Responsive image
博碩士論文 etd-1213112-142326 詳細資訊
Title page for etd-1213112-142326
論文名稱
Title
葉鯛、擬金眼鯛、鯻、鼬魚 之發音肌蛋白質體比較研究
Comparative study on the sonic muscles of glaucosomatid, pempherid, terapontid, and ophidiid: a proteomic approach
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-09-08
繳交日期
Date of Submission
2012-12-13
關鍵字
Keywords
鯻、擬金眼鯛、葉鯛、發音肌、二維電泳、鼬魚
Two-dimensional gel electrophoresis (2-DE), sonic muscle, ophiidiform, glaucosomatid, pempherid, terapontid
統計
Statistics
本論文已被瀏覽 5738 次,被下載 786
The thesis/dissertation has been browsed 5738 times, has been downloaded 786 times.
中文摘要
一些魚類利用聲音作為溝通的媒介,這些發聲魚類主要以超快速發音肌振動魚鰾來產生與擴大聲音。隱魚屬是一類底棲鼬目魚類,使用慢速收縮發音肌拉動魚鰾最前端,待魚鰾前端彈回造成隔膜振動來發聲, 其他鼬魚可能也利用這種機制。在發聲的鱸亞目魚類中,葉鯛、擬金眼鯛、鯻在魚鰾前端都有類似的隔膜狀構造,先前的分子研究並顯示前兩類形成一個單系群。本研究自這些類群與典型鼬魚類中各選出一種魚並分析其蛋白質體,探討發音肌蛋白質體分別受到功能與親緣關係的影響。 分析顯示鼬魚科的發音肌是與擬金眼鯛較為相似的,並討論此兩類群間的蛋白質相似性。在四種魚裡共發現四百八十四個蛋白質點,當中只有五個與發音肌相關,且其中並不包含白肌。有三個點被成功辨識出來,分別為:Flotillin-1、HBS1-like protein、Ras-related protein ralB-B,並討論它們在發音肌生理上可能的功能。
Abstract
Some fishes use sound to communicate. The majority of these soniferous fishes use superfast sonic muscles to set the vibration of the swim bladder which results in sound emission and sound amplification. Carapus, a benthic ophiidiform genus, use a slow contracting sonic muscle to pull the anteriormost part of the swim bladder, upon termination of the pulling action, the front part of the swim bladder is snap back setting the swimbladder fenestrum to vibrate. This vibration gives rise to the sound. Other ophiidiform fishes may also use a similar way to emit sounds. Among the soniferous percoids, an advanced perform suborder, glaucosomatid, pempherid, and terapontid share a fenestrum-like structure in the front part of their swim bladder. Previous molecular study suggested that the first two groups form a clade (monophyletic group). It is of great interest to compare the proteomic features of these groups with that of the ophiidiform representatives so that the effects of function and phylogeny to the proteomic characteristics of the sonic muscle can be compared. A species was selected for each of these four groups and their proteomics were analyzed. Results of this study, however, revealed the protein composition of the sonic muscles in the ophiidiform species was more similar to that of the pempherid species. The proteins contribute to the close relationship between these two groups was discussed. A total of 484 protein spots were found in these four species and only five were presented in the sonic muscles of all four species, but absent in the white muscles; and only three of them were successfully identified as: Flotillin-1 (spot 6), HBS1-like protein (spot 8), and Ras-related protein ralB-B (spot 10). Their functions which may be related to the specific role of the sonic muscle were discussed.
目次 Table of Contents
TABLE OF CONTENTS


ACKNOWLEDGEMENTS................................................................................ I
ABSTRACT IN CHINESE…………………....…............................................. II
ABSTRACT IN ENGLISH….……………………........................................... III
TABLE OF CONTENTS………………………......………………………...... V
LIST OF TABLES……………………………………………………….......... VII
LIST OF FIGURES…....…………………………………………………….... VIII

I. INTRODUCTION………………...............………….......................……. 1
1.1. Sound production in fishes and the producing mechanisms.............. 1
1.2. Sonic muscle and associated structures.............................................. 2
1.3. Proteomic approach to study sonic muscle........................................ 4
1.4. Proteomic and multivariate data analysis........................................... 5
1.5. Aims of the study................................................................................ 7
II. MATERIALS AND METHODS……………......……………...............… 8
2.1. Sample collection............................................................................... 8
2.2. Preparation of protein extraction........................................................ 8
2.3. Two-dimensional electrophoresis (2-DE).......................................... 9
2.3.1. First dimension electrophoresis............................................. 9
2.3.2. Second dimension................................................................... 10
2.4. Gel staining......................................................................................... 10
2.5. Gel scanning and image analysis........................................................ 10
2.6. Protein identification.......................................................................... 11
2.7. Data analysis....................................................................................... 12
2.7.1. Cluster analysis...................................................................... 12
2.7.2. Principal Component Analysis (PCA).................................... 12



III. RESULTS…………………………………………………………............ 13
3.1. 2-DE gel protein spots of white muscle and sonic muscle of G. buergeri, P. oualensis, T. jarbua, and H. armata.......................... 13
3.2. Proteomic analysis of the sonic muscles of G. buergeri, P. oualensis, T. jarbua, and H. armata.............................................. 14
3.3. Protein identification.......................................................................... 15
IV. DISCUSSION……………………………………………………….....…. 16
4.1. 2-DE analysis of sonic muscle and white muscle.............................. 16
4.2. Clustering analysis of sonic muscle from G. buergeri, P. oualensis, T. jarbua, and H. armata.................................................................... 20
V. CONCLUSION…………………………………..……………………...... 22

REFERENCE……………..………………………………………………....... 23
TABLES……………………………………………………………………..... 27
FIGURES……………………………………………………………................ 42












LIST OF TABLES



Table 1. Protein spot numbers and protein intensity of sonic muscle (SM) relative to white muscle (WM) in Glaucosoma buergeri................... 27

Table 2. Protein spot numbers and protein intensity of sonic muscle (SM) relative to white muscle (WM) in Pempheris oualensis …................ 29

Table 3. Protein spot numbers and protein intensity of sonic muscle (SM) relative to white muscle (WM) in Terapon jarbua…..….……......... 31

Table 4. Protein spot numbers and protein intensity of sonic muscle (SM) relative to white muscle (WM) in Hoplobrotula armata…..........…. 33

Table 5. Resumed data of protein intensity of sonic muscle (SM) relative to white muscle (WM) that were significanly different (p=0.05) from the four species .................................................................................. 35

Table 6. Protein spot intensity of sonic muscle (SM) appearead in Terapon jarbua, Glaucosoma buergeri, Pempheris oualensis, and Hoplobrotula armata by Bolean analysis (Quantitatif 2 fold + Student t-test p=0.05)......................................................................... 36

Table 7. Number of protein spot intersection expressed in Terapon jarbua, Glaucosoma burgeri, Pempheris oualensis, dan Hoplobrotula armata by Bolean analysis (Quantitative 2-fold + Student t-test p=0.05)................................................................................................ 37

Table 8. Summary of identified muscle protein and the presence in sonic muscle (SM) and white muscle (WM) ....................................…..... 38

Table 9. Spot identification number, protein name and the eigenvectors of the PC1 and PC2 .............................................................................. 39

Table 10. Function of the proteins identified in the sonic muscle (SM) and white muscle (WM). …..................................................................... 40






LIST OF FIGURES



Fig. 1. Swim bladder and its associated sonic muscle in (A) H. armata, (B) G. buergeri, (C) P. oualensis, and (D) T. jarbua……………...... 42

Fig. 2. Two-dimensional gel of white muscle (A) and sonic muscle (B) of Glaucosoma buergeri. ….....……………………................................ 43

Fig. 3. Two-dimensional gel of white muscle (A) and sonic muscle (B) of Pempheris oualensis ………………………..…………..................... 44

Fig. 4. Two-dimensional gel of white muscle (A) and sonic muscle (B) of Terapon jarbua..………………………………………….................. 45

Fig. 5. Two-dimensional gel of white muscle (A) and sonic muscle (B) of Hoplobrotula armata..……………………………….………............ 46

Fig. 6. Master gel image of sonic muscle generated from four different fish species gel images using PDQuest software. Each spot number relates to data shown in Table 6.............………………………........ 47

Fig. 7. The 2-DE maps of the sonic muscle in four fish species. (A) Glaucosoma buergeri, (B) Pempheris oualensis, (C) Terapon jarbua, and (D) Hoplobrotula armata..…………………………........ 48

Fig. 8. Intersection of protein spot intensity from 4 fish species using Bolean analysis combining Student t-test (p=0.05) and Quantitatif analysis (2 fold different), were clustered using UPGMA.................. 49

Fig. 9. Principal component analysis (PCA) of protein expression (484 spots, normalized) in sonic muscles of the four fish species (G=G. buergeri, T=T. jarbua, H=H. armata, P=P. oualensis. Numbers indicate repetition).........................................................................………......... 49
參考文獻 References
REFERENCES

Chiu, K.H., Hsieh, F.M., Chen, Y.Y., Huang, H.W., Shiea, J., and Mok, H.K. 2012. Parvalbumin characteristics in the sonic muscle of a freshwater ornamental grunting toadfish (Allenbratachus grunniens). Fish Physiology and Biochemistry.
M. A. Connaughton, M. L. Fine, and M. H. Taylor. 1997. The effects of seasonal hypertrophy and atrophy on fiber morphology, metabolic substrate concentration and sound characteristics of the weakfish sonic muscle. The Journal of Experimental Biology. 200: 2449–2457.
Esbensen, K. H. 2000. Multivariate data analysis–in practice: An introduction to multivariate data analysis and experimental design. 5th edition. Aalborg University, Esbjerg, Denmark.
Evans, R. 1968. The absence of myoglobin in the sonic muscles of two species of searobins Prionotus (Triglidae). In : Evans, R. The swimbladder and associated structures in western atlantic sea robins (Triglidae). Copeia 2: 315-321.
Fine, M.L., Pennypacker, K.R., Drummond, K.A., and Blem, C.R. 1986. Concentration and location of metabolic substrates in fast toadfish sonic muscle. Copeia 1986: 910-915.
Fine, M. L., Burns, N. M. & Harris, T. M. 1990. Ontogeny and sexual dimorphism of sonic muscle in the oyster toadfish. In: Parmentier E., Gennotte,V., Focant, B., Goffinet, G., Vandewalle, P. 2003. Characterization of the primary sonic muscles in Carapus acus (Carapidae): a multidisciplinary approach. Proceeding of Royal Society 207: 2301-2308.
Fine, M. L., Bernard, B. & Harris, T. M. 1993. Functional morphology of toadfish sonic muscle fibers: relationship to possible fiber division. Canadian Journal of Zoology 71: 2262–2274.
Fine, M. L., Malloy, K. L., King, C. B., Mitchell, S. L., and Cameron, T. M. 2001 Movement and sound generation by the toadfish swimbladder. Journal of Comparative Physiology 187: 371–379.
Forne, I., Abian J., and Joan C. 2010. Fish proteome analysis: model organisms and nonsequenced species. Proteomics 10: 858–872.
Gillis, 1985. Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. In : Parmentier E., Gennotte,V., Focant, B., Goffinet, G., Vandewalle, P. 2003. Characterization of the primary sonic muscles in Carapus acus (Carapidae): a multidisciplinary approach. Proceeding of Royal Society 207: 2301-2308.
Hamoir, G., Gerardin-Otthiers, N., and Focant, B. 1980. Protein differentiation of the superfast swimbladder muscle of the toadfish Opsanus tau. Journal of Molecular Biology 143: 155–160.
Huriaux, F., Lefebvre, F. & Focant, B. 1983 Myosin polymorphism in muscles of the toadfish, Opsanus tau. Journal of Muscle Research and Cell Motility 4: 223–232.
Isfort, R.J. 2002. Proteomic analysis of striated muscle. Journal of Chromatography 771: 155–165.
Jiang, Y.X. 2010. Phylogeny of Pempheridae infered from sound-producing structure and DNA sequences. Master thesis, National Sun Yat-sen University.
Jones, F. R. H., and N. B. Marshall. 1953. The structure and function of the teleostean swimbladder. Biological Reviews 28:16-83.
Jung, E., Heller, M., Sanchez, J.C., Hochstrasser, D.F. 2000. Proteomics meets cell biology: the establishment of subcellular proteomes. Electrophoresis 21: 3369–3377.
Kaatz, I.M. 2002. Multiple sound producing mechanisms in teleost fishes and hypotheses regarding their behavioural significance. Bioacoustics 12: 230-233.
Karp, N.A., Griffin, J.L., and Lilley, K.S. 2005. Application of partial least squares discriminant analysis to two-dimensional difference gel studies in expression proteomics. Proteomics 5: 81–90.
Kasumyan, A.O. 2008. Sounds and sound production in fishes. Journal of Ichthyology 48: 981–1030.
Kjarsgard, I.V.H., Norrelykke M.R., and Jessen F. 2006. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis. Proteomics 6: 1606–1618.
Li, H., Randall W.R., Du S.J. 2009. skNAC (skeletal Naca), a muscle-specific isoform of Naca (Nascent Polypeptide-Associated Complex Alpha), is required for myofibril organization. The FASEB Journal 23: 1988-2000.
Lin, Y.C., Chiu, K.H., Shiea, J., Huang, H.W., and Mok, H.K. 2011. Seasonal changes in atrophy-associated proteins of the sonic muscle in the big-snout croaker, Johnius macrorhynus (Pisces, Sciaenidae), identified by using a proteomic approach. Fish Physiology Biochemistry 37: 977–991.
Mok, H.K., Parmentier, E., Chiu, K.H., Tsai K.E., Chiu, P.H., and Fine, M.L. 2011. An Intermediate in the evolution of superfast sonic muscles. Frontiers in Zoology 8: 31.
Nahirney, P.C., Ficshman, D.A., and Wang, K. 2006. Myosin flares and actin leptomeres as myofibril assembly/disassembly intermediates in sonic muscle fibers. Cell Tissue Research 324: 127–138.
Ou-Yang, Jui. 2010. Study of the sonic apparatus of ophiidid fishes from Taiwan. Master thesis, National Sun Yat-sen University.
Parmentier E., and Diego R. 2003. Evolutionary trends of swimbladder sound mechanisms in some teleost fishes. In: Ladich F, Collin SP, Moller P, Kapoor B.G. (eds.) Communication in fishes. Science Publisher USA, pp. 43–68.
Parmentier E., Gennotte,V., Focant, B., Goffinet, G., Vandewalle, P. 2003. Characterization of the primary sonic muscles in Carapus acus (Carapidae): a multidisciplinary approach. Proceeding of Royal Society 207: 2301-2308.
Parmentier, E., Fontenelle, N., Fine M.L., Vandewalle, P., and Henrist, C. 2006a. Functional Morphology of the Sonic Apparatus in Ophidion barbatum (Teleostei, Ophidiidae). Journal of Morphology 267: 1461-1468.
Parmentier, E., Lagardere, J.P., Braquegnier, J.P., Vandewalle P., Fine, M. L. 2006b. Sound production mechanism in carapid fish: first example with a slow sonic muscle. The Journal of Experimental Biology 209: 2952-2960.
Rome, L. C., Cook, C., Syme, D. A., Connaughton, M. A., Ashley-Ross, M., Klimov, A., Tikunov, B. & Goldman, Y. E. 1999 Trading force for speed: why superfast crossbridge kinetics leads to superlow forces. Proceedings of the National Academy of Sciences of the United State of America 96: 5826–5831.
Romesburg, H.C. 1989. Cluster Analysis for Researchers. Lifetime Learning Publications, Belmont CA, pp. 14-23.
Rountree, R.A., R.G. Gilmore, C.A. Goudey, A.D. Hawkins, J. Luczkovich, and D. Mann. 2006. Listening to Fish: applications of fassive acoustics to fisheries science. Fisheries 31: 433-446.
Sprague, M.W. 2000. The single sonic muscle twitch model for the sound-production mechanism in the weakfish, Cynoscion regalis. Journal of the Acoustical Society America 108: 2430-2437.
Stierum, R., Gaspari M., Dommels Y., Ouatas T., Jespersen S., Vogels J., Verhoeckx, K., Groten J., Pluk H., and Ommen B.V. 2003. Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2. Biochimica et Biophysica Acta 1650: 73–91.
Tavolga, W.N. 1971. Sound production and detection. In: Fish Physiology. W.S. Hoar and D.J. Randall (eds.). Acad. Press, New York, NY, 5: 135–205.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code