Responsive image
博碩士論文 etd-1217112-173845 詳細資訊
Title page for etd-1217112-173845
論文名稱
Title
以印刷電路板技術製作平面旋轉式能源採擷器
Planar rotary Energy Harvester fabricated by PCB technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-11-27
繳交日期
Date of Submission
2012-12-17
關鍵字
Keywords
能源採擷器、印刷電路板技術、有限元素分析
Energy Harvester, PCB, Electromagnetic, Finite Element Analysis
統計
Statistics
本論文已被瀏覽 5747 次,被下載 886
The thesis/dissertation has been browsed 5747 times, has been downloaded 886 times.
中文摘要
開發體積小且有效率的能源採擷器,產生綠色無汙染的能源,作為一個永續能源的研究,最近幾年越來越受到重視。本研究提出了一個平面旋轉式發電機,感磁件為印刷電路板技術(Printed Circuit Board, PCB)製作的銅線圈,磁件為Nd-Fe-B (Neodymium-Iron-Boron)永久磁鐵。選擇PCB製程來製作線圈是因為台灣的PCB是一個相當成熟的產業,製程可靠且成本低廉,即使放眼國際也相當具有競爭力。整個平面的能源採擷器體積大約為50x50x2.5mm3。發電機的模擬模型也建構完成,有限元素分析法被用來設計與分析發電效率。探討了模擬的各項參數,包括了分割元素與時間常數,確認其是否收斂。燒結製程製作28極的Nd-Fe-B永久磁鐵排列成一個圓形面積作為磁面,該磁面的直徑為50mm,厚度為2mm,能夠提供1.4Tesla的磁場強度。最後為了確認模擬數據的正確性,模擬的數值被拿來與實驗數據相比較。比較結果顯示,模擬結果與實驗數據趨勢相符合。製作出來的雙層線圈PCB能源採擷器在轉速4,000rpm下,感應電壓為1.11V,輸出功率為26.54mW,用輸入及輸出功率計算得到的效率為31.5%。由於實驗結果顯示發電效率與轉速成高度正相關,故本實驗同時利用減速齒輪來增加轉速,使發電量顯著提高。
Abstract
Small and efficient energy harvesters, as a renewable power supply, draw lots of attention in last few years. This thesis presents a planar rotary electromagnetic generator with copper coils fabricated by printed circuit board (PCB) as inductance and Nd-Fe-B magnets as magnetic member. Coils are fabricated on PCB, which is presumably cost-effective and promising methods. 28-pole Nd-Fe-B magnets with outer diameter of 50 mm and thickness of 2 mm was sintered and magnetized, which can provide magnetic field of 1.4 Tesla. This harvester consists of planar multilayer with multi-pole coils and multi-pole permanent magnet, and the volume of this harvester is about 50x50x2.5 mm3. Finite element analysis is used to design energy harvesting system, and simulation model of the energy harvester is established. In order to confirm the simulation, experiment data are compared with simulation result. The PCB energy harvester prototype can generate induced voltage 1.11 V and 26.54mW output power at rotary speed of 4,000 rpm, and the efficiency of this energy harvester is 31.5%.
目次 Table of Contents
目錄
摘要
Abstract
目錄
第一章 緒論……………………………………………………………1
1-1 研究背景…………………………………………………………1
1-2 研究動機及目的…………………………………………………2
1-3 文獻回顧…………………………………………………………4
1-4 本文架構………………………………………………………….7
第二章 能源採擷器設計與模擬………………………………………8
2-1 發電原理…………………………………………………………8
2-2 設計……………………………………………………………10
2-3 有限元素建模與分析…………………………………………16
2-4 減速齒輪………………………………………………………24
第三章 製程……………………………………………………………25
3-1 磁石……………………………………………………………25
3-2 線圈……………………………………………………………34
3-2-1 實驗器材…………………………………………………35
3-2-2 Gerber……………………………………………………38
3-2-3 基板………………………………………………………42
3-2-4 銅箔………………………………………………………43
3-2-5 PCB製程…………………………………………………44
3-3 多層線圈………………………………………………………48
第四章 結果與討論……………………………………………………56
4-1 影響發電的各項參數…………………………………………56
4-2 應用……………………………………………………………72
第五章 結論與未來展望……………………………………………74
5-1 結論……………………………………………………………74
5-2 未來展望………………………………………………………75
參考文獻 References
[1] D. C. R. Espinosa, A. M. Bernardes, J. A. S. Tenório, “An overview on the current processes for the recycling of batteries,” Journal of Power Sources, Vol. 135, pp. 311-319, 2004.
[2] A. Hande, T. A. Stuart, “A selective equalizer for NiMH batteries,” Journal of Power Sources, Vol. 138, pp. 327-339, 2004.
[3] S. Yang, H. Knickle, “Design and analysis of aluminum/air battery system for electric vehicles,” Journal of Power Sources, Vol. 112, pp. 162-173, 2002.
[4] J. W. Fergus, “Recent developments in cathode materials for lithium ion batteries,” Journal of Power Sources, Vol. 195, pp. 939-954, 2010.
[5] A. M. Bernardes, D. C. R. Espinosa, J. A. S. Tenório, “Recycling of batteries: a review of current processes and technologies,” Journal of Power Sources, Vol. 130, pp. 291-298, 2004.
[6] P. D. Mitcheson, E. K. Reilly, T. Toh, P. K. Wright and E. M. Yeatman, “Performance limits of the three MEMS inertial energy generator transduction types”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 211-216, 2007.
[7] D. M. Rowe, D. V. Morgan, J. H. Kiely, “Low cost miniature thermoelectric generator,” Electronics Letter, Vol. 27, pp. 2332-2334, 1991.
[8] C. A. Gould, N. Y. A. Shammas, S. Grainger, I. Taylor, “Thermoelectric technology: micro-electrical and power generation properties,” Proceedings of the 26th International Conference on Microelectronics, pp. 329-332, 2008.
[9] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Donga, L. Wang, D. Chen, B. C. Cai, Y. Liu, “A MEMS-based piezoelectric power generator for low frequency vibration energy harvesting,” Chinese Physics Letter, Vol. 23, pp. 732-734, 2005.
[10] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Donga, L. Wang, D. Chen, B. C. Cai, Y. Liu, “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,” Microelectronics Journal, Vol. 37, pp. 1280-1284, 2006.
[11] R. Tashiro, N. Katayama, Y. Ishizuka, F. Tsuboi, K. Tsuchiya, “Development of an electrostatic generator that harnesses the motion of a living body,” Journal of the Japan Society of Mechanical Engineers, Vol. C43, pp. 916-922, 2000.
[12] S. Meninger, J. O. M. Miranda, R. Amirtharajah, A. P. Chandrakasan, J. H. Lang, “Vibration-to-electric energy conversion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 9, pp. 64-76, 2001.
[13] S. Roundy, P. K. Wright, K. S. Pister, “Micro electrostatic vibration to electricity converters,” ASME International Mechanical Engineering Congress and Congress and Exposition, pp.1-10, 2002.
[14] D. P. Arnold, F. Herrault, I. Zana, P. Galle1, J. W. Park, S. Das, J. H. Lang and M. G. Allen , “Design optimization of an 8W, microscale, axial-flux, permanent-magnet generator”, Journal Of Micromechanics And Microengineering, vol. 16, pp.290-296, 2006.
[15] D. P. Arnold, “Review of microscale magnetic power generation,” IEEE Transactions on Magnetics, Vol. 43, pp. 3940-3951, 2007.
[16] P. H. Wang, X. H. Dai, D. M. Fang, X. L. Zhao, “Design, fabrication and performance of a new vibration-based electromagnetic micro power generator”, Microelectronics Journal, Vol. 38, pp. 1175–1180, 2007.
[17] S. Kulkarni, S. Roy, T. O’Donnell, S. Beeby and J. Tudor, “Vibration based electromagnetic micropower generator on silicon”, Journal of Applied Physics, Vol. 99, pp. 511-1 - 511-3, 2006.
[18] S. Kulkarni, E. Koukharenko, R. Torah, J. Tudor, S. Beeby, T. O’Donnell, S. Roy, “Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator”, Sensors and Actuators A, pp.1-7, 2007.
[19] P. H. Wang, H. T. Liu, X. H. Dai, Z. Q. Yang, Z. Z. Wang, X. L. Zhao, "Design, simulation, fabrication and characterization of a micro electromagnetic vibration energy harvester with sandwiched structure and air channel," Microelectronics Journal, Vol. 43, pp.154–159, 2012.
[20] I. Sari, T. Balkan, H. Kulah, “An electromagnetic micro power generator for wideband environmental vibrations”, Sensors and Actuators A, pp.1-9, 2008.
[21] C. Serre , A. Perez-Rodrıguez , N. Fondevilla ,E. Martincic , S. Martınez , J. R. Morante , J. Montserrat, J. Esteve, “Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators”, Microsyst Technol, pp.1-6, 2007.
[22] C. Serre , A. Perez-Rodrıguez ,N. Fondevilla , J. R. Morante ,J. Montserrat , J. Esteve, ”Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators”, Microsyst Technol ,Vol. 13, pp. 1655–1661, 2007.
[23] J. Yang, Y.M. Wen, P. Li, X.Z. Dai,” A magnetoelectric, broadband vibration-powered generator for intelligent sensor systems”, Sensors and Actuators A: Physical, Volume 168, Issue 2, Pages 358-364, 2011.
[24] Y. J. Wang, C. D. Chen, C. K. Sung, “Design of a frequency-adjusting device for harvesting energy from a rotating wheel,” Sensors and Actuators A: Physical, Vol. 159, pp.196-203, 2010.
[25] D. P. Arnold, S. Das, J. W. Park, I. Zana, J. H. Lang, M. G. Allen, “Microfabricated high-speed axial-flux multiwatt permanent-magnet generators—part II: design, fabrication, and testing,” Journal of Microelectromechanical Systems, Vol. 15, pp. 1351-1363, 2006.
[26] A. Iizuka, M. Takato, M. Kaneko, T. Nishi, K. Saito, F. Uchikoba, “Millimeter scale MEMS air turbine generator by winding wire and multilayer magnetic ceramic circuit,” Modern Mechanical Engineering, Vol. 2, pp. 41-46,2012.
[27] P. C. Chen, H. Y. Lin, S. B. Chang, Y.-C. Huang, “The torque control of human power assisted electric bikes,” 2010 International Coriference on System Science and Engineering, pp.373-378, 2010.
[28] E. A. Lomonova, A. J. A. Vandenput, J. Rubacek, B. d'Herripon, G. Roovers, “Development of an improved electrically assisted bicycle,” IEEE Industry Applications Society 37th Annual Meeting, Vol. 1, pp. 384-389, 2002.
[29] C. Valerius, J. Krupar, W. Schwarz, “Electronic power management for bicycles,” European Conference on Power Electronics and Applications, pp.1-10, 2005.
[30] C. T. Pan, T. T. Wu, “Simulation and fabrication of magnetic rotary microgenerator with multipolar Nd/Fe/B magnet,” Vol. 47, pp. 2129-2134, 2007.
[31] A. S. Holmes, G. Hong, K. R. Pullen, “Axial-flux permanent magnet machines for micropower generation”, Journal of Microelectromechanical System”, Vol. 14, No. 1, pp.54-62, 2005.
[32] S. M. Hosseini, M. A. Mirsalim, M. Mirzaeil, “Design, prototyping and analysis of low cost axial-flux coreless permanent-magnet generator”, Transations on Magnets, Vol. 44, pp. 75-80, 2008.
[33] F. Herrault, C. H. Ji, R. H. Shafer, S. H. Kim, and M. G. Allen, “Ultraminiaturized Milliwatt-scale Permanent Magnet Generators”, The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp.899-902, 2007.
[34] T. L. Willke, S. S. Gearhart, “LIGA micromachined planar transmission lines and filters,” IEEE Transactions on Advanced Packaging, Vol. 45, pp. 1681-1688, 1997.
[35] C. T. Pan, T. T. Wu, “Simulation and fabrication of magnetic rotary microgenerator with multipolar Nd/Fe/B magnet,” Microelectronics Reliability, Vol.47, pp.2129-2134, 2007.
[36] C. T. Pan, Y. J. Chen, “Application of low temperature co-fire ceramics on in-plane micro-generator,” Sensors and Actuators A: Physical, Vol. 144, pp.144-153, 2008.
[37] S. H. Wi, J. S. Kim, N. K. Kang, J. C. Kim, H. G. Yang, Y. S. Kim, “Package-level integrated LTCC antennafor RF package application,” IEEE Transactions on Advanced Packaging, Vol. 30, pp. 132-141, 2007.
[38] G. E. Ponchak, “The use of metal filled via holes for improving isolation in LTCC RF and wireless multichip packages,” IEEE Transactions on Advanced Packaging, Vol. 23, pp. 88-99, 2000.
[39] J. H. Jang, N. Ishitobi, B. C. Kim, S. G. Jeong, “Effects of microstructural defects in multilayer LTCC stripline,” IEEE Transactions on Advanced Packaging, Vol. 29, pp. 314-319, 2006.
[40] S. Sarkar, S. Pinel, N. Kidera, J. Laskar, “Analysis and application of 3-D LTCC directional filter design for multiband millimeter-wave integrated module,” IEEE Transactions on Advanced Packaging, Vol. 30, pp. 124-131, 2007.
[41] K. L. Zhang, S. K. Chou, S. S. Ang., “Development of a low-temperature co-fired ceramic solid propellant microthruster,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 944-952, 2005.
[42] A. E. Tager, J. Bray, L. Roy, “High-Q LTCC resonators for millimeter wave applications,” Microwave Symposium Digest, Vol.3, pp.2257-2260, 2003.
[43] T. Thelemann, H. Thust, M. Hintz, “Using LTCC for microsystems,” Microelectronics International, Vol.19, pp.19-23, 2002.
[44] N. H. Ching, M. H. Chan, J. Li, H.Y. Wong, H. W. Leong, "PCB integrated micro-generator for wireless systems," Proceedings of the International Symposium on Smart Structures and Microsystems, 2000.
[45] Y.J. Chen, C.T. Pan, Z.H. Liu, “Analysis of an in-plane micro-generator with various microcoil shapes,” Microsystem Technologies, 2012.
[46] A. D. Liao, P. C. P. Chao, J. T. Chen, W. D. Chen, W. H. Hsu, C. W. Chiu, C. T. Lin, “A miniaturized electromagnetic generator with planar coils and its energy harvest circuit,” IEEE Transactions on Magnetics, Vol. 45, pp. 4621-4627, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code