Responsive image
博碩士論文 etd-1220110-183531 詳細資訊
Title page for etd-1220110-183531
論文名稱
Title
奈米碳管飽和吸收體增強鎖模雷射非線性自相位調變之研究
Study on Nonlinear Self-Phase Modulation Enhancement in Passive Mode Locked Fiber Laser with Single-Wall Carbon Nanotube Saturable Absorber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-11-26
繳交日期
Date of Submission
2010-12-20
關鍵字
Keywords
奈米碳管、自相位調變、鎖模雷射
Self-Phase Modulation, Mode Locked Fiber Laser, Single-Wall Carbon Nanotube
統計
Statistics
本論文已被瀏覽 5772 次,被下載 11
The thesis/dissertation has been browsed 5772 times, has been downloaded 11 times.
中文摘要
本論文係單壁奈米碳管飽和吸收體之厚濃度乘積對於穩定及縮短被動鎖模摻鉺光纖環型雷射光脈衝之研究,將飽和吸收體之厚濃度乘積表示其入射光束所遭遇單壁奈米碳管總量,當厚濃度乘積小於8.25 (μm x wt%)時,量測到之光譜頻寬小於2 nm。進一步增加厚濃度乘積,可觀察到光孤子鎖模操作行為且光譜頻寬可拓展至6 nm,此時碳管面積定理決定了光脈衝塑型的能力。
透過碳管面積定理分析得到非線性自相位調變會隨著厚濃度乘積的增加而增加,所增加的非線性自相位調變會形成光孤子鎖模操作且縮短光脈衝。但是隨著厚濃度乘積的增加,光脈衝能量會降低,光脈衝能量的降低則是會限制縮短脈衝的行為。量測結果顯示光脈衝能量與非線性自相位調變跟飽和吸收體之厚濃度乘積相關,基於面積定理,光脈衝能量與非線性自相位調變隨著厚濃度乘積的變化,就可以得到最短光脈衝所需之最佳飽和吸收體厚濃度乘積。本研究最佳的厚濃度乘積為70.93 (μm x wt%),所得到之最短脈衝為418 fs。
根據面積定理所得到之非線性自相位調變,可計算非線性折射係數為0.4 - 1 x 10^-15 m^2/W,結果相當近似發表期刊論文,其非線性折射係數為10^-15 - 10^-16 m^2/W。假使透過主動式Z-scan之量測得到之非線性折射係數估算非線性自相位調變,再透過光脈衝能量對於厚濃度乘積的變化,就可以根據面積定理之理論模擬光脈衝寬度對於厚濃度乘積的變化,並得到最佳之厚濃度乘積以產生最短光脈衝。對於單壁奈米碳管飽和吸收體厚濃度乘積對被動鎖模光纖環型雷射之光脈衝能量、光脈衝寬度和光譜頻寬的量測結果,可以顯示出單壁奈米碳管飽和吸收體之厚濃度乘積對於被動鎖模光纖環型雷射之光脈衝塑型是一個重要的影響參數,透過本研究最佳化奈米碳管飽和吸收體厚濃度乘積之探討可提供一個方式有效技術地製做單壁奈米碳管飽和吸收體。
Abstract
The dependence of thickness and concentration product (TCP) of single-wall carbon nanotubes saturable absorber (SWCNTs SA) on stabilizing and shortening pulse width in passively mode-locked erbium-doped fiber ring laser (MLEDFL) was investigated and measured. The TCP represented the amounts of SWCNTs, which the optical beam encountered when passing through the SWCNTs SA. If the TCP was smaller than 8.25 (μm x wt%), the spectral bandwidth was below 2 nm. The pulse shaping was dominated by its own self amplitude modulation (SAM) of SWCNTs SA. With further increasing TCP, the soliton-like ML operation was achieved and the spectral bandwidth was expanded to 6 nm. For soliton-like mode locking (ML) operation, the area theorem dominated the pulse shaping.
Through area theorem analysis, the estimation of SPM increased as the TCP increased. The adequate enhanced SPM for balancing the slight negative GVD was provided to generate soliton-like ML pulses shorten the pulse width. However, as the TCP increased, the soliton pulse energy decreased. The decreasing soliton pulse energy restricted the further pulse shortening. The results showed that the dependence of the pulse energy and nonlinear self phase modulation (SPM) on TCP enabled to determine the shortest pulse width in MLEDFL based on the area theorem. At optimized TCP of 70.93 (μm x wt%), it was found that the shortest pulse width of 418 fs.
In addition, based on the estimated SPM from area theorem, the nonlinear refractive index n2 was calculated at the level of 0.4 - 1 x 10^-15 m^2/W that was close to the literature values of 10^-15 - 10^-16 m2/W. It provides another way to estimate the nonlinear refractive index except for the Z-scan measurement. We could also estimate the SPM if an active Z-scan measurement was taken to obtain the nonlinear refractive index of the sample. We realized the trend of pulse energy through few samples in MLEDFL, the behavior of pulse width could be theoretically simulated based on area theorem. Hence, with the area theorem analysis, the optimized TCP of SWCNTs SA could be simulated and estimated to generate the shortest pulse width from the trends of pulse energy and estimated SPM. The significant effect of TCP on pulse energy, SPM, pulse width, and spectral bandwidth of MLFLs suggests that the TCP represents the total amount of SWCNTs in SA, which can be used as one of key parameters for characterizing the passive MLFL pulse width. Through the study of the dependence of TCP on ML pulses in MLEDFL, it may provide a guideline to fabricate an effective SWCNTs SA to generate the shortest pulse width of the MLEDFL.
目次 Table of Contents
TABLE OF CONTENTS
ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS………………………………………i
LIST OF FIGURES……………………..............iii
LIST OF TABLES………....................................vii


CHAPTER 1 INTRODUCTION…………………1
1.1 Background……………………......1
1.2 Motivation…………………..............3
1.3 Objective………………...................4
1.4 Organization…………………........5
References…………………...............................6


CHAPTER 2 MODE LOCKING THEORY…………10
2.1 Mode-locking mechanism in ring fiber laser with single-wall carbon nanotubes saturable absorber………………………………......................15
2.2 Linear GVD effect…………………………………….....................21
2.3 Nonlinear SPM effect…………...........23
2.4 Mode-locking pulse compression with the combination of linear GVD and nonlinear SPM...25
2.5 Soliton-like mode-locking pulses.…31
References……………………….............................33

CHAPTER 3 PREPARATION OF SINGLE WALL CARBON NANOTUBES SATURABLE ABSORBER…34
3.1 Material preparation………………………35
3.1.1 Polyvinyl alcohol (PVA) ...............................35
3.1.2 Single-wall carbon nanotube (SWCNT) .35
3.1.3 Sodium dodecylbenzene sulfonate (SDBS)................................................................................43
3.2 Dispersion mechanism of single-wall carbon nanotubes……………….....................................44
3.3 Fabrication of single-wall carbon nanotubes saturable absorber………..........................47
3.3.1 Concentration of single-wall carbon nanotubes saturable absorber......................................48
3.3.2 Thickness of single-wall carbon nanotubes saturable absorber…..................................49
3.3.3 Examination of the thickness of single-wall carbon nanotubes saturable absorber………....49
3.4 Optical properties of single-wall carbon nanotubes saturable absorber......................................52
References………………................................................56


CHAPTER 4 EXPERIMENTAL RESULTS………………...................................................59
4.1 Measurement of linear and nonlinear optical absorption……....................................................60
4.1.1 Linear optical absorption of single-wall carbon nanotubes saturable absorber…...................60
4.1.2 Nonlinear optical absorption of single-wall carbon nanotubes saturable absorber……...............62
4.2 Setup of mode-locking ring fiber laser...65
4.2.1 Length of Erbium doped fiber………......67
4.2.2 Pumping level versus operation regimes….........................................................................71
4.3 Concentration effect of single-wall carbon nanotubes saturable absorber....................................74
4.4 Thickness effect of single-wall carbon nanotubes saturable absorber…................................76
4.5 GVD effect on mode-locking ring fiber laser pulses………........................................................79
References………………..............................................82


CHAPTER 5 SIMULATION AND RESULTS.…........83
5.1 Soliton-like mode-locking pulses...........................................................................84
5.1.1 Stable regimes of laser operation…..84
5.1.2 Measurement of mode-locking pulse..85
5.2 Enhancement of nonlinear SPM……....89
5.3 Calculation of nonlinear refractive index..91
5.4 Theoretical description of area theorem..............................93
References.......................96

CHAPTER 6 CONCLUSION..................................97
6.1 Conclusion..................................97
6.2 Future works..................................100
References..................................102

LIST OF PUBLICATIONS...................................103
BIOGRAPHY OF AUTHOR..................................106
參考文獻 References
[1.1] S. Iijima, ” Helical Microtubules of Graphitic Carbon”, Nature, vol. 354, pp. 56 - 58 (1991)
[1.2] T. Uchida, and S. Kumar, ”Single Wall Carbon Nanotube Dispersion and Exfoliation in Polymers”, J. Appl. Polym. Sci., vol. 98, pp. 985-989 (2005)
[1.3] C. M. Chang, J. C. Chiu, W. S. Jou, T. L. Wu, and W. H. Cheng, ”New Package Scheme of a 2.5-Gb/s Plastic Transceiver Module Employing Multiwall Nanotubes for Low Electromagnetic Interference”, J. Sel. Top. Quantum Electronics, vol. 12, pp. 1025-1031 (2006)
[1.4] C. M. Chang, J. C. Chiu, Y. F. Lan, J. W. Lin, C. Y. Yeh, W. S. Jou, J. J. Lin, and W. H. Cheng, ”High Electromagnetic Shielding of a 2.5-Gbps Plastic Transceiver Module Using Dispersive Multiwall Carbon Nanotubes”, J. Light. Tech., vol.26, pp. 1256-1262 (2008)
[1.5] S. Berber, Y. K. Kwon, and D. Tománek, ”Unusually High Thermal Conductivity of Carbon Nanotubes”, Phys. Rev. Lett., vol. 84, pp. 4613-4616 (2000)
[1.6] W. A. de Heer, ”Nanotubes and the Pursuit of Applications”, MRS Bulletin, vol. 29, pp. 281-285 (2004)
[1.7] C. Park, Z. Ounaies, K. A. Watson, R. E. Crooks, J. Smith Jr., S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison, and T. L. St. Clair, ”Dispersion of Single Wall Carbon Nanotubes by In Situ Polymerization under Sonication”, Chem. Phys. Lett., vol. 364, pp. 303-308 (2002)
[1.8] S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W. W. Adams, R. H. Hauge, R. E. Smalley, S. Ramesh, and P. A. Willis, ”Synthesis, Structure, and Properties of PBO/SWNT Composites” Macromolecules, vol. 35, pp. 9039-9043 (2002)
[1.9] Z. Ounaiesa, C. Park, K.E. Wise, E.J. Siochi, and J.S. Harrison, ”Electrical Properties of Single Wall Carbon Nanotube Reinforced Polyimide Composites”, Compositeds Sci. And technol., vol. 63, pp. 1637-1646 (2003)
[1.10] E. J. Siochia, D. C. Working, C. Park, P. T. Lillehei, J. H. Rouse, C. C. Topping, A. R. Bhattacharyya, and S. Kumar, ”Melt processing of SWCNT-polyimide nanocomposite fibers”, Composites Part B, vol. 35, pp. 439-446 (2004)
[1.11] J.G. Smith Jr, J.W. Connell, D.M. Delozier, P.T. Lillehei, K.A. Watson, Y. Lin, B. Zhou, and Y.-P. Sun, ”Space Durable Polymer/Carbon Nanotube Films for Electrostatic Charge Mitigation”, Polymer, vol. 45, pp. 825-836 (2004)
[1.12] C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M.-K. Schwarz, W. Bauhofer, K. Schulte d, A.H. Windle, ”Formation of Percolating Networks in Multi-Wall Carbon-Nanotube-Epoxy Composites”, Compos. Sci. Technol., vol. 64, pp. 2309-2316 (2004)
[1.13] M. B. Bryning, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, ”Very Low Conductivity Threshold in Bulk Isotropic Single-Walled Carbon Nanotube–Epoxy Composites”, Adv. Mater., vol. 17, pp. 1186-1191 (2005)
[1.14] A. B. Dalton, S. Collins, E. Muñoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, ”Super-Tough Carbon-Nanotube Fibres”, Nature, vol. 423, p703 (2003)
[1.15] H.Z. Geng, R. Rosen, B. Zheng, H. Shimoda, L. Fleming, J. Liu, and O. Zhou, ”Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes”, Adv. Mater., vol. 14, pp. 1387-1390 (2002)
[1.16] F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, ”Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity”, Macromolecules, vol. 37, pp. 9048-9055 (2004)
[1.17] L. A. Hough, M. F. Islam, P. A. Janmey, and A.G. Yodh, ”Viscoelasticity of SingleWall Carbon Nanotube Suspensions”, Phys. Rev. Lett., vol. 93, pp. 168102/1-168102/4 (2004)
[1.18] R. Ramasubramaniam, J. Chen, and H. Liu, ”Homogeneous Carbon Nanotube/Polymer Composites for Electrical Applications”, Appl. Phys. Lett., vol. 83, pp. 2928-2930 (2003)
[1.19] J. K.W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, ” Ultra-Low Electrical Percolation Threshold in Carbon-Nanotube-Epoxy Composites”, Polymer,vol. 44, pp. 5893-5899 (2003)
[1.20] E. Snitzer, ”Optical Maser Action of Nd+3 in a Barium Crown Glass”, Phys. Rev. Lett., vol. 7, pp. 444-446 (1961)
[1.21] M. E. Fermann, “Ultrafast fiber oscillators,” (Marcel Dekker, 2003), Chap.3.
[1.22] S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, ”Carbon Nanotube Films for Ultrafast Broadband Technology”, Opt. Express, vol. 17, pp. 2358-2363 (2009).
[1.23] H. A. Haus, ” Mode-Locking of Lasers”, IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 1173-1185 (2000).
[1.24] N. J. Doran, and D. Wood, ”Nonlinear-Optical Loop Mirror”, Opt. Lett., vol. 13, pp. 56-58 (1988).
[1.25] U. Keller, W. H. Knox, and H. Roskos, ”Coupled-Cavity Resonant Passive Mode-Locked Ti:sapphire laser”, Opt. Lett., vol. 15, pp. 1377-1379 (1990).
[1.26] Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zaho, T. M. Liu, G. C. Wang, and X. C. Zhang, ” Ultrafast Optical Switching Properties of Single-Wall Carbon Nanotube Polymer Composites at 1.55
[1.27] U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, ”Solid-State Low-Loss Intracavity Saturable Absorber for Nd:YLF Lasers: An Antiresonant Semiconductor Fabry-Perot Saturable Absorber”, Optics Letters, vol. 17, pp.505-507 (1992)
[1.28] U. Keller, T. H. Chiu, and J. F. Ferguson, ”Self-Starting Femtosecond Mode-Locked Nd:Glass Laser that Uses Intracavity Saturable Absorbers”, Optics Letters, vol. 18, pp.1077-1079 (1993)
[1.29] U. Keller, ”Ultrafast All-Solid-State Laser Technology”, Appl. Phys. B, vol. 58, pp. 347-363 (1994)
[1.30] F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, ”Control of Solid State Laser Dynamics by Semiconductor Devices : Optics in Switzerland. I: Federal Institutes of Technology”, Optical Engineering, vol. 34, pp. 2024-2036 (1995)
[1.31] L. R. Brovelli, U. Keller, and T. H. Chiu, ”Design and Operation of Antiresonant Fabry–Perot Saturable Semiconductor Absorbers for Mode-Locked Solid-State Lasers”, J. Opt. Soc. Am. B, vol. 12, pp.311-322 (1995)
[1.32] S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, ”Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes”, J. Lightwave Tech., vol. 22, pp. 51-56 (2004).
[1.33] T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, ” Ultrashort Pulse-Generation by Saturable Absorber Mirrors Based on Polymer-Embedded Carbon Nanotubes”, Opt. Express, vol. 13, pp. 8025-8031 (2005).
[1.34] K. H. Fong, K. Kikuchi, C. S. Goh, S. Y. Set, R. Grange, M. Haiml, A. Schlatter, and U. Keller, ” Solid-State Er:Yb:glass Laser Mode-Locked by Using Single-Wall Carbon Nanotube Thin Film”, Opt. Lett., vol. 32, pp. 38-40 (2007).
[1.35] A. Schmidt, S. River, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguilo, F. Diaz, V. Petrov, and U. Griebner, ” Passive Mode Locking of Yb:KLuW Using a Single-Walled Carbon Nanotube Saturable Absorber”, Opt. Lett., vol. 33, pp. 729-731 (2008).
[1.36] J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J. Lin, and W. H. Cheng, ”Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse”, Optics Express, vol. 18, pp. 3592-3600 (2010)
[1.37] H.A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys., vol. 46, pp. 3049-3058 (1975)
[2.1] A. M. Weiner, Ultrafast Optics, Wiley, New Jersey (2009)
[2.2] A. Yariv, Optical Electronics, Saunders. College (1991)
[2.3] H. A. Haus, “Theory of Mode Locking with a Fast Saturable Absorber”, J. Appl. Phys., vol. 46, pp. 3049-3058 (1975)
[2.4] E. Garmire, ”Resonant Optical Nonlinearities in Semiconductors”, IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 1094-1110 (2000)
[2.5] C. Rullière, Femtosecond Laser Pulses: Principles and Experiments, Springer, New York (1998)
[2.6] H. A. Haus, ” Mode-Locking of Lasers”, IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 1173-1185 (2000).
[2.7] O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of Passively Mode-Locked Lasers Including Self-Phase Modulation and Group-Velocity Dispersion,” Optics Letters, vol. 9, pp.156-158 (1984)
[2.8] K. Tamura, E. P. Ippen, and H. A. Haus “Pulse Dynamics in Stretched-Pulse Fiber Lasers,” Applied Physics Letters, vol. 67, pp. 158-160 (1995)
[2.9] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers”, Physical Review Letters, vol. 45, pp. 1095–1098 (1980)
[2.10] H. A. Haus, J. G. Fujimoto, and E. P. Ippen “Structures for Additive Pulse Mode Locking,” J. Opt. Soc. Am. B, vol. 8, pp. 2068–2076 (1991)
[2.11] V. J. Matsas, T. P. Newson, D. J. Richardson and D. N. Payne, ”Selfstart Passively Mode-Locked Fiber Ring Soliton Laser Exploiting Nonlinear Polarisation Rotation”, Electron. Lett., vol. 28, pp. 1391-1393 (1992)
[2.12] V. E. Zakharov, and A. B. Shabat, ”Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media”, Sov. Phys. JETP, vol. 34, pp. 62-69 (1972)
[2.13] J. Satsuma, and N. Yajima, ”Initial Value Problem of One-Dimensional Self-Modulation of Nonlinear Waves in Dispersive Media”, Suppl. Prog. Theor. Phys., vol. 55, pp. 284-306 (1974)
[3.1] A. G. Rozhin, Y. Sakakibara, H. Kataura, S. Matsuzaki, K. Ishida, Y. Achiba, and M. Tokumoto, ”Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol”, Chem. Phys. Lett., vol. 405 pp. 288–293 (2005).
[3.2] S. Iijima, ”Helical Microtubules of Graphitic Carbon”, Nature, vol. 354, pp. 56-58 (1991)
[3.3] M. S. Dresselhaus, and P. C. Eklund, ”Phonons in carbon nanotubes”, Adv. Phys., vol. 49, pp. 705-814 (2000)
[3.4] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Fullerenes and Carbon Nanotubes, Academic,San Diego, 1996.
[3.5] M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).
[3.6] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, 1998, Physical Properties of Carbon Nanotubes (London: Imperial College Press).
[3.7] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, ”Physics of Carbon nanotubes”, Carbon, vol. 33, pp. 883-891 (1995)
[3.8] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, ”Electronic structure of atomically resolved carbon nanotubes”, Nature, vol. 391, pp. 59-61 (1998)
[3.9] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, ”Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, vol. 391, pp. 62-64 (1998)
[3.10] Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, and S. Maruyama, ”Growth of Vertically Aligned Single-Walled Carbon Nanotube Films on Quartz Substrates and Their Optical Anisotropy”, Chem. Phys. Lett., vol. 385, pp. 298-303 (2004)
[3.11] A. Mansour, M. Razafinimanana, M. Monthioux, M. Pacheco, and A. Gleizes, ”A Significant Improvement of Both Yield and Purity During SWCNT Synthesis Via the Electric Arc Process”, Carbon, vol. 45, pp. 1651-1661 (2007)
[3.12] H. W. Zhu, B. Jiang, C. L. Xu, and D. H. Wu, ”Synthesis of High Quality Single-Walled Carbon Nanotube Silks by the Arc Discharge Technique”, J. Phys. Chem. B, vol. 107, pp. 6514-6518 (2003)
[3.13] Y. Saito, Y. Tani, and A. Kasuya, ”Diameters of Single-Wall Carbon Nanotubes Depending on Helium Gas Pressure in an Arc Discharge”, J. Phys. Chem. B, vol. 104, pp. 2495-2499 (2000)
[3.14] S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, ”Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes”, Physical Review Letters, vol. 80, pp. 3779-3782 (1998)
[3.15] H. M. Cheng, F. Li, X. Sun, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, ”Bulk Morphology and Diameter Distribution of Single-Walled Carbon Nanotubes Synthesized by Catalytic Decomposition of Hydrocarbons”, Chem. Phys. Lett., vol. 289, pp. 602-610 (1998)
[3.16] S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, ”Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes”, Phys. Rev. Lett., vol. 80, pp. 3779-3782 (1998)
[3.17] L. Henrard, E. Herna′ndez, P. Bernier, A. Rubio, ”Van Der Waals Interaction in Nanotube Bundles: Consequences on Vibrational Modes”, Phys. Rev. B, vol. 60, pp. R8521-R8254 (1999)
[3.18] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, ”Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes”, Science, vol. 275, pp. 187-191 (1997)
[3.19] R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, ”Phonon Modes in Carbon Nanotubules”, Chem. Phys. Lett., vol. 209, pp. 77-82 (1993)
[3.20] http://www.shodex.com/english/dc080316.html
[3.21] L. A. Girifalco, Miroslav Hodak, and Roland S. Lee, ”Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential”, Phys. Rev. B, vol.62, pp. 13104–13110 (2000)
[3.22] M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water”, Nano Lett., vol. 3, pp. 269-273 (2003)
[3.23] V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, and R. E. Smalley, “Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants”, Nano Lett., vol. 3, pp. 1379-1382 (2003)
[3.24] J. Yu, N. Grossiord, C. E. Koning, and J. Loos, ”Controlling the Dispersion of Multi-wall Carbon Nanotubes in Aqueous Surfactant Solution”, Carbon, vol. 45, pp. 618–623(2007)
[3.25] N. Grossiord, O. Regev, J. Loos, J. Meuldijk, and C. E. Koning, ”Time-Dependent Study of the Exfoliation Process of Carbon Nanotubes in Aqueous Dispersions by Using UV-Visible Spectroscopy”, Anal. Chem, vol. 77, pp. 5135-5139 (2005)
[3.26] A. Hartschuh, H. N. Pedrosa, J. Peterson, L. Huang, P. Anger, H. Qian, A. J. Meixner, M. Steiner, L. Novotny, and T. D. Krauss, ”Single Carbon Nanotube Optical Spectroscopy”, ChemPhysChem, vol. 6, pp. 577-582 (2005)
[3.27] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka and Y. Achiba, ” Optical Properties of Single-Wall Carbon Nanotubes”, Synthetic Metals, vol. 103, pp. 2555-2558 (1999)
[3.28] S. Y. Set, , H. Yaguchi, Y. Tanaka, and M. Jablonski, ”Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes”, Journal of lightwave technology, vol. 22, pp. 51-56 (2004)
[4.1] F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, R. V. Penty, I. H. White and A. C. Ferrari, ”Fabrication, Characterization and Mode Locking Application of Single-Walled Carbon Nanotube/Polymer Composite Saturable Absorbers”, Int. J. Mater. Form., vol. 1, pp. 107-112 (2008)
[4.2] C. Rullière, Femtosecond Laser Pulses: Principles and Experiments, Springer, New York (1998)
[4.3] K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, ”Unidirectional Ring Resonators for Self-Starting Passively Mode-Locked Lasers”, Opt. Lett., vol. 18, pp. 220-222 (1993)
[4.4] F. Krausz and T. Brabec, ”Passive Mode Locking in Standing-Wave Laser Resonators”, Opt. Lett., vol. 18, pp. 888-890 (1993)
[4.5] G. Keiser, Optical Fiber Communications, McGraw-Hill (2000)
[4.6] F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, and A. C. Ferrari, ”Soliton Fiber Laser Mode-Locked by a Single-Wall Carbon Nanotube-Polymer Composite”, Phys. Stat. Sol. (b), vol. 245, pp. 2319-2322 (2008)
[4.7] G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press 2001)
[4.8] H. A. Haus, E. P. Ippen, and K. Tamura, ”Additive-Pulse Modelocking in Fiber Lasers”, IEEE J. Quantum Electron., vol. 30, pp. 200-208 (1994)
[4.9] L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, ”Ultrashort-pulse fiber ring lasers”, Appl. Phys. B, vol. 65, pp. 277-294 (1997)
[4.10] M. L. Dennis and I. N. Duling I11, ”Experimental Study of Sideband Generation in Femtosecond Fiber Lasers”, IEEE J. Quantum Electron., vol. 30, pp. 1469-1477 (1994)
[4.11] S. M. J. Kelly, ”Characteristic Sideband Instability of Periodically Amplified Average Soliton”, Electron. Lett., vol. 28, pp. 806-808 (1992)
[4.12] F. X. K‥artner, J. A. D. Au, and U. Keller, ”Mode-Locking with Slow and Fast Saturable Absorbers—What’s the Difference?”, J. Sel. Top. Quantum Electron., vol. 4, pp. 159-168 (1998)
[5.1] T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light“, Optics Letters, vol. 20, pp. 988-990 (1995)
[5.2] M. Sheik-bahae, A. A. Said, and E. W. Van Stryland, “High-Sensitivity, Single-Beam n2 Measurements”, Opt. Lett., vol. 14, pp. 955-957 (1989)
[5.3] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W . V. Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam”, IEEE J. Quantum Electron., vol. 26, pp. 760-769 (1990)
[5.4] D. Shimamoto, T. Sakurai, M. Itoh, Y. A. Kim, T. Hayashi, M. Endo, and M. Terrones, ”Nonlinear Optical Absorption and Reflection of Single Wall Carbon Nanotube Thin Films by Z-Scan Technique”, Applied Phsyics Letters, vol. 92, pp. 081902-1 - 081902-3 (2008)
[5.5] H. A. Haus, ” Mode-Locking of Lasers”, IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 1173-1185 (2000).
[5.6] N. Kamaraju, S. Kumar, and A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, ”Large Nonlinear Absorption and Refraction Coefficients of Carbon Nanotubes Estimated from Femtosecond Z-Scan Measurements”, Applied Phsyics Letters, vol. 91, pp. 251103-1 - 251103-3 (2007)
[5.7] Y. W. Song, and S. Yamashita, ”A Tester for Carbon Nanotube Mode Lockers”, Japanese Journal of Applied Physics vol. 46, pp. 3111-3113 (2007)
[5.8] A. G. Rozhin, Y. Sakakibara, S. Namiki, Y. Achiba, ”Sub-200-fs Pulsed Erbium-Doped Fiber Laser Using a Carbon Nanotube-Polyvinylalcohol Mode Locker”, Appl. Phys. Lett., 88, 051118 (2006)
[6.1] T. Tanaka, Y. Urabe, D. Nishide, and H. Kataura, ”Continuous Separation of Metallic and Semiconducting Carbon Nanotubes Using Agarose Gel”, Appl. Phys. Express, vol. 2, pp. 125002 (2009)
[6.2] S. Y. Ju, J. Doll, I. Sharma, and F. Papadimitrakopoulos, ”Selection of Carbon Nanotubes with Specific Chiralities Using Helical Assemblies of Flavin Mononucleotide”, Nature Nanotechnology, vol 3, pp. 356-362 (2008)
[6.3] Y. W. Song, S. Yamashita, and S. Maruyama, ”Single-Walled Carbon Nanotubes for High-energy Optical Pulse Formation”, Applied Physics letters, vol 92, pp. 021115-1 - 021115-3 (2008)
[6.4] S. Y. Choi, F. Rotermund, H. Jung, K. Oh, and D. I. Yeom, ”Femtosecond Mode-Locked Fiber Laser Employing a Hollow Optical Fiber Filled with Carbon Nanotube Dispersion as Saturable Absorber”, Optics Express, Vol. 17, pp.21788-21793 (2009)
[6.5] K. Kieu, and M. Mansuripur, ”Femtosecond Laser Pulse Generation with a Fiber Taper Embedded in Carbon Nanotube/Polymer Composite”, Optics Letters, vol. 32, pp. 2242-2244 (2007)
[6.6] K. Kashiwagi, S. Yamashita, and S. Y. Set, ”In-situ Monitoring of Optical Deposition of Carbon Nanotubes onto Fiber End”, Optics Express, vol. 17, pp. 5711-5715 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.174.248
論文開放下載的時間是 校外不公開

Your IP address is 18.221.174.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code