Responsive image
博碩士論文 etd-1219107-132445 詳細資訊
Title page for etd-1219107-132445
論文名稱
Title
以二氧化鈦薄膜為三五族半導體金氧半結構閘極氧化層之特性分析
Characterization of III-V Compound Semiconductor MOS Structures with Titanium Oxide as Gate Oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-12-07
繳交日期
Date of Submission
2007-12-19
關鍵字
Keywords
二氧化鈦、三五族半導體、金氧半結構
MOS structure, III-V compound semiconductor, TiO2
統計
Statistics
本論文已被瀏覽 5872 次,被下載 35
The thesis/dissertation has been browsed 5872 times, has been downloaded 35 times.
中文摘要
由於三五族半導體(砷化鎵(GaAs),磷化銦(InP))具有高的電子遷移率,所以被廣泛應用在高速元件上。另,因為TiO2與GaAs和InP擁有良好的晶格匹配特性以及高的介電常數(k = 35-100),所以我們選擇TiO2作為閘極氧化層薄膜。
GaAs與InP因其不穩定的原生氧化層(native oxide)使其擁有高的界面能態密度(interface state density, Dit)而影響界面品質,造成C-V曲線有拉伸(stretch-out)的現象以及高的漏電流。使用有機金屬化學氣相沈積(MOCVD)在GaAs基板上生長之二氧化鈦(TiO2)薄膜雖具有較高的介電常數,但由於TiO2薄膜是多晶結構,其晶界具有很多缺陷及懸鍵,故其漏電流非常大。
利用硫化銨((NH4)2Sx)水溶液對GaAs進行表面硫化處理(S-GaAs)可以有效去除原生氧化層以及填補GaAs表面懸鍵,使其界面品質大幅改善。另,利用來自液相沈積法(Liquid Phase Deposition)生長SiO2 (LPD-SiO2)的溶液的氟離子可鈍化MOCVD-TiO2薄膜晶界上之懸鍵及半導體表面,故在漏電流及Dit方面可大為改善。其漏電流在電場±1.5 MV/cm分別為3.41 x 10-7和1.13 x 10-6A/cm2,Dit可達到4.6 x 1011 cm-2eV-1,介電常數可達到71。因此,氟化的MOCVD-TiO2是一種具有高介電常數和低漏電流之薄膜結構。
另一種鈍化MOCVD-TiO2薄膜的方法為金屬熱處理法(post-metallization annealing (PMA))。利用鋁和存在於MOCVD-TiO2的氫氧根(hydroxyl)作用而產生的活性氫離子(active hydrogen)進入TiO2薄膜以及GaAs表面進行鈍化作用,有效改進漏電流以及界面品質。其漏電流在電場±1.5 MV/cm分別為2.5 x 10-7 和 5 x 10-7 A/cm2,其Dit可達到5.96 x 1011 cm-2eV-1,介電常數可達到66。
最後,為了避免MOCVD-TiO2產生的晶界漏電流問題,以及低溫薄膜沉積法可以保持硫化效果避免硫化失效。我們利用液相沉積法成長非晶結構TiO2在S-GaAs上,其漏電流在電場±0.5 MV/cm分別為1.04 x 10-7和1.91 x 10-7 A/cm2,其Dit可達到3.2 x 1011 cm-2eV-1,介電常數可達到48。而將LPD-TiO2沉積在硫化銨處理過後的磷化銦(S-InP)上,我們製作出4 x 100 μm2 的增強型N通道LPD-TiO2/S-InP MOSFET,其具有不錯的特性表現,其最大轉導值gm為43 mS/mm,電子遷移率μFE 為348 cm2/V•s。
Abstract
Due to the high electron mobility compared with Si, much attention has been focused on III-V compound semiconductors (gallium arsenide (GaAs) and indium phosphide (InP)) high-speed devices. The high-k material TiO2 not only has high dielectric constant (k = 35-100) but has well lattice match with GaAs and InP substrate. Therefore, titanium oxide (TiO2) was chosen to be the gate oxide in this study.
The major problem of III-V compound semiconductors is known to have poor native oxide on it and leading to the Fermi level pinning at the interface of oxide and semiconductor. The C-V stretch-out phenomenon can be observed and the leakage current is high. The higher dielectric constant of poly-crystalline TiO2 film grown on GaAs can be obtained by metal organic chemical vapor deposition (MOCVD). But the high leakage current also occurred due to the grain boundary and defects in the poly-crystalline TiO2 film.
The surface passivation of GaAs with (NH4)2Sx treatment (S-GaAs) could prevent it from oxidizing after cleaning and improve the interface properties of MOSFET. The fluorine from liquid phase deposited SiO2 solution can passivate the grain boundary of poly-crystalline MOCVD-TiO2 film and interface state. The high dielectric constant and low leakage current of fluorine passivated MOCVD-TiO2/S-GaAs can be obtained. The leakage current densities are 3.41 x 10-7 A/cm2 and 1.13 x 10-6A/cm2 at ±1.5 MV/cm, respectively. The Dit is 4.6 x 1011 cm-2eV-1 at the midgap. The dielectric constant can reach 71.
In addition, the post-metallization annealing (PMA) is another efficiency way to improve the MOCVD-TiO2 quality. The mechanism of PMA process is from the reaction between the aluminum contact and hydroxyl groups existed on TiO2 film surface. Then the active hydrogen is produced to diffuse through the oxide and passivate the oxide traps. For PMA (350oC)-MOCVD-TiO2 on S-GaAs MOS structure, the leakage current densities can reach 2.5 x 10-7 and 5 x 10-7 A/cm2 at ±1.5 MV/cm, respectively. The dielectric constant and the Dit are 66 and 5.96 x 1011 cm-2eV-1, respectively.
In order to avoid the leakage current from grain boundary of poly-crystalline TiO2, and liquid phase deposited TiO2 (LPD-TiO2) at low temperature can preserve the function of sulfur passivation. Therefore, the amorphous LPD-TiO2 was deposited on S-GaAs. The leakage current densities are 1.04 x 10-7 and 1.91 x 10-7 A/cm2 at ±0.5 MV/cm, respectively. The Dit is 3.2 x 1011 cm-2eV-1 and the dielectric constant is 48. The LPD-TiO2 film was deposited on (NH4)2Sx treated InP (S-InP), and the 4 x 100 μm2 enhancement mode N channel InP MOSFET with LPD-TiO2 as gate oxide was fabricated, which showed the good characteristic. The normalized maximum gm is 43 mS/mm at VG = 1.3 V for VDS fixed at 1 V. The maximum calculated μFE of 348 cm2/V•s at VDS = 1 V is obtained.
目次 Table of Contents
ACKNOWLEDGMENT I
LIST OF FIGURES X
LIST OF TABLES XIV
ABSTRACT XV

1. Introduction 1
1-1 Properties of TiO2 1
1-2 Comparison of deposition methods of TiO2 2
1-3 Advantages of MOCVD 2
1-4 Drawback of TiO2 for electric applications 3
1-5 Motivation of fluorinated MOCVD-TiO2 on (NH4)2Sx treated GaAs structure 4
1-6 Motivation of PMA-MOCVD-TiO2 on (NH4)2Sx treated GaAs structure 6
1-7 Mechanism and the structure model of InP and GaAs with sulfur treatment 6

2. Experiments 16
2-1 Titanium oxide prepared by MOCVD 16
2-1-1 CVD theorem 16
2-1-2 Deposition system of MOCVD 17
2-1-3 Properties of source materials 18
2-1-3.1 Ti metalorganic precursor 18
2-1-3.2 N2O decomposed 18
2-2 Silicon oxide prepared by LPD 19
2-2-1 Deposition system 19
2-2-2 Mechanisms of LPD-SiO2 19
2-2-3 Preparations of deposition solutions 20
2-2-3.1 SiO2 saturated H2SiF6 solution 20
2-2-3.2 Boric acid solution 21
2-3 Deposition procedures 21
2-3-1 GaAs wafer cleaning and sulfidation procedures 21
2-3-2 Aluminum metal and In-Zn alloy cleaning processes 22
2-3-3 Preparations of LPD-SiO2/MOCVD-TiO2 thin film 22
2-3-4 Preparations of PMA-MOCVD-TiO2 thin film 23
2-3-5 Electrodes fabrication 24
2-4 Characterization 24
2-4-1 Physical properties 24
2-4-2 Chemical properties 25
2-4-3 Electrical properties 25

3. Characterization of TiO2 prepared by MOCVD on GaAs MOS structure 32
3-1 Characteristics of MOCVD-TiO2 film on GaAs substrate 32
3-1-1 Thickness of TiO2 film as a function of growth temperature 32
3-1-2 XRD spectra of TiO2 film as a function of growth temperature 33
3-1-3 SEM morphologies of TiO2 film as a function of growth temperature 34
3-1-4 Stoichiometry of TiO2 film as a function of
growth temperature 34
3-1-5 Reflective index of TiO2 film as a function of growth
temperature 35
3-1-6 C-V characteristic at 400oC, the leakage current density, and dielectric constant of TiO2 film as a function of growth
temperature 35
3-1-7 Conclusions 37
3-2 Characteristics of fluorine passivated MOCVD-TiO2 film on (NH4)2Sx treated GaAs 37
3-2-1 Properties of LPD-SiO2/MOCVD-TiO2 film on S-GaAs 37
3-2-2 Electrical characteristics of MOCVD-TiO2 film on GaAs with and without (NH4)2Sx treatment 39
3-2-3 PL spectra of GaAs with and without (NH4)2Sx treatment 40
3-2-4 Electrical characteristics of LPD-SiO2/MOCVD-TiO2 film on S-GaAs 41
3-2-5 SIMS and ESCA depth profiles of LPD-SiO2/MOCVD-TiO2/S-GaAs structure 41
3-2-6 Fluorinated MOCVD-TiO2 film on S-GaAs after LPD-SiO2 removal 42
3-2-7 Flatband voltage and effective oxide charges of different MOS structures 43
3-2-8 Conclusions 43
3-3 Characteristics of post-metallization annealed MOCVD-TiO2 film on S-GaAs 44
3-3-1 Mechanism of PMA-MOCVD-TiO2 film on S-GaAs substrate 44
3-3-2 SEM cross section of MOCVD-TiO2/S-GaAs 45
3-3-3 I-V characteristics of MOCVD-TiO2 on GaAs without and with (NH4)2Sx treatment and PMA-MOCVD-TiO2 on S-GaAs at different PMA temperatures 45
3-3-4 C-V characteristics of MOCVD-TiO2 on GaAs without and with sulfur treatment and PMA-MOCVD-TiO2 on S-GaAs at different PMA temperatures 47
3-3-5 Dielectric constant and effective oxide charges of MOCVD-TiO2/S-GaAs and PMA-MOCVD-TiO2 on S-GaAs at different PMA temperatures 48
3-3-6 C-V hysteresis loops as a function of PMA temperature 49
3-3-7 Oxide trapped density and mobile ion density as a function of PMA temperature 49
3-3-8 Interface state densities of MOCVD-TiO2/S-GaAs and PMA-MOCVD-TiO2/S-GaAs at different PMA temperatures 50
3-3-9 Conclusions 50

4. Characteristics of TiO2 prepared by LPD on S-GaAs MOS Structures 75
4-1 Motivation of LPD-TiO2/S-GaAs structure process 75
4-2 Preparation of LPD-TiO2 film on S-GaAs 76
4-3 Growth rate of LPD-TiO2 film on S-GaAs as a function of H3BO3 volume 77
4-4 Leakage current densities of LPD-TiO2 film on GaAs as a function of H3BO3 volume 77
4-5 Leakage current densities of LPD-TiO2 film on S-GaAs as a function of H3BO3 volume 78
4-6 C-V characteristics of LPD-TiO2 film on GaAs as a function of H3BO3 volume 78
4-7 C-V characteristics of LPD-TiO2 film on S-GaAs as a function of H3BO3 volume 79
4-8 Effective oxide charges as a function of H3BO3 volume 79
4-9 Interface state densities of LPD-TiO2 film on S-GaAs as a function of the H3BO3 volume 80
4-10 Conclusions 80

5. Enhancement-mode N-channel MOSFET with LPD-TiO2 as gate oxide on S-InP 91
5-1 Electric characteristics of LPD-TiO2 on S-InP MOS structure 91
5-2 Fabrication process of enhancement-mode n-channel MOSFET with LPD-TiO2 as gate oxide on S-InP 92
5-3 Electrical characteristics of enhancement-mode n-channel MOSFET with LPD-TiO2 as gate oxide on S-InP 93

6. Conclusions 109

REFERENCES 111

Vita 124

Publication List 125











LIST OF FIGURES

Figure 1-1 Crystal structures of TiO2 (a) Rutile, (b) Anatase, and (c) Brookite. 8
Figure 1-2 Calculated band offsets of oxides on Si by J. Robertson 9
Figure 1-3 Schematic views of the proposed structure models for the InP(001):S surface: a)~d) sulfur-rich structure and e), f) sulfur- poor structures. 10
Figure 1-4 (1) Srivastava structure, (2) Inverse Srivastava structure, (3) Pashley structure and (4) Inverse Pashley structure. 12
Figure 1-5 Three-dimensional atomic structures of GaAs surface before and after (NH4)2S treatment... 13
Figure 2-1 Steps involved in a CVD process 27
Figure 2-2 MOCVD system 28
Figure 2-3 Liquid phase deposition (LPD) system 29
Figure 2-4 Flowchart of LPD-SiO2/MOCVD-TiO2 film 30
Figure 3-1 Thickness of TiO2 films as a function of growth temperature. 52
Figure 3-2 XRD spectra of TiO2 films as a function of growth temperature: (a) 280oC, (b) 300oC, (c) 350oC, (d) 400oC, (e) 450oC, (f) 500oC, and (g) 550oC. R: rutile, A: anatase. 53
Figure 3-3 SEM cross section of TiO2 films as a function of growth temperature: (a) 280oC, (b) 300oC, (c) 350oC, (d) 400oC, (e) 450oC, (f) 500oC, and (g) 550oC. 54
Figure 3-4 SEM surface morphologies of TiO2 films as a function of growth temperature: (a) 280oC, (b) 300oC, (c) 350oC, (d) 400oC, (e) 450oC, (f) 500oC, and (g) 550oC. 55
Figure 3-5 Stoichiometry of TiO2 film as a function of growth temperature. 56
Figure 3-6 Refractive index of TiO2 film as a function of growth temperature. 57
Figure 3-7 C-V characteristics of TiO2 films prepared at the growth temperature of 400oC. 58
Figure 3-8 Dielectric constant of TiO2 film as a function of growth temperature. 59
Figure 3-9 Leakage current densities of TiO2 films as a function of growth temperature 60
Figure 3-10 Flowchart of LPD-SiO2/MOCVD-TiO2 film on S-GaAs structure. 61
Figure 3-11 Leakage current densities of different MOS structures 62
Figure 3-12 Capacitance-voltage characteristics of different MOS structures 63
Figure 3-13 PL spectra of GaAs with and without (NH4)2Sx treatment. 64
Figure 3-14 Interface state densities of (a) MOCVD-TiO2/S-GaAs, (b) LPD-SiO2/MOCVD-TiO2/S-GaAs, and (c) MOCVD-TiO2/S-GaAs after LPD-SiO2 removal 65
Figure 3-15 SIMS and XPS depth profiles of LPD-SiO2/MOCVD-TiO2 /S-GaAs 66
Figure 3-16 SEM cross section of MOCVD-TiO2/S-GaAs. 67
Figure 3-17 SIMS depth profiles for (a) MOCVD-TiO2/S-GaAs, (b) PMA (350oC)-MOCVD-TiO2/S-GaAs. 68
Figure 3-18 Leakage current densities of MOCVD-TiO2/GaAs with and without (NH4)2Sx treatments and PMA-MOCVD-TiO2/S-GaAs at different PMA temperatures. 69
Figure 3-19 C-V characteristics of MOCVD-TiO2/GaAs with and without (NH4)2Sx treatments and PMA-MOCVD-TiO2/S-GaAs at different PMA temperatures. 70
Figure 3-20 (a) Dielectric constant and (b) effective oxide charges of MOCVD-TiO2/S-GaAs and PMA-MOCVD-TiO2/S-GaAs at different PMA temperatures 71
Figure 3-21 C-V hysteresis loops of (a) MOCVD-TiO2/S-GaAs, (b) PMA at 300oC, (c) PMA at 350oC and (d) PMA at 400oC. 72
Figure 3-22 Oxide trap density and mobile ion density as a function of PMA temperature. 73
Figure 3-23 Interface state density of MOCVD-TiO2/S-GaAs and PMA-MOCVD-TiO2/S-GaAs at different PMA temperatures. 74
Figure 4-1 Flowchart of LPD-TiO2 on S-GaAs 81
Figure 4-2 SEM (a) surface morphology and (b) cross section of LPD-TiO2 film on GaAs substrate with (NH4)2Sx treatment at the H3BO3 volume of 4 ml. 82
Figure 4-3 Growth rate of LPD-TiO2 film on GaAs substrate with (NH4)2Sx treatment as a function of H3BO3 volume. 83
Figure 4-4 Leakage current densities of LPD-TiO2 films on GaAs substrate without (NH4)2Sx treatment as a function of H3BO3 volume. 84
Figure 4-5 Leakage current densities of LPD-TiO2 films on GaAs substrate with (NH4)2Sx treatment as a function of H3BO3 volume. 85
Figure 4-6 Capacitance-voltage characteristics of LPD-TiO2 films on GaAs substrate without (NH4)2Sx treatment as a function of H3BO3 volume. 86
Figure 4-7 Capacitance-voltage characteristics of LPD-TiO2 films on GaAs substrate with (NH4)2Sx treatment as a function of H3BO3 volume. 87
Figure 4-8 Effective oxide charge as a function of H3BO3 volume 88
Figure 4-9 Interface state densities of LPD-TiO2 films on GaAs substrate with (NH4)2Sx treatment for the H3BO3 volume of 2, 4 and 8 ml. 89
Figure 5-1 AFM of the surface of 50 nm thick LPD-TiO2 film on S-InP 95
Figure 5-2 Leakage current densities of (a) LPD-TiO2/InP and (b) LPD-TiO2/S-InP. 96
Figure 5-3 C-V characteristics of (a) LPD-TiO2/InP and (b) LPD-TiO2/S-InP. 97
Figure 5-4 Interface state density of LPD-TiO2/S-InP. 98
Figure 5-5 Steps of MOSFET fabrication process 99
Figure 5-6 ID-VD of e-mode S-InP NMOSFET with LPD-TiO2 as gate oxide 106
Figure 5-7 ID-VG as function of VG of e-mode S-InP NMOSFET with LPD-TiO2 as gate oxide 107
Figure 5-8 Gm as function of VG of e-mode S-InP NMOSFET with LPD-TiO2 as gate oxide 108
參考文獻 References
[1] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[2] G. V. Samsonov: The Oxide Handbook, (IFI/Plenum, New York), p. 316, 1973.
[3] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G. Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,” J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[4] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[5] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., vol. 90, pp.5896-5900, 1986.
[6] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of SiO2-TiO2 thin-film with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[7] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[8] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-film by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[9] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chem. Commun., pp. 569-570, 2001.
[10] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides” Thin Solid Film, vol. 323, pp. 59-62, 1998.
[11] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-film with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[12] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium-dioxide - rutile, anatase and brookite,” Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[13] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 film on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[14] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[15] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-film,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[16] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[17] G. S. Brady, and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991)
[18] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical Chem., vol. 428, pp. 25-32, 1997.
[19] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp.224-228, 2003.
[20] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[21] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, vol. 32, pp. 461-465, 1989.
[22] R. D. Shannon, and J. A. Pask, J. Am. Ceram. Soc., vol. 48, p. 391, 1965.
[23] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[24] O. Harizanov, and A. Harizanova, “Development and investigation of sol-gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[25] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin film on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003.
[26] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Film, vol. 391, pp. 133-137, 2001.
[27] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin film by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[28] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide film produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[29] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 film prepared by reactive evaporation,” Thin Solid Film, vol. 371, pp. 218-224, 2000.
[30] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002.
[31] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 film sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[32] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-film prepared by R.F. magnetron sputtering method,” Surf. Coat. Technol., vol. 155, pp. 141-145, 2002.
[33] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin film by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[34] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin film: effect of growth temperature and plasma gas composition,” Thin Solid Film, vol. 371, pp. 126-131, 2000.
[35] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium-oxide film obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[36] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 film prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[37] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 film prepared by pulsed laser deposition,” Thin Solid Film, vol. 401, pp. 88-93, 2001.
[38] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-film by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[39] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[40] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-film,” Appl. Surf. Sci., vol. 185, pp. 47-51, 2001.
[41] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-film produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[42] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-film on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[43] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide film prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[44] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 film prepared by liquid-phase deposition,” Thin Solid Film, vol. 371, pp. 148-152, 2000.
[45] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998.
[46] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-film by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol. 36, pp. 1346-1350, 1997.
[47] G. Stringfellow: Organometallic vapor phase epitaxy: Theory and Practice, Academic Press, Boston, 1989.
[48] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics”, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[49] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Minamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jpn. J. Appl. Phys., vol. 39, pp. 5794-5799, 2000.
[50] M. Kadoshima, M. Hiratani, Y. Shimamoto, K.Torii, H. Miki, S. Kimura, and T. Nabatame,“Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp. 224-228, 2003.
[51] M. P. Houng, C. J. Huang, Y. H. Wang, N. F. Wang, and W. J. Chang, “Extremely low temperature formation of silicondioxide on gallium arsenide,” J. Appl. Phys., vol. 82, pp. 5788-5792, 1997.
[52] A. Paccagnella, A. Callegari, J. Batey, and D. Lacey, “Properties and thermal stability of the SiO2/GaAs interface with different surface treatments,” J. Appl. Phys., vol. 57, pp. 258–260, 1990.
[53] A. Callegari, D. K. Sadana, D. A, Buchana, A. Paccagnella, E. D. Marshall, M. A. Tischler, and M. Norcoft, “Properties of SiO2/Si/GaAs structures formed by solid phase epitaxy of amorphous Si on GaAs,” Appl. Phys. Lett., vol. 58, pp. 2540-2542, 1991.
[54] X. Liu, X. Y. Chen, J. Yin, Z. G. Liu, J. M. Liu, X. B. Yin, G. X. Chen, and M. Wang, “Epitaxial growth of TiO2 thin films by pulsed laser deposition on GaAs(100) substrates,” J. Vac. Sci. Technol. A, vol. 19, pp. 391-393, 2001.
[55] Y. H. Lee, K. K. Chan and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. Technol. A, vol. 13, pp. 596-601, 1995.
[56] K. Vydianathan, G. Nuesca, G. Peterson, E. T. Eisenbraun, A. E. Kaloyeros, J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics application,” J. Mater. Res., vol. 16, pp. 1838-1849, 2001.
[57] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. Ch. 8, Wiley, New York, (1981).
[58] D. M. Shang and W. Y. Ching, “Electronic and optical properties of three phases of titanium oxide: Rutile, anatase, and brookite,” Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[59] D. C. Gilmer, X. C Wang, M. T. Hsieh, H. S. Kim, W. L. Glasfelter and J. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, pp. 104-109 (1997).
[60] R. Lyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of phosphorous and sulfur treatment on the surface properties of InP,” J. Vac. Sci. & Technol. B, vol. 6, pp. 1174-1179, 1988.
[61] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K. Tan, S. Ingrey, and D. Landheer, “X-ray absorption near edge structures of sulfur on gas-phase polysulfide treated InP surfaces and at SiNx/InP interfaces,” J. Vac. Sci. & Technol. A, vol. 12, pp. 2701-2704, 1994.
[62] Y. Dong, X. Ding, and X. Y. Hou, “Sulfur passivation of GaAs metal-semiconductor field-effect transistor,” Appl. Phys. Lett., vol. 77, pp. 3839-3841, 2000.
[63] J. L. Leclercq, E. Bergignat and G Hollinger, “Surface chemistry of InAlAs after (NH4)2Sx sulphidation,” Semicond. Sci. Technol., vol. 10, pp. 95-100, 1995.
[64] M. J. Chester, T. Jach and J. A. Dagnta, “X-ray photoelectron and Auger electron spectroscopy study of ultraviolet/ozone oxidized, P2S5/(NH4)2S treated GaAs(100) surfaces,” J. Vac. Sci. Technol. A., vol. 11, pp. 474-480, 1993.
[65] Z. H. Lu, M. J. Graham, X. H. Feng and B. X. Yang, “Structure of S on passivated GaAs (100),” Appl. Phys. Lett., vol. 62, pp. 2932-1934 (1993).
[66] J. Robertson, “Electronic structure and band offsets of high dielectric constant gate oxides,” MRS Bulletin Mar, 217 (2002).
[67] M. K. Lee, J. J. Huang, and T. S. Wu, “Low leakage current fluorinated LPD-SiO2/MOCVD-TiO2 film,” Electrochem. Solid-State Lett., vol. 8, pp. F8-F11, 2005.
[68] E. H. Nicollian, and J. R. Brews: MOS (Metal Oxide Semiconductor) Physics and Technology, 2nd ed., Wiley, New York (1991).
[69] E. K. Badih and J. B. Richard, Introduction to VLSI Silicon Device Physics, Technology and Characterization, 340-341, Kluwer Academic Publishers (1986).
[70] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys., vol. 63, pp. 5776-5793, 1988.
[71] M. K. Lee, J. J. Huang and Y. H. Hung, “Variation of Electrical Characteristics of MOCVD-TiO2 Films by Postmetallization Annealing,” J. Electrochem. Soc., vol. 152, F190-F193, 2005.
[72] Y. Tao, A. Yelon, E. Sacher, Z.H. Lu, M.J. Graham, “S-passivated InP (100)-(1×1) surface prepared by a wet chemical process,” Appl. Phys. Lett., vol. 60, pp. 2669- 2671, 1992.
[73] C. Engler, J. Dittmar, T. Chasse, “Stability of sulfur induced reconstructions on InP(001) surfaces,” Surface Sci. vol. 495 pp. 55-67, 2001.
[74] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technol., pp. 512, 2000.
[75] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549, 1993.
[76] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),” Thin Solid Film, vol. 377, pp. 766-771, 2000.
[77] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing-agent than O2 for the postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol. 36, pp. 661-666, 1997.
[78] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.
[79] “Powder Diffraction File,” Joint committee on powder diffraction standards.
[80] I. T. Kim, J. W. Jang, H. J. Youn, C. H. Kim and K. S. Hong, “180° ferroelectric domains in polycrystalline BaTiO3 thin films,” Appl. Phys. Lett., vol. 72, pp. 308-310, 1998.
[81] L. I. Maissel and R. Glang: Handbook of Thin Film Technology,) 1st ed., Chap. 8, McGraw-Hill, New York (1970).
[82] E. K. Kim, M. H. Son, S. K. Min, Y. K. Han, and S. S. Yom, “Growth of highly oriented TiO2 thin film on InP(100) substrates by metalorganic chemical vapor deposition,” J. Cryst. Growth, vol. 170, pp. 803-807, 1997.
[83] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. Ch. 7, Wiley, New York, (1981).
[84] B. H. Lee, Y. Jeon, K. Zawadzki, W. J. Qi, and Jack Lee, “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon,” Appl. Phys. Lett., vol. 74, pp. 3143-3145, 1999.
[85] P. H. Lai, S. I Fu, Y. Y. Tsai, C. H. Yen, S. Y. Cheng, and W. C. Liu, “Characteristics of a sulfur-passivated InGaP/InGaAs/GaAs heterostructure field-effect transistor,” Appl. Phys. Lett., vol. 87, pp. 083502-083504, 2005.
[86] J. Y. Tewg, Y. Kuo, J. Lu, and B. W. Schueler, “Influence of a 5 Å Tantalum Nitride Interface Layer on Dielectric Properties of Zirconium-Doped Tantalum Oxide High-k Films,” J. Electrochem. Soc., vol. 152, pp. G617-G622, 2005.
[87] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., vol. 86, pp. 152904-152906, 2005.
[88] M. Passlack, N. Medendorp, and R. Gregory, “Role of Ga2O3 template thickness and gadolinium mole fraction in GdxGa0.4–xO0.6/Ga2O3 gate dielectric stacks on GaAs,” Appl. Phys. Lett., vol. 83, pp. 5262-5264, 2003.
[89] F. Shi, K. L Chang, J. Epple, C. F. Xu, K. Y. Cheng, and K. C. Hsieh, “Characterization of GaAs-based n-n and p-n interface junctions prepared by direct wafer bonding,” J. Appl. Phys. vol. 92, pp. 7544-7549, 2002.
[90] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K. Tan, S. Ingrey, and D. Landheer, “X-ray absorption near edge structures of sulfur on gas-phase polysulfide treated InP surfaces and at SiNx/InP interfaces,” J. Vac. Sci. & Technol. A, vol. 12, pp. 2701-2704, 1994.
[91] M. Passlack, M. Hong, J. P. Mannaerts, J. R. Kwo, and L. W. Tu, “Recombination velocity at oxide–GaAs interfaces fabricated by in situ molecular beam epitaxy,” Appl. Phys. Lett., vol. 68, pp. 3605-3607, 1996.
[92] M. Passlack, M. Hong, J. P. Mannaerts, R. L. Opila, and F. Ren, “Thermodynamic and photochemical stability of low interface state density Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Appl. Phys. Lett., vol. 69, pp. 302-304, 1996.
[93] R. S. Besser and C. R. Helms, “Comparison of surface properties of sodium sulfide and ammonium sulfide passivation of GaAs,” J. Appl. Phys., vol. 65, pp. 4306-4310, 1989.
[94] K. T. Nam, A. Datta, S. H. Kim, and K. B. Kim, “Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization,” Appl. Phys. Lett., vol. 79, pp. 2549-2551, 2001.
[95] H. H. Tseng, M. Orlowski, P. J. Tobin, and R. L. Hance, “Fluorine diffusion on a polysilicon grain boundary network in relation to boron penetration from P+ gates,” IEEE Electron Device Lett., vol. 13, pp. 14-16, 1992.
[96] R. Klauser, M. Kubota, and Y. Murata, “Electronic properties of ionic insulators on semiconductor surfaces: Alkali fluorides on GaAs(100)” Phys. Rev. B., vol. 40, pp. 3301-3305 (1989).
[97] C. K. Jung, D. C. Lim, H. G. Jee, M. G. Park, S. J. Ku, K. S. Yu, B. Hong, S. B. Leea, and J. H. Booa, “Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative studt and structural and optical properties,” Surf. Coat. Technol., vol. 171, pp. 46-50, 2003.
[98] H. D. Fuchs, M. Stutzman, M. S. Brandt, M. Rosenbauer, J. Weber, A. Breitschwerd, P. Deak, and M. Cardona, “Vibrational and structural properties,” Phys. Rev. B, vol. 48, pp. 8172-8189, 1993.
[99] D. K. Schroder, Semiconductor Material and Device Characterization, p 362-365, Wiley, New York (1998)
[100] S. K. Kim, W. D. Kim, K. M. Kim, C. S. Hwang and J. Jeong, “High dielectric constant TiO2 thin films on a Ru electrode grown at 250°C by atomic-layer deposition” Appl. Phys. Lett., vol. 85, pp. 4112-4114, 2004.
[101] J. S. McCalmont, H. C. Casey, Jr, T. Y. Wang and G. B. Stringfellow, “The effect of oxygen incorporation in semi-insulating (AlxGa1−x)yIn1−yP,” J. Appl. Phys., vol. 71, pp. 1046-1048, 1992.
[102] S. J. Kang; J. C. Han, J. H. Kim, S.J. Jo, S. W. Park and J. I. Song, Indium Phosphide and Related Materials Conference, 2002. IPRM. 14th.
[103] S. C. Sun, and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. 27, pp. 1497-1508, 1980.
[104] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “Fabrication of depletion-mode GaAs MOSFET with a selective oxidation process by using metal as the mask,” IEEE Electron Device Lett., vol. 22, pp. 2-4, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.212.99
論文開放下載的時間是 校外不公開

Your IP address is 3.16.212.99
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code