Responsive image
博碩士論文 etd-1214107-000849 詳細資訊
Title page for etd-1214107-000849
論文名稱
Title
簡化平面類複眼架構的平移運動估測
Estimation of translational motion by simplified planar compound-like eye schemes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-10-16
繳交日期
Date of Submission
2007-12-14
關鍵字
Keywords
雙眼、光流、三眼、影像運動分析、重疊平面類複眼
superposition-type planar compound-like eye, image motion analysis, trinocular, binocular, optical flow
統計
Statistics
本論文已被瀏覽 5732 次,被下載 1203
The thesis/dissertation has been browsed 5732 times, has been downloaded 1203 times.
中文摘要
本文提出簡化平面類複眼架構,作為估測平移運動參數的技巧。此架構主要包括基本的並列三眼和擴展的單列類複眼。首先利用平行三眼系統架構和最小平方演算法,所提的作法可克服當利用雙眼架構求取平移運動參數時所遭遇的矩陣奇異性的問題。為了進ㄧ步降低求解運動過程的計算複雜性,本研究也提出估算平移運動參數的一個簡潔封閉解。此封閉解不但消除矩陣奇異性問題,而且可避免矩陣運算。因此,它具有低複雜性運算,因而是在複雜且實際視覺影像應用時,為執行運動估算的一個理想解。經由理想情況和擾動環境下,各種大小的平移運動和方向的一系列數值模擬。一般而言,只要深度不大,均可驗證出精確的回復運動參數。
由平行三眼擴展其應用到昆蟲複眼可精確和快速抓取獵物,此種有趣的問題不以生物的角度,而以電腦視覺來探討。利用單列平面類複眼架構,主要在運動回復的抗雜訊性能評估。此種平面類複眼具有昆蟲複眼中,大量的小眼組成的特殊對稱架構,因而模擬雜訊在四周環境不確定下或CCD裝置低解析度下產生的可能模糊影像型態,並進一步模擬,其結果指出,無論雜訊大小,此種特殊視覺架構均可提供優越的運動性能估算,甚至當雜訊干擾是非常嚴重時,此種類複眼不需要任何型態濾波器下,也能大量的降低平移運動的回復誤差。
總之,依據三眼視覺系統的最小平方演算法,擴展到單列平面類複眼,此種多重視覺偵測裝置的類複眼對於可能的雜訊具有統計上均勻化的優勢,此發現正是以工程的觀點解開昆蟲複眼之謎的基本依據。
Abstract
This dissertation presents a technique for recovering translational motion parameters using two simplified planar compound-like eye schemes, namely a parallel trinocular system and a single-row Superposition-type Planar Compound-like Eye (SPCE).
In the parallel trinocular scheme, a least squares estimation algorithm is developed for recovering the translational motion parameters. The proposed approach resolves the matrix singularity problem encountered when attempting to recover motion parameters using a conventional binocular scheme. To further reduce the computational complexity of the motion estimation process, a compact closed-form scheme is also proposed to estimate the translational motion parameters. The closed-form algorithm not only resolves the matrix singularity problem, but also avoids the requirement for matrix manipulation. As a result, it has a low computational complexity and is therefore an ideal solution for performing motion estimation in complex, real-world visual imaging applications following an initial image filtering process. The performance of the closed-form algorithm is evaluated by performing a series of numerical simulations in which translational displacements of various magnitudes in three-dimensional space are recovered in both noise-free and perturbed environments. In general, the results demonstrate that the translational motion parameters can be reconstructed with a high degree of accuracy provided that the motion in the depth direction is limited to small displacements only.
Having developed a motion estimation scheme for a parallel trinocular system, additional charge coupled device (CCD) cameras are added in the horizontal direction to create a single-row SPCE. Translational motion models for the SPCE are then constructed by stacking the optical flow equations in the horizontal direction. The ego-translational parameters are then extracted using a simple least squares estimation algorithm. The simulation results reveal that the introduction of additional cameras to the machine vision system ensures an excellent motion estimation performance without the need for filters of any kind even when the viewing field is characterized by significant noise or the CCD deployment within the SPCE configuration has a non-uniform distribution.
Overall, the parallel binocular scheme and single-row SPCE configuration presented in this dissertation demonstrate a high degree of robustness toward noise and enable the motion estimation process to be performed in a rapid and computationally efficient manner using a simple least squares approximation approach. Whilst science can not realistically hope to improve upon the visioning capabilities found in the insect world, the techniques presented in this dissertation nonetheless provide a sound foundation for the development of artificial planar-array compound-like eyes which mimic the mechanisms at work in biological compound eyes and attain an enhanced visioning performance as a result.
目次 Table of Contents
List of Tables v
List of Figures vi
Chinese Abstract viii
English Abstract ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 7
1.3 Organization of the dissertation 11
Chapter 2 Parallel Trinocular and Motion Parameters 12
2.1 Recovery of translational motion parameters 12
2.2 Model A (the complete model) 15
2.3 Model B (the simplified model) 16
2.4 Model C (the compromise model) 17
Chapter 3 Acquisition of Translational Motion by the Parallel Trinocular 19
3.1 Limitations of binocular imaging systems 19
3.2 Compact closed-form solution 20
3.3 Validation of closed-form solution 21
3.3.1 Translational motion parameters estimation 22
3.3.2 Effects of Z-axis displacement and baseline distances between cameras 24
3.4 Motion estimation in perturbed environments 25
3.5 Performance comparison 29
3.6 Discussions 31
Chapter 4 Motion Estimation Using Single-Row SPCE 33
4.1 Compound-like eye and computer vision 33
4.2 Translational motion model of single-row SPCE 36
4.3 Motion estimation using single-row SPCE 38
4.3.1 Validation of three models 44
4.3.1.1 Accuracy 44
4.3.1.2 Computational efficiency 46
4.3.2 Effects of variation in noise level 48
4.3.3 Effects of irregular arrangement cameras 49
4.4 Discussions 51
Chapter 5 Conclusions 52
5.1 Contributions 53
5.2 Future research topics 55
Appendix A Product of disparities 57
Appendix B Determinant of ATA for Model C 58
Appendix C Data of 50 non-coplanar test points 60
Appendix D Determinant of ATA for Model A 62
Appendix E Orders of image matrix and optical flow vector 63
Appendix F Study on the elapsed time 64
Bibliography 66
參考文獻 References
[1]E. H. Adelson, J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 99–106, 1992.
[2]G. Adiv, “Determining three-dimensional motion and structure from optical flow generated by several moving objects,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 7, no. 4, pp. 384-401, 1985.
[3]M. Agrawal, L. S. Davis, “Trinocular stereo using shortest paths and the ordering constraint,” in Proc. IEEE Workshop on Stereo and Multi-Baseline Vision, Kauai, Hawaii, 2001, pp. 3-9.
[4]Y. Aloimonos, New camera technology: Eyes from eyes. Available: http://www.cfar.umd.edu/~yiannis/resaerch.html, 2007.
[5]N. Ayache, F. Lustman, “Trinocular stereo vision for robotics,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 1, pp. 73-85, 1991.
[6]J. L. Barron, R. Eagleson, “Recursive estimation of time-varying motion and structure parameters,” Pattern Recognition, vol. 29, no. 5, pp. 797-818, 1996.
[7]J. L. Barron, D. J. Fleet, S. S. Beauchemin, “Performance of optical flow techniques,” International Journal of Computer Vision, vol. 13, no. 1, pp. 43–77, 1994.
[8]J. L. Barron, A. D. Jepson, J. K. Tsotsos, “The feasibility of motion and structure from noisy time-varying image velocity information,” International Journal of Computer Vision, vol. 5, no. 3, pp. 239-269, 1990.
[9]S. Baskaufl, Introduction to Biological Sciences Lab, BSCI 111b - Spring 2007, The Structure & Function of Eyes. Available: http://www.cas.vanderbilt.edu/bsci111b/eye/supplemental.htm
[10]A. Blake, D. McCowen, H. R. Lo, P. J. Lindsey, “Trinocular active range-sensing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 5, pp. 477-483, 1993.
[11]M. Z. Brown, D. Burschka, G. D. Hager, “Advance in computational stereo,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993-1008, 2003.
[12]B. Carpentieri, “Block matching displacement estimation: A sliding window approach,” Information Sciences, vol. 135, no. 1-2, pp. 71-86, 2001.
[13]L. F. Cheong, T. Xiang, “Characterizing depth distortion under different generic motions,” International Journal of Computer vision, vol. 44, no. 3, pp. 199-217, 2001.
[14]R. N. Chiou, C. H. Chen, K. C. Hung, J. Y. Lee, “The optimal camera geometry and performance analysis of a trinocular vision system,” IEEE Trans. Systems, Man, and Cybernetics, vol. 25, no. 8, pp. 1207-1220, 1995.
[15]T. Collett, “Animal behaviour: Survey flights in honeybees,” Nature, vol. 403, pp. 488-489, 2000.
[16]T. S. Collett, M. Lehrer, “Looking and learning: A spatial pattern in the orientation flight of the wasp,” Proc. of the Royal Society of London B, vol. 252, pp. 129-134, 1993.
[17]M. Dacke, M. V. Srinivasan, “Honeybee navigation: distance estimation in the third dimension,” Journal of Experimental Biology, vol. 210, pp. 845-853, 2007.
[18]K. Daniilidis, M. E. Spetsakis, “Understanding noise sensitivity in structure from motion,” in Visual Navigation: From Biological Systems to Unmanned Ground Vehicles. Hillsdale, NJ: Lawrence Erlbaum Associates, 1997, Ch. 4.
[19]A. M. Earnshaw, S. D. Blostein, “The performance of camera translation direction estimators from optical flow: Analysis, comparison, and theoretical limits,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 9, pp. 927-932, 1996.
[20]M. Elwell, L. Wen, “The power of compound eyes,” Optics & Photonics News, pp. 58-59, 1991.
[21]C. Garcia, G. Tziritas, “Optimal projection of 2-D displacements for 3-D translational motion estimation,” Image and Vision Computing, vol. 20, pp. 793-804, 2002.
[22]D. L. Green, Picture taken in the summer of 2003. Available: http://www.biocrawler.com/encyclopedia/Image:Dragonfly_eye_3811.jpg
[23]N. Gupta, L. Kanal, “3-D motion estimation from motion field,” Artificial Intelligence, vol. 78, pp. 45-86, 1995.
[24]E. Gurewitz, I. Dinstein, B. Sarusi, “More on the benefit of a third eye for machine stereo perception,” in Proc. 8th International Conference on Pattern Recognition, Paris, France, 1986, pp. 966-968.
[25]E. E. Hemayed, M. T. Ahmed, A. A. Farag, “CardEye: A 3D trinocular active vision system,” in Proc. IEEE International Conference on Intelligent Transportation Systems, Dearborn, MI, 2000, pp. 398-403.
[26]E. E. Hemayed, A. A. Farag, “A geometrical-based trinocular vision system for edges reconstruction,” in Proc. 10th International Conference on Image Processing, Chicago, IL, 1998, pp. 162-166.
[27]R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, R. Krishnasamy, “Electronic compound eye image sensor: construction and calibration,” Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications, Proc. SPIE 5301, V, 2004, pp. 13–24.
[28]G. A. Horridge, “A theory of insect vision: velocity parallax,” Proc. of the Royal Society of London B, vol. 229, no. 1254, pp. 13–27, 1986.
[29]K. Hoshino, F. Mura, H. Morii, K. Suematsu, I. Shimoyama, “A small-sized panoramic scanning visual sensor inspired by the fly’s compound eye,” In Proc. IEEE Int. Conf. Robotics and Automation, 1998, pp. 1641-1646.
[30]F. Iida, “Biologically inspired visual odometer for navigation of a flying robot,” Robotics and Autonomous Systems, vol. 44, no. 3-4, pp. 201-208, 2003.
[31]J. Kim, K. H. Jeong, L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Optics Letters, vol. 30, no. 1, pp. 5-7, 2005.
[32]J. W. Kimball, The Compound Eye, Kimball’s Biology Pages. Available: http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CompoundEye.html, 2007.
[33]M. F. Land, D.-E. Nilsson, Animal Eyes. New York: Oxford University Press, 2002.
[34]M. Levoy, “Light fields and computational imaging,” Computer, vol. 39, no. 8, pp. 46-55, 2006.
[35]L. Li, J. H. Duncan, “3-D Translational motion and structure from binocular image flows,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 7, pp. 657-667, 1993.
[36]G. L. Lin, C. C. Cheng, “Determining 3-D translational motion by the parallel trinocular,” in Proc. IEEE International Conference on Robotics and Biomimetics, Kunming, China, 2006, pp. 773-778.
[37]N. D. V. Lobo, J. K. Tsotsos, “Computing egomotion and detecting independent motion from image motion using collinear points,” Computer Vision and Image Understanding, vol. 64, no. 1, pp. 21-52, 1996.
[38]A. Mitiche, “On kineopsis and computation of structure and motion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 1, pp. 109-112, 1986.
[39]J. Mulligan, K. Daniilidis, “Trinocular stereo for non-parallel configurations,” in Proc. 15th International Conference on Pattern Recognition, Barcelona, Spain, 2000, pp. 567-570.
[40]T. Netter, N. Franceschini, “A robotic aircraft that follows terrain using a neuro-morphic eye,” In Proc. IEEE /RSJ Int. Conf. Intelligent Robots and Systems, 2002, pp. 129-134.
[41]J. Neumann, C. Fermuller, Y. Aloimonos, V. Brajovic, “Compound eye sensor for 3D ego motion estimation,” In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Sendai, Japan, 2004, pp. 3712-3717.
[42]T. R. Neumann, “Modeling insect compound eyes: Space-variant spherical vision,” H. H. Bülthoff, S.-W. Lee, T. Poggio, C. Wallraven (Eds.), in Proc. 2nd International Workshop on Biologically Motivated Computer Vision, LNCS 2525, Springer-Verlag, Berlin, 2002, pp. 360-367.
[43]T. R. Neumann, H. H. Bülthoff, “Biologically motivated visual control of attitude and altitude in translatory flight,” G. Baratoff, H. Neumann (Eds.), in Proc. 3rd Workshop Artificial Intelligence, Dynamische Perzeption, 2000, pp. 135-140.
[44]R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2005-02, Stanford University, Stanford, CA, 2005.
[45]K. Nitta, R. Shogenji, S. Miyatake, J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Applied Optics, vol. 45, no. 13, pp. 2893-2900, 2006.
[46]A. S. Ogale, Y. Aloimonos, “Shape and the stereo correspondence problem,” International Journal of Computer Vision, vol. 65, no. 3, pp. 147-162, 2005.
[47]Y. Ohta, M. Watanabe, K. Ikeda, “Improving depth map by right-angled trinocular stereo,” in Proc. 8th International Conference on Pattern Recognition, Paris, France, 1986, pp. 519-521.
[48]A. Ohya, Y. Miyazaki, S. Yuta, “Autonomous navigation of mobile robot based on teaching and playback using trinocular vision,” in Proc. 27th Annual Conf. of the IEEE Industrial Electronics Society, Denver, CO, 2001, pp. 398-403.
[49]W. D. Pan, S. M. Yoo, M. Nalasani, P. G. Cox, “Efficient local transformation estimation using Lie operators,” Information Sciences, vol. 177, no. 3, pp. 815-831, 2007.
[50]W. Richards, “Structure from stereo and motion,” Journal of Optical Society of America, vol. 2, pp. 343-349, 1985.
[51]A. Rieder, “Trinocular divergent stereo vision,” in Proc. 13th International Conference on Pattern Recognition, Vienna, Austria, 1996, pp. 859-863.
[52]W. S. Romoser, The Science of Entomology. New York: Macmillian Publishing, 1973.
[53]U. Seiffert, B. Michaelis, “Estimating motion parameters with three-dimensional self-organizing maps,” Information Sciences, vol. 101, pp. 187-201, 1997.
[54]E. Simoncelli, E. Adelson, D. Heeger, “Probability distributions of optical flow,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 1991, pp. 310-315.
[55]E. C. Sobel, “The locust’s use of motion parallax to estimate distance,” J. Comp. Physiol. A, vol. 167, pp. 579-588, 1990.
[56]M. V. Srinivasan, J. S. Chahl, K. Weber, S. Venkatesh, M. G. Nagle, S. W. Zhang, “Robot navigation inspired by principles of insect vision,” Robotics and Autonomous Systems, vol. 26, no. 2-3, pp. 203-216, 1999.
[57]M. V. Srinivasan, S. W. Zhang, M. Lehrer, T. S. Collett, “Honeybee navigation en route to the goal: Visual flight control and odometry,” The Journal of Experimental Biology, vol. 199, no.1, pp. 237-244, 1996.
[58]C. V. Stewart, C. R. Dyer, “The trinocular general support algorithm: A three-camera stereo algorithm for overcoming binocular matching errors,” in Proc. 2nd International Conference on Computer Vision, Tampa, FL, 1988, pp. 134-138.
[59]C. Stiller, J. Konrad, “Estimating motion in image sequences,” IEEE Signal Processing Magazine, pp. 70-91, 1999.
[60]J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Applied Optics, vol. 40, no. 11, pp. 1806-1813, 2001.
[61]T. Y. Tian, C. Tomasi, D. J. Heeger, “Comparison of approaches to egomotion computation,” in Proc. of Computer Vision and Pattern Recognition, San Francisco, CA, 1996, pp. 315-320.
[62]C. L. Tisse, “Low-cost miniature wide-angle imaging for self-motion estimation,” Optics Express, vol. 13, no. 16, pp. 6061-6072, 2005.
[63]R. Y. Tsai, T. S. Huang, “Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, no.1, pp. 13-27, 1984.
[64]H. Tsukune, “Trinocular stereo analysis of optical flow,” in Proc. 10th International Conference on Pattern Recognition, Atlantic City, NJ, 1990, pp. 43-47.
[65]R. Volkel, M. Eisner, K. J. Weible, “Miniaturized imaging systems,” Microelectronic Engineering, vol. 67-68, pp. 461-472, 2003.
[66]J. Weng, T. S. Huang, N. Ahuja, “Motion and structure from two perspective views: algorithms, error analysis, and error estimation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no.5, pp. 451-476, 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code