Responsive image
博碩士論文 etd-1213111-035154 詳細資訊
Title page for etd-1213111-035154
論文名稱
Title
高屏海底峽谷沉降顆粒動力之研究
Sinking particle dynamics in the Gaoping Submarine Canyon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
156
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-09-20
繳交日期
Date of Submission
2011-12-13
關鍵字
Keywords
濁流、底部霧濁層、高屏海底峽谷、沉積物收集器、沉降顆粒動力
turbidity flow, sediment trap, benthic nepheloid layer, Gaoping Submarine Canyon, sinking particle dynamics
統計
Statistics
本論文已被瀏覽 5697 次,被下載 1015
The thesis/dissertation has been browsed 5697 times, has been downloaded 1015 times.
中文摘要
本研究目的為瞭解高屏峽谷沉降顆粒動力及地球化學性質變化與相關動力參數的因果關係,並探討其表示的沉積環境意義與傳輸機制,及非潮汐作用(濁流)的影響。現場實驗方法為在高屏海底峽谷佈放LADCP串列及沉積物收集器串列T6KP(1/10/-3/20)、T7KP(7/7-9/11),以收集沉降顆粒及相關動力參數的時序資料。沉積物分析參數由內插法建立出連續的時序資料,並應用時序分析方法以瞭解物理及地球化學性質變化與相關動力參數間的關連性。
研究結果發現不同粒級的沉降顆粒在峽谷所受到作用力不同亦影響其分佈結構,粗顆粒動力受到峽谷中海流的垂向分量影響較大,細顆粒則受到沿峽谷軸的海流分量影響較大。沉降顆粒動力受半日潮影響較不明顯,以大小潮流影響最大。高屏峽谷通常為潮汐作用主導的穩定沉降環境,親顆粒性物質隨黏土顆粒濃度變化,粗顆粒則隨流場變化,大小潮期間的霧濁層厚度變化影響峽谷底層沉降顆粒粒徑群的垂向分布。峽谷上層(邊緣)與下層(近底部)顆粒動力屬於不同傳輸模式,上層受到湧昇流及陸棚影響,下層則受到潮流及濁流影響。當偶發性事件發生時,峽谷底層若出現浪湧型濁流(surge-like turbidity flow),濁流在增強(waxing)階段,沉降顆粒的動力會受強烈再懸浮及混合作用影響,使顆粒地球化學性質會呈現劇烈的變化,濁流內粒徑結構以粗砂及粉砂分布為主,黏土含量較低,懸浮沉積物濃度約4.41 g/l,頻率域在2.1~9.8 cycle per day之間。在衰弱(waning)階段沉降顆粒動力及地球化學性質變化則會逐漸回復到大小潮週期的變化。
冬季時,高屏峽谷大多數的沉降顆粒為大潮時期由外海而來的海源物質(生物源顆粒),逆峽谷而向上流;夏季時,高屏峽谷的大多數沉降顆粒則為颱風期間高屏溪所輸出的陸源物質(高有機質),並藉濁流順峽谷而下,傳輸至南海。
Abstract
The purpose of this research is to understand the sinking particle dynamics in the Gaoping Submarine Canyon (GPSC), the change of their geochemical character, and their causal relationship with dynamic parameters. Also this research inquires into the significance of sedimentary environment, transport process, and the influence of non-tidal actions (turbidity current) in the sedimentary environment. The field experiments including LADCP moorings, T6KP(1/10/-3/20), and T7KP (7/7-9/11) sediment traps moorings were deployed in the GPSC to collect the time-series data of sinking particle and related dynamic parameters. Parameters of discrete sediment analysis were used to build continuous time-series data by interpolation, and time series analysis applied to understand the change of physical and geochemical character and their correlation with dynamic parameters.
The results showed that sinking particles of different grain-size classes confront different forces in the canyon and their grain-size distribution structures are influenced accordingly. Vertical component of the flow has more influences on coarse particles, while the along canyon flow component has more influences on fine particles. The influence of semidiurnal tide on sinking particle is not clearly resoloved, but spring tide and neap tide affect them significantly. GPSC is normally a stable deposition environment dominated by tidal currents. Particle-reactive materials vary upon with clay concentration, coarse paericles vary upon with the flow field, and the change of benthic nepheloid layer thickness during spring and neap tide cycle affects the vertical distribution of particle size-groups near the bottom of canyon. The particle in the upper (rim) and lower (near the bottom) canyon belong to different transport and dynamic regimes. The upper part was affected by upwelling and shelf processes, while the lower part was affected by tidal currents. In case of episodic event, if surge-like turbidity flows pass near the canyon floor, in the waxing phase, the sinking particle would be affected by the strong momentum of resuspension and mixing which leads to a dramatic change of geochemical character of these particles. In turbidity current event, coarse sand and silt are the major particle sizes with low clay content, suspended sediment concentration about 4.41 g / l. The fluctuation of time series analysis by HHT found a frequency between 2.1~9.8 clcle per day. In the waning phase, dynamics and geochemical character of sinking particle will gradually return to those variations in tidal dominance.
In winter, most sinking particles in GPSC are the source material (particles of biological origin) coming from the off-sea with the upcanyon flow during spring tide period. In summer, most sinking particles in GPSC are the terrigenous material (higher organic matter) output from the Gaoping River during typhoons, and flowing to the South China Sea along the canyon with turbidity flow.
目次 Table of Contents
致謝………………………I
摘要………………………III
英文摘要…………………V
目錄………………………VII
圖目錄……………………XI
表目錄……………………XV
第一章、緒論……1
1.1、前言……1
1.2、水動力作用與沉降顆粒之間的關係……2
1.3、偶發性事件在顆粒傳輸機制扮演的角色……3
1.4、文獻回顧……4
1.5、研究目的……7
第二章、研究區域……8
2.1、高屏河海動力系統……8
2.1.1 高屏溪……8
2.1.2 高屏陸棚及斜坡……9
2.1.3 高屏海底峽谷……9
第三章、現場觀測與分析方法……12
3.1、實驗設計理念與規劃……12
3.2、沉積物收集器串列……12
3.3、觀測儀器介紹……13
3.3.1、Nortek聲學式流速計……13
3.3.2、深水型現場雷射粒徑分析儀……13
3.3.3、Sontek聲學式流速計……13
3.3.4、XR-420溫深鹽度儀……14
3.3.5、沉積物收集器……14
3.3.6、微型溫探記錄器……14
3.3.7、深水長距型都卜勒海流儀……15
3.3.8、釋放儀……15
3-4、T6KP收集器樣本前處理……20
3.5、T7KP收集器樣本前處理……20
3.6、沉積物樣品分析……22
3.7、含水率及密度計算……23
3.8、沉降速度……24
3.9、潮流調和分析……25
3.10、潮種指標計算……26
3.11、ER值計算……27
3.12、均方根的計算……27
3.13、傅立葉分析……28
3.14、希爾伯特-黃轉換……29
3.15、率定曲線方法……30
3.15、交互關聯分析……31
3.16、多變數分析……32
3.17、沉積物收集器時間域之建立……33
3.17.1、T6KP時間域建立……33
第四章、觀測與資料分析結果……36
4.1、冬季觀測資料分析結果……38
4.1.2、氣象及水文資料……38
4.1.3、T6KP及LADCP串列觀測資料……41
4.1.4、T6KP沉積物分析結果……58
4.1.5、 T6KP收集器時間域……60
4.1.6、傅立葉分析結果……63
4.1.7、EOF分析結果……67
4.2、夏季觀測資料分析結果……72
4.2.1、氣象及水文資料……72
4.2.2、T7KP及LADCP串列觀測資料……76
4.2.3、T7KP上層收集器分析結果……94
4.2.4、上層收集器EOF分析結果……97
4.2.5、T7KP串列下層收集器沉積物分析結果……101
4.2.6、HHT分析結果……104
4.2.7、EOF分析結果……111
第五章、討論……116
5-1、峽谷動力環境……116
5-2、冬季:潮汐作用與沉降顆粒動力及地球化學變化關係……118
5-3、夏季:非潮汐作用與沉降顆粒動力及地球化學變化關係……122
第六章、結論……127
第七章、參考文獻……129

參考文獻 References
中文部分:
中央氣象局,http://www.cwb.gov.tw/
王君豪,2007。高屏溪口流場三維結構的觀測分析,國立中山大學海
洋物理研究所碩士論文,共73頁。
吳孟麟,2004。高屏海底峽谷與陸棚流場之研究,國立中山大學海洋
地質及化學研究所碩士論文,共119頁。
李盈槽,2009。高屏峽谷內潮受地形及分層效應之數值模擬,國立中山大學海洋物理研究所碩士論文,共59頁。
林育如,2006。高屏峽谷水團運動受地形水深影響,國立中山大學海
洋物理研究所碩士論文,共85頁。
林怡君,2009。高屏海底峽谷生物源顆粒傳輸研究-收集器串T6KP、T7KP的比較,國立中山大學海洋地質及化學研究所碩士論文,共90頁。
林聖欽,2008。以聲學回波強度及水文資料探討高屏峽谷水團受內潮運動之影響,國立中山大學海洋物理研究所碩士論文,共98頁。
香港天文台,http://www.hko.gov.hk/
唐兆民、何志剛、任杰、謝正峰,2005。珠江口虎門懸浮泥沙濃度測量,中山大學學報 44期,共5頁。
陳韋佑,2007。以希爾伯特-黃轉換法為GPS接收機抑制調頻干擾,國立台灣大學電機工程學研究所碩士論文,共110頁。
徐堂家,2007。台灣西南近岸颱風湧浪與風浪的消長觀測分析,國立中山大學海洋物理研究所碩士論文,共79頁。
張育嘉,2001。高屏峽谷及附近海域之流場觀測,國立中山大學海洋
資源研究所碩士論文,共91 頁。
許鳳心,2008。台灣西南海域陸源有機碳沉降受鄰近島嶼型河川顆粒傳輸影響之研究,國立台灣大學海洋研究所碩士論文,共109頁。
馮世墩,1988。高屏峽谷底層流之變化,國立台灣大學海洋研究所碩
士論文,共42頁。
黃俊傑,2001。從高屏峽谷水文之時空變化來探討懸浮物質傳輸的機制,國立中山大學海洋資源研究所碩士論文,共101頁。
黃雅雯,2005。探討不同懸浮顆粒在沉降與再懸浮作用中之水動力行為,國立中山大學海洋資源研究所碩士論文,共123頁。
楊仁凱,2010。沖淡水中粒徑結構之時空變化,國立中山大學海洋地質及化學研究所碩士論文,共160頁。
楊萬全,2000。高屏溪流域和屏東平原的水資源,台灣水文論文集,559-562頁。
經濟部水利署:逢甲大學營建及防災研究中心,2007。河川高灘地淤積砂石開採可行性評估研究,4-10頁。
英文部分:
Biscaye, P. E. and Anderson , R. F., 1994. Fluxes of particulate matter on the slope ofthe southern Middle Atlantic Bight: SEEP-II. Deep-Sea Research II 41, 459-509.
Blatt, H., Middleton, G. and Murray, R., 1972. Origin of Sedimentary Rocks. Prentice-Hall, Englewood Cliffs, NJ., 634.
Canals, M., Puig, P., Durrieu de Madron, X., Heussner, S., Palanques, A. and Fabres., J., 2006. Flushing submarine canyons. Nature 444, 354-357.
Chiang, C.S. and Yu, H.S., 2006. Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology 80, 199-213.
Chow, J., Lee, J. S., Liu, C. S., Lee, B. D. and Watkins J. S., 2001. A submarine canyon as the cause of a mud volcano ─ Liuchieuyu Island in Taiwan. Marine geology 176, 55-63.
Dadson, S.J., Hovius, N., Chen, Y.G., Dade, W.B., Hsieh, M.-L., Willett, S.D. and Hu, J.-C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648-651.
Deines, K. L., 1999. Backscatter estimation using broadband acoustic Doppler current profiler. RD Instruments.
Drexler, T.M. and Nittrouer C.A., 2008. Stratigraphic signatures due to flood deposition near the Rhone River, Gulf of Lions, Northwest Mediterranean Sea, Continental Shelf Research 28: 1877-1894.
Emery, W. J. and Thomson, R. E., 1998. Data analysis methods in physical oceanography. Pergamon, 1-634.
Granata, T.C., Vidondo, B., Duarte, C.M., Satta, M.P. and Gracia, M., 1999.Hydrodynamics and particles transport associated with a submarine canyon Blanes (Spain), NW Mediterranean Sea. Continental Shelf Research 19, 1249-1263.
Hill, P.S., Sherwood, C.R., Sternberg, R.W. and Nowell, A.R.M., 1994.
In situ measurements of particle settling velocity on the northern
California continental shelf. Continental Shelf Research I 14,
1123-1137.
Huang, N.E., Shen, Z., Long , S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H., 1998. Mode Decomposition and The Hilbert Spectrum for Nonlinear And Nonstationary Time Series Analysis. Proceedings of the Royal Society 454A, 903-995.
Huh, C.-A., Lin, H.-L., Lin, S. and Huang, Y.-W., 2009a. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76(4), 405-416.
Huh, C.-A., Liu, J.T., Lin, H.-L. and Xu, J.P., 2009b. Tidal and flood signatures of settling particles in the Gaoping submarine canyon (SW Taiwan) revealed from radionuclide and flow measurements. Marine Geology 267(1-2), 8-17.
Inman, D. L., Nordstrom, C. E. and Flick R. E., 1976. Current in submarine canyon: Anair-sea-land interaction. Annual Review of Fluid Mechanics 8, 275-310.
Johnson, K.S., Paull, C.K., Barry, J.B. and Chavez, F.P., 2001. A decadal record of underflows from a coastal river into the deep sea. Geology 29, 1019-1022.
Kneller, B., 1995. Beyond the turbidite paradigm; physical models for deposition of turbidites and their implications for reservoir prediction, in Hartley, A. J., and Prosser, D. J., Characterization of deep marine clastic systems, Geological Society of London Special Publication 94, 31-49.
Kneller, B.C. and Buckee, C., 2000. The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology 47, 62-94.
Lee, I.H., Lien, R.-C., Liu, J.T. and Chuang, W.-S., 2009a. Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon, Taiwan. Journal of Marine Systems 76(4), 383-396.
Lee, I.H., Wang, Y.-H., Liu, J.T., Chuang, W.-S. and Xu, J.P., 2009b. Internal tidal currents in the Gaoping (Kaoping) submarine canyon. Journal of Marine Systems 76, 397-404.
Lin, H.L., Liu, J.T. and Hung, G.W., 2005. Foraminiferal shells in sediment traps: Implications of biogenic particle transport in the Kao-ping submarine canyon, Taiwan. Continental Shelf Research 25, 2261-2272.
Liu, J. T., Chao, S.-Y. and Hsu, R. T., 1999. The influence of suspended sediments on the plume of a small mountainous river. Journal of Coastal Research 15, 1002-1010.
Liu, J.T., Huang, J.-S. and Chyan, J.-M., 2000. The coastal depositional system of a small mountainous river: a perspective from grain-size distributions. Marine Geolog 165, 63-86.
Liu, J. T., Liu, K. J. and Huang, J. C., 2002. The influence of a submarine canyon on a river sediment dispersal and inner shelf sediment movements: a perspective from grain-size distributions. Marine Geology 181, 357-386.
Liu, J.T. and Lin, H.-L., 2004. Sediment dynamics in a submarine canyon: a case of river-sea interaction. Marine Geology 207(1-4), 55-81.
Liu, J.T., Hung, J.-J., Lin, H.-L., Huh, C.-A., Lee, C.-L., Hsu, R.T., Huang, Y.-W. and Chu, J.C., 2009. From suspended particles to strata: the fate of terrestrial substances in the Gaoping (Kaoping) Submarine Canyon. Journal of Marine System 76 (4), 417-432.
Liu, J.T., Wang, Y.H., Lee, I.H. and Hsu, R.T., 2010. Quantifying tidal signatures of the benthic nepheloid layer in Gaoping Submarine Canyon in Southern Taiwan. Marine Geology 271(1-2), 119-130.
Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289-302
Milliman, J.D. and Syvitski, J.P.M., 1992. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology 100, 525-544.
Milliman, J.D. and Kao, S.-J., 2005. Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb (1996) on Taiwanese Rivers. The Journal of Geology 113, 503-516.
Mulder, T. and Syvitski, J.P.M., 1995. Turbidity currents generated at mouths of rivers during exceptional discharges to the world oceans. Journal of Geology 103, 285-299.
Mulder, T., Migeon, S. and Faugères, J.-C., 2001. Inversely graded turbidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents?: Geo-Marine Letters 21, 86-93.
Kneller, B.C. and Branney, M.J., 1995, Sustained high-density turbidity currents and the deposition of thick massive sands: Sedimentology 42, 607-616.
Okey, T.A., 1997. Sediment flushing observations, earthquake slumping and benthic community changes in Monterey Canyon head. Continental Shelf Research 17, 877-897.
Palanques, A., Durrieu de Madron, X., Puig, P., Fabres, J., Guille’ n, J., Calafat, A., Canals, M. and Bonnin, J., 2006. Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading. Marine Geology 234, 43-61.
Palanques, A., Guillen, J., Puig, P. and Durrieudemadron, X., 2008. Storm-driven shelf-to-canyon suspended sediment transport at the southwestern Gulf of Lions. Continental Shelf Research 28(15), 1947-1956.
Puig, P. and Palanques, A., 1998. Nepheloid structure and hydrographic control on the Barcelona continental margin, northwestern Medi- terranean. Marine Geology 149 (1-4), 39-54.
Puig, P., Ogston, A.S., Mullenbach, B.L., Nittrouer, C.A., Parsons, J.D. and Sternberg, R.W., 2004. Storm-induced sediment gravity flows at the head of the Eel submarine canyon, northern California margin. Journal of Geophysical Research 109 (C3), C03019.
Ruch, P., Mirmand, M., Jouanneau, J.-M. and Latouche, C., 1993. Sediment budget and transfer of suspended sediment from the Gironde estuary to Cap Ferret Canyon. Continental Shelf Research 111, 109-119.
Walsh, J.P. and Nittrouer, C. A., 1999. Observations of sediment flux to the Eel continental slope, northern California. Marine Geology 154, 55-68.
Wang, Y. H., Lee, I. H. and Liu, J. T., 2008. Observation of internal tidal
currents in the Kaoping Canyon off southwestern Taiwan, Estuarine,Coastal and Shelf Science 80, 153-160.
Yu, H.S., Huang, C.S. and Ku, J.W., 1991. Morphology and possible origin Kao-ping submarine canyon head off southwest Taiwan. Acta Oceanographica Taiwanica 27, 40-50.
Yu, H.S., Auster, P.J. and Cooper, R.A., 1993. Surface geology and biologyat the head of the Kao-ping canyon off southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences 4, 441-455.
Yu, H. S. and Chiang, C. S., 1997. Kaoping shelf: morphology and tectonic siginificance. Journal of Asian Earth Sciences 15, 9-18.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code