II
Abstract…………………………………………………………………..…….…… IV
目錄……………………………………………………………………..……….. VI
表目錄…………………………………………………………..…………….… VIII
圖目錄………………………………………………………............….….......……. IX

第一章 前言……………………………………………………………......………. 1
第二章 研究區域……………………………………………………..……………. 4
2-1 地理環境…………………………………………………….................... 4
2-2 氣象水文…………………………………………………….................... 4
2-3 人文影響………………………………………………............................ 5
第三章 研究材料與方法……………………………………………..……………. 8
3-1 採樣位置及方法……………………………………………...................... 8
3-1-1 採樣位置……………………………………...………....……… 8
3-1-2 採樣時期及方法…………………………………...…....……… 8
3-2 樣品分析……………………………………………….............................. 9
3-2-1 葉綠素a之測定…………………………...……………………. 9
3-2-2 營養鹽分析……………………………………...…………….. 10
3-2-3 溶解態有機碳之測定…………………………………………. 12
3-2-4 總溶解態氮及溶解態有機氮之測定…………………………. 12
3-2-5 總溶解態磷及溶解態有機磷之測定…………………………. 13
3-2-6 顆粒態有機碳、氮之測定……………………………………. 15
3-2-7 總懸浮顆粒物濃度之測定……………………………………. 15

3-3 大鵬灣內水體滯留時間及物質之進出通量………...…..……………... 16
3-3-1 水的收支平衡(water budget)…………………..................... 16
3-3-2 鹽的收支平衡(water budget)…………………..................... 18
3-3-3 非保守性物質(non-conservative materials)的收支平衡 ........ 20
3-3-4 淨有機碳生成量之估算 ………......…...…...……....…....…... 21
第四章 結果與討論…………………………………………………………….… 23
4-1 大鵬灣長期水文資料之時序變化……………………............................ 23
4-2 大鵬灣水體滯留時間及海水交換量………………...…………………. 30
4-3 大鵬灣營養鹽與溶解態有機碳、氮、磷之時序變化…........................ 33
4-3-1 溶解態矽、氮、磷(DSi、DIN、DIP)等營養鹽之時序變化.. 33
4-3-2 溶解態有機碳、氮、磷(DOC、DON、DOP)之時序變化… 34
4-3-3 營養鹽與溶解態有機碳、氮、磷間的比值之時序變化…….. 35
4-4 總懸浮顆粒物(TSM)與顆粒態有機碳、氮(POC、PN)之時序變化…43
4-5 葉綠素a(Chl.a)對於營養鹽、顆粒態有機碳(POC)、總懸浮
顆粒物質(TSM)及基本水文特性之關係…………..…....................... 49
4-6 大鵬灣無機磷之輸出通量及有機碳生成量…………..….................... 56
4-7 三個階段各參數間之差異性…………………………..….................... 59
4-8 測站各參數間之空間差異性…………………………..….................... 60
第五章 結論………………………………………………………...…………….. 73
參考文獻…………………………………………………………….……………… 75
中文部份……………………………………………………….……………… 75
網站……………………………………………………………………………. 75
英文部份……………………………………………………….……………… 76
附錄 大鵬灣第三階段之各參數空間分佈……………………………………79
參考文獻 References
中文部份:
大鵬灣國家風景管理處,2009。98年度人工濕地水質調查及經營管理規劃評估,共146頁。
蘇惠美、林幸助、羅文增,2000。高屏海域藻類基礎生產力之研究。高屏海域陸海交互作用之研究(I) 永續發展研究研討會論文集。19-24頁。
洪佩瑩,2001。大鵬灣碳及營養鹽之生地化作用及通量研究。國立中山大學海洋地質及化學研究所碩士論文,共156頁。
洪嘉穗,2004。大鵬灣與七股潟湖汞及營養鹽之生地化學研究。國立中山大學海洋地質及化學研究所碩士論文,共141頁。
蔡聖賢,2008。台灣東部黑潮海域氮與磷溶解態物種之分佈。國立中山大學海洋地質及化學研究所碩士論文,共95頁。


網站:
大氣研究資料庫
  http://dbar.as.ntu.edu.tw/



英文部份:
Brzezinski, M. A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology, 21: 347-357.
Chester, R., 1990. Marine Geochemistry. Blackwell Science Inc, Boston, 273-315.
Froelich, P. N., 1988. Kinetic controls of dissolved phosphate in natural river and estuaries: a primer on the phosphate buffer mechanism. Limnology and Oceanography, 33: 649-668.
Gordon, D. C. Jr., Boudreau, P. R., Mann, K. H., Ong, J. E., Silvert, W. L., Smith, S. V., Wattayakorn, G., Wulff, F. and Yanagi, T. 1996. LOICZ Biogeochemical Modeling Guidelines. LOICZ Reports and Studies NO. 5. LOICZ, Texel, The Netherlands, 96pp.
Hedges, J. I., 1987. Organic matter in sea water. Nature, 330: 205-206.
Howarth, R. W., 1988. Nutrient limitation of net primary production in marine ecosystems. Annual Review of Ecology, 19: 89-110.
Hung, J. J., Lin, P. L. and Liu, K. K., 2000. Dissolved and particulate organic carbon in the southern East China Sea. Continental Shelf Research, 20: 545-569.
Hung, J. J., Chen, C. H., Gong, G. C., Sheu, D. D. and Shiah, F. K., 2003. Distributions, stoichiometric patterns and cross shelf exports of dissolved organic matter from the East China Sea. Deep-Sea Research II, 50: 1127-1145.
Hung, J. J. and Hung, P. Y., 2003. Carbon and nutrient dynamics in a hypertrophic lagoon in southwestern Taiwan. Journal of Marine Systems, 42: 99-116.
Hung, J. J., Hung, C. S. and Su, H. M., 2008. Biogeochemical responses to the removal of maricultural structures from an eutrophic lagoon (Tapong Bay) in Taiwan. Marine Environmental Research, 65: 1-17
Justic, D., Rabalais, N. N., and Turner, R. E., 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin, 30(1): 41-46.
Kjerfve, B., 1986. Coastal Lagoons. In: B. Kjerfve (Ed.), Coastal Lagoon Processes: 1-7, Elsevier Oceanography Series 60, Elsevier Science B. V., Amsterdam.
Larned, S. T., 1998. Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Marine Biology, 132: 409-421.
Lo, W. T., Purcell, J. E., Hung, J. J., Su, H. M. and Hsu, P. K., 2008. Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. ICES Journal of Marine Science, 65: 453-461.
LOICZ, 1996. LOICZ Data and Information System Plan. LOICZ Reports and Studies NO. 6, The Netherlands.
Murphy, J. and Riley, J. P., 1962. A modified single solution method for determination of phosphate in nature water. Analytica Chimica Acta, 27: 31-36.
Pai, S. C. and Yang, C. C., 1990. Effects of acidity and mollybdate concentration on the kinetics of the formation of the phosphoantimonylbdenum blue complex. Analytica Chimica Acta, 229: 115-120.
Redfield, A. C., Ketchum, B. H. and Richard, F. A., 1963. The influence of organisms on the composition of sea water, In The Sea, vol. 2. Hill, M. H. (ed.), Interscience, New York, pp. 26-77.
Reusch, T. H. B. and Williams, S. L., 1998. Variable response of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia, 113: 428-444.
Ridal, J. J. and Moore, R. M., 1990. A re-examination of the measurement of dissolved organic phosphorus in seawater. Marine Chemistry, 29: 19-31.
Sharp, J. H., Beauregard, A. Y., Burdige, D., Cauwet, G., Curless, S. E., Lauck, R., Nagel, K., Ogawa, H., Parker, A. E., Primm, O., Pujo-Pay, M., Savidge, W. B., Seitzinger, S., Spyres, G. and Styles, R., 2004. A direct instrument comparison for total dissolved nitrogen in seawater. Marine Chemistry, 84: 181-193.
Souchu, P., Vaquer, A., Collos, Y., Landrein, S., Deslous-Paoli, J.-M. and Bibent, B., 2001. Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Marine Ecology Progress Series, 218: 141-152.
Strickland, J. D. H. and Parsons, T. R., 1972. Inorganic micromutrients in sea water. In: A Practical Handbook of Seawater Analysis. Ed: Stevenson, J. C., Billingsley, L. W. and Wigmore, R. H. Fisheries Research Board of Canada, Ottawa: 49-77.
Walsh, J. J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350: 53-55.
Welschmeyer, N. A., 1994. Dluormetric analysis of chlorophyll a on the presence of chlorophyll b and pheopigments. Limnology Oceanography, 39(8): 1985-1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code