Responsive image
博碩士論文 etd-1214110-134329 詳細資訊
Title page for etd-1214110-134329
論文名稱
Title
有機光電材料暨軟性電子之應用
Application of Organic Optoelectronic Materials and Flexible Electronics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-11-29
繳交日期
Date of Submission
2010-12-14
關鍵字
Keywords
軟性電子、有機太陽能電池、盤狀液晶、聚芳香醚高分子
organic solar cell, discotic liquid crystal, poly (arylene ether)s, flexible electronics
統計
Statistics
本論文已被瀏覽 5650 次,被下載 46
The thesis/dissertation has been browsed 5650 times, has been downloaded 46 times.
中文摘要
本研究主題 為有機光電材料暨軟性電子元件應用,分為兩大部分,(一). 功能性聚芳香醚研製與光電特性研究,其特性為高性能工程塑膠,其具有良好的物化特性,例如:可塑性、良好的熱穩定性和化學耐受程度。藉由分子設計與研製後其具有:
1.良好的熱穩定性,其具有高Tg與Td以及低熱膨脹係數。
2.可見光區有高透光度。
3.基板表面具有疏水性與低水氧穿透度。
此新型軟性基板材料為一種含三氟甲基的聚芳香醚高分子材料。此聚芳香醚高分子是由含氟芳香醚單體4,4’’’’-Difluore-3,3’’’’-bis
(trifluoromethyl)-2’’,3’’,5’’,6’’-triphenyl與雙酚單體以聚縮合反應(親核性置換)而成。高熱穩定性(裂解溫度(Td5%)在450°C~550°C,玻璃轉移溫度(Tg)為300~340°C, CTE <30ppm/℃、強機械強度、低介電值與可見光區的高穿透率,顯示其可作為可撓式顯示器或太陽能電池元件等光電工程基板。
(二). 具光電轉換效應與可規則排列之有機光電材料及光伏特計研究。由元件製作可分為染料敏化太陽能電池(DSSCs)與有機薄膜式太陽能電池。其利用自行發展之盤狀液晶與側鏈型液晶高分子,對應其自組裝與自發形成的載子傳遞通道特性,將材料置放於元件中,並與一般文獻型式為其對照標準,評估其差異性。其中以元件結構為ITO/PEDOT:PSS/DLC-PAM/P3HT:PCBM/Al,盤狀液晶作為電洞傳輸層,則能使太陽能電池效率提升14%。在染料敏化太陽能電池中也存在光電轉換的效應,並發現出盤狀堆疊的規則程度影響元件效率的表現與造成差異的結果。
最後將聚芳香醚高分子薄膜鍍上ITO作為可撓式的工程基板,以新穎盤狀液晶材料為電洞傳輸層,製作可撓式的薄膜型有機太陽能電池,發現其具有潛力的軟性電子元件效益,進而評估此新穎盤狀液晶材料對於薄膜式有機太陽能電池之適用性。
Abstract
We proposed a flexible electronics with functional poly (arylene ether)s and discotic liquid crystal. Firstly, we provided a series of the PAE polymer with remarkable thermal stability and high optical transmittance. The PAEs were synthesized via nucleophilic displacement as polymerization on a 2-trifluoromethyl-activated bisfluoro monomer, which reacted with bisphenols. Thermal analysis indicated the PAEs possessed a high glass transition point of ~300℃ and the decomposition temperature Td=500℃ at a weight loss of 5%. Additionally, high transmittance of 85%, low dielectric constant of ~2.0, and well mechanical property of the PAE films were experimentally verified, as a high potential substrate for flexible electronics. Two kind of device structure has been prepared, were organic thin film solar cell and Dye sensitized solar cell. Furthermore, we provided the self-assembled triphenylene-based liquid crystal and its polymer derivative to apply for photovoltics. The 2, 3, 6, 7-tetra-6-octyloxydibenzo[a,c]phenazine-11-carboxylic group and the polymer of merging with disc-unit and polyacrylamide. Both show a highly isotropic phase transition point of ~270℃ and the decomposition temperature Td~450℃ at a weight loss of 5%. The specific absorption in visible light region was at 200 - 450 nm. A distinct self-arrangement of columnar array was investigated by optical textures. The self-arranged pathway enhanced carrier mobility due to π-π conjugation in hexagonal column stacking. Finally, the PAEs and DLC materials applied to thin film solar cell (ITO/PEDOT:PSS/DLC-PAM/P3HT:PCBM/Al) as hole transporting layer. The photo-conversion efficiency was strong depending on organic compounds, such as molecular structure, photo-physic and chemical properties. On the basis of integrated characteristics, it suggested a high potential as flexible electronics for photovoltics.
目次 Table of Contents
目&#63807;
誌 謝
中文摘要-------------------------- I-II
Abstract------------------------------------ III
Aknoledgement------------------------------- Ⅳ
目錄-------------------------------------- V-XVIII
第一部---------------------------------- VI-VII
第一部 圖/表目錄------------------------ XI-XV
第二部---------------------------------- VIII-X
第二部 圖/表目錄------------------------ XVI-XVIII

















第一部 聚芳香醚高分子
第一章 軟性電子基材
1-1 前言---------------------------------------------1
1-2商業化軟性基板------------------------------------4
1-3文獻回顧與研究動機--------------------------------6
1-4 研究目的-----------------------------------------13
1-4-1分子設計概念----------------------------------15
1-5 材料基礎理論與製程 ------------------------------16
1-5-1聚芳香醚高分子材料----------------------------16
1-5-2單體與聚芳香醚高分子材料合成製備--------------17
1-6分析儀器簡介------------------------------------- 21
1-6-1 實驗藥劑-------------------------------------21
1-6-2 分析儀器-------------------------------------21
第二章 實驗方法、材料製備與鑑定
2-1研究方法與步驟設計-------------------------------25
2-2前趨物與單體合成與鑑定 --------------------------29
2-3高分子聚合物之合成與鑑定(以P-Ax 與P-Bx聚芳香醚合高分子為例)-------------------------------------------34

第三章 結果與討論
3-1 材料鑑定----------------------------------------44
3-2 材料熱分析(以P2C,P3C與P4C為例)------------------47
3-3 材料光譜分析(以P2C,P3C與P4C為例)----------------50
3-4 材料表面分析(以P2C,P3C與P4C為例)----------------57
3-5 材料能階分析(光學與循環伏安計衍算,以P2C,P3C與P4C為例)----------------------------------------------64
3-6 其它材料分析------------------------------------67
3-7 功能性材料實體製作(P44)-------------------------72
第四章 結論
4-1 結論 ------------------------------------------79
4-1-1由分子結構設計 ----------------------------------------------79
4-1-2由薄膜特性分析--------------------------------80
參考文獻----------------------------------------------82

第二部 具光電轉換效應與可自我規則排列之有機光電材料暨軟性光伏特計研究
第一章 有機光伏特計----------------------------86
1.1 前言------------------------------------------86
1.2有機太陽能電池結構發展-------------------------88
1.2.1 單層結構---------------------------------88
1.2.2雙層異質接面(heterojunction)結構----------88
1.2.3單層異質接面結構--------------------------89
1.3研究動機與目的 --------------------------------92
1.3.1------------------------------------------ 92
1.3.2盤狀液晶----------------------------------93
1.4高分子液晶材料 --------------------------------95
1.4.1 主鏈型高分子液晶材料---------------------95
1.4.2側鏈型高分子液晶材料---------------------95
1.4.3 複合型高分子液晶材料---------------------96
1.4.4 Triphenylene-based盤狀液晶與側鏈型高分子液晶-97
1.5分析儀器簡介 ----------------------------------99


第二章 基本理論
2.1有機薄膜太陽能電池之工作原理-------------------102
2.2有機太陽能電池之轉換效&#63841;-----------------------104
2.3六角柱狀排列堆積-------------------------------106
第三章 光伏計元件製作
3.1 薄膜型太陽能電池------------------------------110
3.2 染料敏化太陽能電池----------------------------115
第四章 量測與結果分析
4.1 材料分析--------------------------------------117
4.2 光學分析--------------------------------------119
4.2.1 紫外與可見光吸收光譜探討--------------------------119
4.3 能階分析--------------------------------------120
4.4 排列特性分析----------------------------------122
4.4.1 偏光顯微鏡分析-----------------------------------------122
4.4.2 X光繞射儀分析----------------------------------------124
4.5 有機太陽能電池元件效率之探討------------------126
4.5.1 有機薄膜型太陽能電池--------------------------------126
4.5.2 染料敏化太陽能電池-----------------------------------129
4.6 DLC與DLC-PAM排列分析-----------------------131
4.7 DLC與DLC-PAM應用於軟性基板(軟性有機薄膜太陽能電池) ----------------------------------------------134

第五章 結論
5.1結論------------------------------------------136
第六章未來工作與總結------------------------------138
參考文獻--------------------------------------------139

第一部 圖/表目錄
第一部 圖目錄
圖1-1 單體合成流程圖-----------------------------------19
圖1-2 高分子合成流程圖---------------------------------20
圖2-1 單體bis(4-fluoro-3-trifluoromethyl)-n’’-phenyl-quinquephenyl及其前趨物合成-------------------------------------26
圖2-2 系列一, P2C, P3C 與 P4聚芳香醚高分子合成---------27
圖2-3系列二, P-Ax 與 P-Bx聚芳香醚高分子合成------------28
圖2-4系列三, P44聚芳香醚高分子合成 -------------------28
圖2-5 反應A產物Mass圖譜-----------------------------29
圖2-6 反應產物1H-NMR圖------------------------------29
圖2-7 反應B產物Mass圖譜-----------------------------30
圖2-8 反應B產物1H-NMR圖譜--------------------------30
圖2-9 反應C產物Mass圖譜-----------------------------31
圖2-10 反應C產物1H-NMR圖譜-------------------------31
圖2-11 反應D產物Mass圖譜----------------------------32
圖2-12 反應D產物1H-NMR圖譜------------------------32
圖2-13 反應E產物Mass圖譜----------------------------33
圖2-14 反應E產物1H-NMR圖譜------------------------33
圖2-15高分子P-A1的GPC圖譜-------------------------34
圖2-16高分子P-A1的1H-NMR圖譜----------------------35
圖2-17高分子P-A1的13C-NMR圖譜---------------------35
圖2-18高分子P-A2的GPC圖譜-------------------------36
圖2-19高分子P-A2的1H-NMR圖譜----------------------37
圖2-20高分子P-A2的13C-NMR圖-----------------------37
圖2-21高分子P-B1的GPC圖譜-------------------------38
圖2-22高分子P-B1的1H-NMR圖------------------------39
圖3-23高分子P-B1的13C-NMR圖譜---------------------39
圖2-24高分子P-B2的GPC圖譜-------------------------40
圖2-25高分子P-B2的1H-NMR圖譜----------------------41
圖2-26高分子P-B2的13C-NMR圖譜---------------------41
圖3-1 單體FTIR圖譜------------------------------------45
圖3-2 系列一,聚芳香醚高分子FTIR圖譜 -----------------46
圖3-3 單體與聚芳香醚高分子熱重分析 -------------------48
圖3-4 含氟單體 DSC熱分析 ----------------------------48
圖3-5 聚芳香醚高分子DSC分析(P2C, P3C and P4C) ----------49
圖3-6 聚芳香醚高分子TMA分析(P2C, P3C and P4C) --------49
圖3-7 單體溶於二氯甲烷之吸收光譜及放光光譜((b)Normalized) (P2C, P3C and P4C) ------------------------------------53
圖3-8 聚芳香醚高分子溶於甲苯之吸收光譜及放光光譜 ------53
圖3-9 高分子溶於二氯甲烷利用旋轉塗佈成膜於石英玻璃基板之吸收光譜及放光光譜(b)(normalization) ----------------54
圖3-10 高分子溶於甲苯利用旋轉塗佈成膜於石英玻璃基板之吸收光譜及放光光譜((b)Normalized) ----------------------54
圖3-11 高分子溶於二氯甲烷利用旋轉塗佈成膜於石英玻璃基板之吸收光譜穿透模式 -------------------------------55
圖3-12 高分子薄膜XRD圖譜 ---------------------------58
圖3-13 SEM與P3C旋轉與結晶示意圖---------------------59
圖3-14 熱塑型材料排列--------------------------------60
圖3-15 高分子PxC溶於甲苯AFM圖----------------------62
圖3-16 高分子PxC溶於二氯甲烷AFM圖------------------62
圖3-17 Zindo模擬單體分子結構--------------------------66
圖3-18 P-A1~P-B2聚芳香醚高分子合成-------------------67
圖3-19 P-B1 NMR圖譜---------------------------------68
圖3-20 P-A1~P-B2具高熱穩定之TGA與DSC熱分析圖譜-----68
圖3-21 P-A1~P-B2之光學分析---------------------------69
圖3-22 P-A1~P-B2之SEM分析---------------------------69
圖3-23 P-A1~P-B2之XRD分析---------------------------70
圖3-24 P-A1~P-B2之POM分析---------------------------70
圖3-25 P44之高分子結構--------------------------------72
圖3-26 P44之1HNMR 定性分析--------------------------72
圖3-27 P44之熱分析------------------------------------73
圖3-28 P44之吸收光譜分析(穿透模式) --------------------74
圖3-29 P44與PES表面平整度測試 (AFM) ------------------76
圖3-30 P44表面疏水性測試------------------------------76
圖3-31 P44薄膜實體(厚=0.3mm) -------------------------77
圖3-32 P44上濺鍍ITO層(SEM) ------------------------77

第一部 表目錄
表1-1商業利用之塑膠基板-----------------------------4
表1-2 含氟單體與二苯酚系列---------------------------18
表2-1 -----------------------------------------------42
表2-2 P-Ax與 P-Bx聚芳香醚高分子---------------------43
表2-3 PxC聚芳香醚高分子------------------------------43
表2-4 P44聚芳香醚高分子------------------------------43
表 3-1 Thermal and Performance characteristics of PAEs ------49
表3-2 單體與高分子溶液激發光子平均存活時間-----------56
表3-3高分子使用不同溶劑成膜在AFM下之粗糙度(roughness; nm)---------------------------------------------63
表3-4高分子薄膜接觸角與表面張力------------------------63
表3-5 高分子薄膜厚度與折射率---------------------------63
表3-6 單體氧化還原電位起始值及HOMO、LUMO值---------65
表3-7 Zindo模擬單體立體扭曲角度-------------------------66
表3-8 聚芳香醚高分子P-A1~P-B2物化特性------------------71
表3-9 聚芳香醚高分子P-A1~P-B2溶解度--------------------71
表3-10 高分子P44-GPC量測結果---------------------------73
表3-11 高分子P44-溶解度測試結果-------------------------75
表3-12 高分子P44與商業化材料-物化檢測結果---------------75
表3-13 可應用於透明導電膜的領域以及其所需具備條件[37] ---78



&#8195;
第二部 圖/表目錄
第二部 圖目錄
圖1. 1 單層結構 solar cell與 Merocyanine 結構---------------88
圖1. 2 雙層異質接面 solar cell與 CuPC、PV結構圖-----------89
圖1. 3 單層異質接面結構太陽能電池與其有機材料-----------91
圖1. 4 regiorandom P3HT 及 regioregular P3HT---------------91
圖1.5 排列與柱狀型盤狀液晶圖---------------------------94
圖1.6 高分子液晶結構分類-------------------------------96
圖1.7 盤狀液晶單體與高分子液晶材料合成及分子結構式-----98
圖2.1 有機薄膜太陽能電池的工作原理---------------------103
圖2.2 有機太陽能電池之 I-V 曲線圖----------------------105
圖2.3 盤狀液晶排列種類 [15(b)]--------------------------106
圖2. 4 四角柱狀堆積及其XRD圖[15]------------------------107
圖2. 5 六角柱狀堆積及其XRD圖[15]------------------------108
圖3.1 PEDOT:PSS結構----------------------------------112
圖3.2 薄膜型太陽能電池製備流程一-----------------------114
圖3. 3 薄膜太陽能電池製作流程二------------------------114
圖3.4 染料敏化太陽能電池機制與構造---------------------115
圖3.5染料結構與和TiO2表面鍵結--------------------------115
圖3.6 染料敏化太陽能電池構造---------------------------116
圖4.1 1HNMR 與FTIR分析--------------------------------117
圖4.2 材料熱分析---------------------------------------118
圖4.3 材料吸收光譜分析---------------------------------119
圖4.4升降溫program(1℃/min降溫)-------------------------122
圖4.5 材料以升降溫過程後降至室溫觀察POM---------------123
圖4.6 材料以緩速升降溫降至室溫觀察POM-----------------123
圖4.7 Acid-6 與 DLC-PAM的XRD繞射圖譜----------------124
圖4.8 Cited from S. Laschat, F. Giesselmann et al. Angew. Chem. Int. Ed. 2007, 46, 4832 – 4887---------------------------125
圖4.9 作為電洞傳輸層(ITO/PEDOT:PSS/DLC-PAM/P3HT:PCBM/Al)----------------------------------------128
圖4.10 元件J-V curves------------------------------------128
圖4.11 (a).元件剖面圖,(b).元件J-V curve, (c)and(d)染料鍵結於TiO2不同程度的聚集,(e)元件構造剖面圖-----------------130
圖4.12 小分子液晶與高分子液晶衍生物不同程度的堆疊聚集---131
圖4.13 小分子液晶與液晶高分子堆疊分析-------------------132
圖4.14 小分子液晶與高分子液晶衍生物堆疊-----------------133
圖4.15 小分子液晶與高分子液晶衍生物應用於電洞傳輸層機薄膜太陽能電池---------------------------------------134
圖4.16 軟性電子元件實例--------------------------------135
圖4.17 軟性電子元件應用--------------------------------135

第二部 表目錄
表1. 1 無機/有機太陽能電池效率--------------------------92
表3. 1 PEDOT:PSS基本特性----------------------------112
表4.1 材料熱分析---------------------------------------118
表4.2 能階分析-----------------------------------------121
表4.3 作為電洞傳輸層元件效率比較-----------------------128
表4.4 染料敏化太陽能電池光電轉換效率比較---------------130
表4.5 液晶與液晶高分子於有機軟性薄膜太陽能電池中之電洞傳輸層----------------------------------------------135
參考文獻 References
(1) F. A. Bottino, G. D. Pasquale, P. Iannelli, “Synthesis, Characterization, and Study of the Thermal Properties of New Poly(arylene ether 1,3,4-oxadiazole)s”, Macromolecules. 34, 33-37 (2001).
(2) (a) J. L. Hedrick, “Poly (aryl ether amides)”, Macromolecules. 24, 812-813 (1991). (b) J. L. Hedrick, J. W. Labadie, “Poly (aryl ether phenylquinoxalines)”, Macromolecules. 23, 1561 (1990).
(3) W. Y. Huang, B. R. Liaw, M. Y. Chang, Y. K. Han, P. T. Huang, “High Glass-Transition Temperature and Organosoluble Novel Arylene Ether Polymers”, Macromolecules. 40, 8649-8657 (2007).
(4) Y. Chikashige, Y. Chikyu, K. Miyatake, M. Watanabe, “Poly (arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications”, Macromolecules. 38, 16, 7121-7126 (2005).
(5) B. R. Liaw, W. Y. Huang, P. T. Huang, M. Y. Chang, Y. K. Han, “Novel poly(arylene ether)s containing multi-substituted pentaphenylene moiety”, Polymer. 48, 7087-7097 (2007).
(6) Z. Xu, C. Dannenberg, J. Springer, S. Banerjee, G. Maier, “Gas Separation Properties of Polymers Containing Fluorene Moieties”, Chem Mater. 14, 3271-3276 (2002).
(7) Y. Bourgeois, Y. Charlier, J. Devaux, R. Legras, “Synthesis of a poly(aryl ether sulfone)-poly(aryl ether ketone) triblock copolymer”, Polymer. 37, 5503-5511 (1996).
(8) S. Banerjee, G. Maier, “Novel High Tg High-Strength Poly(aryl ether)s”, Chem Mater. 11, 8, 2179-2184 (1999).
(9) Y. Chikashige, Y. Chikyu, K. Miyatake, M. Watanabe, “Poly (arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications”, Macromolecules. 38, 16, 7121-7126 (2005).
(10) (a) Y. Qi, J. Ding, M. Day, J. Jiang, C. L. Callender, “Cross-Linkable Highly Fluorinated Poly(Arylene Ether Ketones/Sulfones) for Optical Waveguiding Applications”, Chem Mater. 17 (3), 676–682 (2005). (b) G. L. Tullos, P. E. Cassidy, “Polymers Derived from Hexafluoroacetone: 12F-Poly(ether ketone)”, Macromolecules. 24, 6059-6064 ( 1991).
(11) C. L. Aitken, J. S. McHattie, D. R. Paul, “Dynamic Mechanical Behavior of Polysulfones” , Macromolecules. 25, 2910-2922 (1992).
(12) T. E. Attwood, D. A. Barr, G. G. Feasey, V. J. Leslie, A. B. Newton, J. B. Rose, “Poly(arylene ether sulphones) by polyetherification: 1. Synthesis of halogenophenols”, Polymer. 18, 354-358 (1997).
(13) Anja R. A. Palmans, P. Smith, C. Weder, “Polarizing Energy Transfer in Photoluminescent Conjugated Polymers with Covalently Attached Sensitizers”, Macromolecules. 32, 4677-4685 (1999).
(14) G. L. Tullos, P. E. Cassidy, St. A. K. Clair, “Polymers derived from hexafluoroacetone: 12F-poly (ether ketone)”, Macromolecules. 24, 6059-6064 (1991).
(15) S. K. Park, S. Y. Kim, “Synthesis of Poly(arylene ether ketone)s Containing Trifluoromethyl Groups via Nitro Displacement Reaction”, Macromolecules. 31, 3385-3387 (1998).
(16) N. Saran, K. Parikh, D. S. Suh, E. Mun&#732;oz, H.Kolla, S. K. Manohar, “Fabrication and Characterization of Thin Films of Single-Walled Carbon Nanotube Bundles on Flexible Plastic Substrates”, J Am Chem Soc. 126, 14, 4462-4463 (2004).
(17) P. Liu, Y. Wu, Y. Li, B. S. Ong, S. Zhu, “Enabling Gate Dielectric Design for All Solution-Processed, High-Performance, Flexible Organic Thin-Film Transistors”, J Am Chem Soc. 128, 4554-4555 (2006).
(18) (a) G. Zhao, T. Ishizaka, H. Kasai, H. Oikawa, H. Nakanishi, “Fabrication of Unique Porous Polyimide Nanoparticles Using a Reprecipitation Method”, Chem Mater. 19, 1901-1905 (2007). (b) K. Su, , D. R. Bujalski, K. Eguchi, G. V. Gordon, D. L. Ou, P. Chevalier, S. Hu, , R.P. Boisvert, “Low-k Interlayer Dielectric Materials: Synthesis and Properties of Alkoxy-Functional Silsesquioxanes”, Chem. Mater. 17, 2520-2529 ( 2005).
(19) (a)H. Li, D. R. Powell, R. K. Hayashi, R. West, “Poly((2,5-dialkoxy-p-phenylene)ethynylene-p-phenyleneethynylene)s and Their Model Compounds”, Macromolecules 31, 52-58 (1998). (b) US patent no. 4835197, 5658994, 5108840, 5114780, 5145936 and 5155175.
(20) Z. Lu, P. Shao, J. Li, J. Hua, J. Qin, A. Qin, C. Ye, “Two Novel Fluorinated Poly(arylene ether)s with Pendant Chromophores for Second-Order Nonlinear Optical Application”, Macromolecules. 37, 19, 7089-7096 (2004). (b) J. Ding, X. Du, M.Day, J. Jiang, C. L. Callender, J.Stupak, “Highly Fluorinated Poly(arylene alkylene ether sulfone)s: Synthesis and Thermal Properties”, Macromolecules. 40, 3145-3153 (2007).
(21) H. S. Ganapathy, H. S. Hwang, K. T. Lim, “Synthesis and Properties of Fluorinated Ester-Functionalized Polythiophenes in Supercritical Carbon Dioxide”, Ind Eng Chem Res. 45, 3406-3411 (2006).
(22) D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore, A Field Guide to Foldamers Chem. Rev. 101, 3893-4011 (2001).
(23) C. Huang, C. G. Zhen, S. P. Su, K. P. Loh, Z. K. Chen, “Solution-Processable Polyphenylphenyl Dendron Bearing Molecules for Highly Efficient Blue Light-Emitting Diodes”, Organic Letter. 7, 3 391-394 (2005).
(24) W. Y. Huang, W. Gao, T. K.Kwei, Y. Okamoto, “Synthesis and Characterization of Poly(alkyl-substituted p-phenylene ethynylene)s”, Macromolecules. 34, 1570-1578 (2001).
(25) B. C. Johnson, &#304;. Yilg&ouml;r, C. Tran, M. Iqbal, J. P. Wightman, D. R. Lloyd, J. E. McGrath, “Synthesis and characterization of sulfonated poly(acrylene ether sulfones)”, J Polym Sci Polym Chem Ed. 22, 3 721-737 (1984).
(26) M. R. Pixton, D. R. Paul, “Gas transport properties of adamantane-based polysulfones”, Polymer. 36, 3165-3172 (1995).
(27) F. A. Bottino, G. D. Pasquale, I. Pannelli, “Synthesis, Characterization, and Study of the Thermal Properties of New Poly(arylene ether 1,3,4-oxadiazole)s”, Macromolecules. 34, 33-37 (2001).
(28) J. F. Wolfe, F. E. Arnold, “Rigid-rod polymers. 1. Synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisoxazole units in the main chain”, Macromolecules. 14, 4 909-915 (1981).
(29) E. F. Hansen, M. R. Derrick, M. R. Schilling, R. Garcia, “The Effects of Solution Application on Some Mechanical and Physical Properties of Thermoplastic Amorphous Polymers Used in Conservation: Poly(vinyl acetate)s”, JAIC. 30, 203-213 (1991).
(30) K. Ikeda, Y. Ogoma, T. Fujii, A. Hachimori, Y. Kondo, T. Hayakawaa, M. Iwatsuki, T.Akaike, “Conformation of polyamino acids containing fluorine”, Polymer. 31, 344-347 (1990).
(31) S. H. Lee, B. B. Jang, Z. H. Kafafi, “Highly Fluorescent Solid-State Asymmetric Spirosilabifluorene Derivatives”, J Am Chem Soc. 127, 25 9071-9078 (2005).
(32) J. Ohshita, K. H. Lee, D. Hamamoto, Y. Kunugi, J. Ikadai1, Y. W. Kwak, A. Kunai, “Synthesis of Novel Spiro-condensed Dithienosiloles and the Application to Organic FET”, Chem Lett. 33, 7 892-893 (2004).
(33) W. Jang, D. Shin, S. Choi, S. Park, H. Han, “Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films”, Polymer. 48, 2130-2143 (2007).

(34) H. M. Colquhoun, D. J.Williams, “Crystal and Molecular Simulation of High-Performance Polymers”, Acc Chem Res. 33, 189-198 (2000).
(35) J. S. McHattie, W. J. Koros, D. R. Paul, “Effect of isopropylidene replacement on gas transport properties of polycarbonates”, J Polym Sci Part: B polymer Physics. 29, 731-746 (1991).
(36) W. Y. Huang, S. Matsuoka, T. K. Kwei, Y. Okamoto, “Aggregation and Gelation of Fully Conjugated Rigid-Rod Polymers. Poly(2,5-dialkyl-1,4-phenyleneethynylene)s”, Macromolecules 34, 7166-7171 (2001).
(37) 陳立偉, ”氟化2”,3”,5”,6”-四苯基[1,1’;4’,1’’;4”,1’’’;4’’’,1’’’’] 五聯苯新單體和雙酚反應合成高玻璃轉移溫度和低介電常數之聚苯基醚高分子及其性質研究,台灣科技大學,碩士論文 (2001).
[1] (a) C. W. Tang, “Two-layer organic photovoltaic cell”, Appl Phys Lett. 48, 183-185 (1986). (b) L. H. Nguyen, H. Hoppe, E. Tobias, S. G&uuml;nes, G. Gobsch, N. S. Sariciftci, “Effects of Annealing on the Nanomorphology and Performance of poly(alkylthiophene) Fulerene Bulk-Hetrojunction Solar Cell”, Adv Funct Mater. 17, 1071–1078 (2007).
[2] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend, “Laminated fabrication of polymeric photovoltaic diodes”, Nature (London) 395, 257-260 (1998).
[3] C. W. Tang, S. A. Van Slyke, “Organic electroluminescent diodes”, Appl Phys Lett. 51, 913-915 (1987).
[4] E. H. Kim, I. K. Moon, H. K. Kim, M. H. Lee, S. G. Han, M. H. Yi, K. Y. Choi, “Synthesis and characterization of novel polyimide-based NLO materials from poly(hydroxy-imide)s containing alicyclic units (II)”, Polymer, 40, 6157-6167 (1999).
[5] D. M. Chapin, C. S. Fuller, G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power", J Appl Phys. 25, 5 676–677 (1954).
[6] A. K. Ghosh, T. Feng, ”Merocyanine organic solar cells”, J Appl Phys. 49, 12 ( 1978).
[7] H. Schurmann, N. Koch, P. Imperia, S. Schrader, M. Landke, P. S. Brehmer, “Ultraviolet photoelectron spectroscopic study of heterocyclic model compounds for electroluminescent devices”, Synth Metals. 102, 1069-1070 (1999).
[8] L. Schmidt-Mende, A. Fechtenk&ouml;tter, K. M&uuml;llen, E. Moons, R. H. Friend, J. D. MacKenzie, “Self-Organized Discotic Liquid Crystals for High-Ef&THORN;ciency Organic Photovoltaics”, Science 293, 1119 (2001).
[9] S. Pankaj, E. Hempel, M. Beiner, “Side-Chain Dynamics and Crystallization in a Series of Regiorandom Poly(3-alkylthiophenes)”, Macromolecules. 42, 716-724 (2009).
[10] A. J. Moule, S. Allard, N. M. Kronenberg, A. Tsami, U. Scherf, K. Meerholz, ” Effect of Polymer Nanoparticle Formation on the Efficiency of Polythiophene Based “Bulk-Heterojunction” Solar Cells” , J Phys Chem C. 112, 33 12583-12589 (2008).
[11] S. Berson, R. D. Bettignies, S. Bailly, S. Guillerez, ”Poly(3-hexylthiophene) Fibers for Photovoltaic Applications”, Adv Funct Mater. 17, 1377–1384 (2007).
[12] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, J Appl Phys. 94, 10 6849-6854 (2003).
[13] J. Liu, Y. Shi, Y. Yang, “Solvation-Induced Morphology Effect on the Performace of the Polymer-based Photovoltaic Devices”, Adv Funct Mater. 11, 6 1-5 (2001).
[14] S.Sensfuss, M. Al-Ibrahim, A. Konkin, G. Nazmutdinova, U. Zhokhavets, G. Gobsch, D. A. M. Egbe, E. Klemm, H. K., Roth Proc of SPIE Vol.5215, (2004).
[15](a). H. Shi, Y. Zhao, S. Jiang, J. Rottstegge, J. H. Xin, D. Wang, D. Xu,” Effect of Main-Chain Rigidity on the Phase Transitional Behavior of Comblike Polymers”, Macromolecules. 40, 3198-3203 (2007). (b). S. Chandrasekhar, G. S. Ranganath, “Discotic liquid crystals”Rep. Prog. Phys. 53, 57-84 (1990).
[16] Q. Qiao, T. J. McLeskey,”Water-soluble polythiophene/nanocrystalline TiO2 solar cells”, Appl Phys Letter. 86, 153501 (2005).
[17] V. Saxena, R. Prakash , “Effect of steric hinderance on junction properties of poly (3-alkylthiophene)s based schottky diodes”, Polymer Bulletin. 45, 267-274 (2000).
[18] W. H. Baek, H. Yang, T. S. Yoon, C. J. Kang, H. H. Lee,Y. S. Kim,” Hybrid invertedbulkheterojunctionsolarcellswith nanoimprintedTiO2 nanopores”, Solar Energy Materials & Solar Cells. 93, 1587–1591 (2009).
[19] M. A. Ibrahim, O. Ambacher, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene”, Appl Phys Letter. 86, 201120 (2005).
[20] V. D. Mihailetchi, J. K. J. van Duren, Paul W. M. Blom, Jan C. Hummelen, Rene A. J. Janssen, Jan M. Kroon, Minze T. Rispens,Wil Jan H. Verhees, and Martijn M. Wienk , Adv. Funct. Mater. 13, No. 1 January (2003).
[21] J. Huang ,G. Li, Y. Yang , Appl Physics Letter. 87, 112105 (2005).
[22] C. Zhang, S. W. Tong, C. Zhu, C. Jiang, E. T. Kang, D. S. H. Chan, “Enhancement in open circuit voltage induced by deep interface hole traps in polymer-fullerene bulk heterojunction solar cells”, Appl Phys Letter. 94, 103305 (2009).
[23] O. Thiebaut, H. Bock, E. Grelet, “Face-on Oriented Bilayer of Two Discotic Columnar Liquid Crystals for Organic Donor&#8722;Acceptor Heterojunction”, J Am Chem Soc. 132, (20) 6886–6887 (2010).
[24] D. Ing. K. Petritsch, “Organic Solar Cell Architectures”, Cambridge and Graz. July (2000).
[25] S. Chandrasek, B. K. Sadashiva, K.A. Suresh, Pramana. 9 , 471 (1977).
[26] 賴耿陽編著;液晶製法與應用,復漢出版社 (1997).
[27] N. Boden, R. J. Bushby, J. Clements, B. Movaghar,” Device applications of charge transport in discotic liquid crystals” , J Mater Chem. 9, 2081–2086 (1999).
[28] A.K. Jena, R.N. P. Sahoo, B. Sahoo, B. Indian. J Chem Sect A. EN:22,5,1983,371-375.
[29] 溫長榮,盤狀液晶材料之設計與研究,中央大學,碩論文(2002).
[30] G. Hersberg, “Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules”, Nostrand Reihold Company Inc., New York, ISBN: 9781443726085 (1996).
[31] 曹梓毅,具高玻璃轉移溫度聚芳香醚之高分子物性及光電特性分析與應用,中山大學,碩士論文 (2007).
[32] 范鐸正,新式盤狀液晶結合聚丙烯醯胺材料開發與光電特性研究及其有機太陽能電池之應用,中山大學,碩士論文 (2007).
[33] 吳崇熙,介面緩衝層之特性對於有機高分子太陽能電池之研究. 中山大學,碩士論文 (2007).
[34] 王裕文,主要吸收層結構及電&#64005;傳輸層對有機高分子混合型&#63842;質接面太陽能電池之影響,東華大學,碩士論文 (2005).
[35] 楊鈞凱,太陽能電池之效率量測系統與元件表現參數之分析,東華大學,碩士論文 (2005).
[36] A. Takahiro, S. Yasuhiro, S. Takeshi, N. Tohru, I. Kohzo, Jpn. J. Appl. Phys. 46, 46 (2007).
[37] A. Swinnen, I. Haeldermans, M. V. Ven, J. D. Haen, G. Vanhoyland, S. Aresu, M. D’Olieslaeger, J. Manca, Adv Funct Mater. 16, 760–765 (2006).
[38] 闕宇宏,具光電轉換與可規則排列材料之有機光伏特計薄膜研究, 國立中山大學碩士論文, (2007).
[39] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl Phys Lett. 48, 183-185 (1986).
[40] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R.H. Friend, “Laminated fabrication of polymeric photovoltaic diodes”, Nature (London) 395, 257 (1998).
[41] C. W. Tang, S. A. Van Slyke, “Organic electroluminescent diodes”, Appl Phys Lett. 51, 913 (1987).
[42] D. I. Klaus Petritsch, “Organic Solar Cell Architectures”, Cambridge and Graz (2000).
[43] F. Faupel, C. Dimitrakopoulos, A. Kahn, C. W&ouml;ll, ” ORGANIC ELECTRONICS”, J Mater Res. 19, 7 (2004).
[44]M. C. Wu, Y. Y. Lin, S. Chen, H. C. Liao, Y. J. Wu, C. W. Chen,Y. F. Chen, W.F.g Su, “Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes”, Chemical Physics Letter. 468, 64-68 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.251.154
論文開放下載的時間是 校外不公開

Your IP address is 3.149.251.154
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code