Responsive image
博碩士論文 etd-1220111-175739 詳細資訊
Title page for etd-1220111-175739
論文名稱
Title
吸附於奈米碳管之金屬奈米粒子儲氫及其釋放機制研究
Hydrogen storage and delivery mechanism of metal nanoclusters on carbon nanotubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-12-16
繳交日期
Date of Submission
2011-12-20
關鍵字
Keywords
物理儲氫、化學儲氫、擬合法、密度泛函理論、分子動力學
Molecular dynamics, spillover, Density functional theory, storage, hydrogen
統計
Statistics
本論文已被瀏覽 5752 次,被下載 1467
The thesis/dissertation has been browsed 5752 times, has been downloaded 1467 times.
中文摘要
本研究以密度泛函理論及分子動力學探討物理與化學吸附兩種不同的氫分子吸附機制,由於鉑奈米粒子可將氫分子解離,屬於化學吸附,然而鋰原子不會有將氫分子解離的現象,則是屬於物理吸附;因此本研究希望藉由分子動力學模擬探討上述兩種方式以及儲氫結構排列對於儲氫效率之影響,以達到Department of Energy US (DOE) 在2015年所預訂定的標準,並且其壓力小於100 atm,操作溫度介於-30~50℃,並使得儲氫重量百分比達到(System Gravimetric Density)9.0 wt%。
本研究將分為三部份探討:
第一部分:
因為目前文獻中的勢能未必可以完整的符合研究所需, 為了得到準確且符合研究所需的模擬參數,首先藉由第一原理分子動力學理論(Density functional theory - Molecular dynamics, DFT-MD)獲得結構與相對應能量的資訊,接著藉由Force-matching method 的方法獲得分子動力學(Molecular dynamics, MD)所需的勢能參數值,最後藉由獲得的新勢能參數執行高效率的分子動力學模擬。
第二部份:
由於氫分子解離會牽涉到電子之間的轉移,所以無法以分子動力學模擬斷鍵情形,因此本研究僅探討在不同溫度下不同尺寸鉑奈米粒子在(5,5)及(9,0)單壁奈米碳管下的動態行為,並藉由吸附能、平方位移圖、平均平方位移圖分析鉑奈米粒子在奈米碳管的運動行為,並分析溫度效應對鉑奈米粒子在奈米碳管上的影響,進而找出最適合儲氫的鉑奈米粒子結構與相對應溫度。
第三部份:
將研究鋰原子散佈在單壁奈米碳管上儲氫的現象,首先建立純碳管與散佈鋰之碳管的系統,將此系統均勻散佈氫分子,而系統壓力分別為1 atm、 50 atm、 100 atm 與200 atm,並模擬溫度在77K與300K定溫下之氫分子吸附的狀況,並藉由氫氣分子在碳管周圍數量的分佈圖及重量百分比(wt%)觀察分析吸附的現象。最後本研究將以週期性邊界條件去模擬一個較大的系統,並探討碳管陣列的形式,以此方式研究將可找到合適的儲氫系統。
Abstract
In this study, we used the Density functional theory (DFT) and Molecular dynamics (MD) to obtain the suitable hydrogen storage of platinum nanoclusters on the (5,5) and (9,0) carbon nanotubes (CNTs) and Li atoms on the (5,5) carbon nanotube. platinum nanoclusters on the CNT is chemisorption because hydrogen molecules dissociated. Li atoms on the CNT is physisorption due to hydrogen molecule do not dissociated. We hope that two different hydrogen storage models can achieve the goal which was set by Department of Energy US. There are three parts in this study. There were three parts in this study:
The first part:
It is very important for obtaining the suitable potential parameters in the Molecular dynamics simulation to reflect the interaction between materials. However, we can not find the suitable parameters from the references to simulate our system. Hence, we use the Force-matching method and Density functional theory to obtain the potential parameter in our system. The Molecular dynamics simulation is utilized to simulate the hydrogen adsorption qith the modified potential parameters.
The second part:
The dynamics behavior of different platinum nanopartilces on the (5, 5) and (9, 0) CNTs at different temperature are investigated by the Molecular dynamics simulation when new parameters are obtained. The migration trajectory, square displacement and mean square displacement of the mass center of platinum nanoclusters are used to analyze to find what sizes of platinum nanoparticle and temperature are the best for hydorgen storage.
The third part:
Density functional theory simulation is utilized to simulate hydrogen molecules adsorbed on the (5, 5) pristine CNT and CNT with lithium atoms. The pressure and temperature effects are used to analyze the hydrogen storage system. Moreover, the different arrangements of CNTs array are also studied, such as, Van der Waals distance (VDW) and shape of array (triangular and square arrangement). Finally, the adsorbed and released phenomenon are also analyzed by the gravimetric capacity (wt%) of hydrogen molecule for hydrogen.
目次 Table of Contents
中文摘要……………………………………………………………………. .. .I
英文摘要………………………………………………………………..….....III
目錄………………………………………………………………………….V
圖目錄……………………………………………………………………...VII
表目錄………………………………………………………………………...XI
第一章 緒論 1
1.1 研究動機 1
1.2 奈米碳管與奈米粒子儲氫簡介 4
1.3 奈米碳管與奈米粒子應用於儲氫文獻回顧 7
1.4 本文架構 13
第二章 模擬方法及理論介紹 14
2.1 勢能參數取得之方法 15
2.1.1 Basin-Hopping計算法 16
2.1.2 Force-matching method 18
2.1.3 勢能介紹 19
2.2 密度泛函理論簡介 28
2.3 分子動力學理論 36
2.3.1 週期性邊界 43
2.4 第一原理分子動力學理論 44
2.5 數值分析 45
2.5.1 吸附能(Adsorption Energy) 45
2.5.2 重量百分比(wt%) 46
2.5.3 平方位移(Square Displacement)和平均平方位移(Mean Square Displacement) 47
第三章 結果與討論 48
3.1 欲模擬系統勢能參數之獲得方法 49
3.1.1 物理模型之建構 49
3.1.2 勢能參數取得之過程 50
3.1.3 各勢能參數結果分析 51
3.2 鉑奈米粒子於單壁奈米碳管之運動行為分析 58
3.2.1 模擬模型之建構 58
3.2.2 運動行為分析 63
3.3 鋰原子散佈在單壁奈米碳管與陣列之儲氫分析 73
3.3.1 物理模型之建構 73
3.3.2 模擬單一碳管添加鋰原子對儲氫之影響 79
3.3.3 模擬鋰原子在碳管陣列形式不同對儲氫的影響 87
3.3.4 模擬矩陣儲氫與釋放過程 90
結論 96
參考文獻 99
參考文獻 References
[1] Intergovernmental Panel on Climate Change.
[2] L. Schlapbach, A. Zuttel, "Hydrogen-strogen materials for mobile applications", Nature, Vol. 414, p. 353-358,2001.
[3] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, "Storage of hydrogen in single-walled carbon nanotubes. Nature", Nature, Vol. 386, p. 377-379, 1997.
[4] K. H. Khoo, J. R. Chelikowsky, "Electron transport across carbon nanotube junctions decorated with Au nanoparticles: Density functional calculations", Phys. Rev. B, Vol. 79, p. 6, 2009.
[5] H. W. Kroto, J. R. Heath, S.C. Obrien, R. F. Curl, R.E. Smalley, "C-60 -buckminsterfullerene ", Nature, Vol. 318, p. 162-163,1985.
[6] S. Iijima, "Helical microtubules of graphitic carbon", Nature, Vol.354, p. 56-58, 1991.
[7] J. P. Salvetat, J. M. Bonard, N. H. Thomoson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, "Mechanical properties of carbon nanotube", Appl. Phys. A, Vol.69, p. 255-260, 1999.
[8] R. Ciocan, J. Gaillard, M J. Skove, A. M. Rao, "Determination of the Bending Modulus of an Individual Multiwall Carbon Nanotube using an Electric Harmonic Detection of Resonance Techique", Nano Lett. Vol. 5, p. 2389-2393, 2005.
[9] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, "Electronic structure of atomically resolved carbon nanotube", Nature, Vol. 391, p. 59-62, 1998.
[10] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, "Atomic structure and electronic properties of single-walled carbon nanotube", Nature, Vol. 391, p. 62-64, 1997.
[11] P. G. Collins, A. Zettl, H. Bando, A. Thess, R. E. Smalley, "Nanotube Nanodevie", Science, Vol. 278, p. 100-102, 1997.
[12] M. Bockrath, D. H. Cobden, P. L. Mceuen, N. G. Chopra, A. Zettle, A. Thess, R. E. Smalley, " Single-Electron Transpore in Ropes of Carbon Nanotubes " Science, Vol. 275, p. 1922-1935, 1997.
[13] R. S. Ruoff, D. C. Lorent, "Mechanical and thermal properties of carbon nanotubes", Carbon, Vol. 33, p. 925-930, 1995.
[14] T. Henning, F Salama, "Carbon in the Universe", Science, Vol. 282, p. 2204-2210, 1998.
[15] H. Hiura, T. W. Ebbesen, J. Fujita, K. Tanigaki, T. Takada, "Role of sp3 defect structure in graphite and carbon nanotubes", Nature, Vol. 367, p. 148-151, 1994.
[16] R. B. Pipes, S. J. V. Frankland, P. Hubert, E. Saether, "Self-consistent properties of carbon nanotubes and hexagonal arrays as composite reinforcements", Compos Sci Technol, Vol.63, p. 1349-1358, 2003.
[17] T. Kazi, K. Amkee, H. N. Seung, "The effect of two neighboring defaces on the mechanical properties of caebon nanotubes", Nanotechnology, Vol. 19, p. 065703, 2008.
[18] H. W.Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, "C-60-Buckminsterfullerene", Nature, Vol. 318, p. 162-163, 1985.
[19] D. Vanderbilt, J. Tersoff, " Negative-C urvature fullerene analoge of C60", Phys. Rev. Lett, Vol. 68, p. 511-513, 1992.
[20] B. I. Dunlap, "Connecting carbon tubules", Phys. Rev. B, Vol. 46, p. 1933-1936, 1992.
[21] S. G. Ovindjee, J. L. Sackman, "On the use of continuum mechanics to estimate the properties of nanotubes", Solid State Commun, Vol.110, p. 227-230, 1999.
[22] 曾國輝,”化學鍵”,建宏出版社,2001
[23] M. Shiraishi, T. Takenobu, A Yamada, M Ata, H Kataura, " Hydrogen storage in single-walled carbon nanotube bundles and peapods" Chem Phys Lett, Vol. 385, p. 3-4, 2002.
[24] J. W. Lee, H. S. Kim, J. Y. Lee, J. K. Kang, "Hydrogen storage and desorption properties of Ni-dispersed carbon nanotubes ", Appl Phys Lett , Vol. 12, p.88, 2006.
[25] Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, et al, " Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes", Appl Phys Lett, Vol. 16, p.2307-2309, 1999.
[26] J. G. Wang, Y. A. Lv, X. N. Li, M. D. Dong, "Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes", J Phys Chem C, Vol.113, p.890-893, 2009.
[27] N. T. Cuong, A. Sugiyama, A.fujiwara, T. Mitani, D. H. Chi, "Density functional study of Pt4 cluster adsorbed on a carbon nanotube support", Physical Review B, Vol. 79, p. 235417, 2009.
[28] B. Ranadeep, R. Srivats, F. Daniel, B. Cara, J. Liying, O. Hirohito,D. Hongije, C. Bruce, N. Andres, "Hydrogen spillover in Pt-single-walled carbon nanotube composites: formation of C-H bonds", J. Am. Chem. Soc., Vol. 133, p. 5580-5586, 2011.
[29] Y. Park, G. Kim, Y. H. Lee, " Adsorption and dissociation of hydrogen molecules on a Pt atom on defective carbon nanotubes", Appl. Phys. Let., Vol. 92, p. 3, 2008.
[30] W. Liu, Y. H. Zhao, Y. Li, Q. Jiang, E. J. Lavernia, "Enhanced hydrogen storage on Li-dispersed carbon nanotubes", J. Phys. Chem. C, Vol.113, p. 2028-2033, 2009.
[31] E. Rangel, J. M. Ramirez-de-Arellano, L. F. Magana, "Variation of hydrogen adsorption with increasing Li doping on carbon nanotubes", Phys. Status Solidi B, Vol.248, p. 1420-1424, 2011.
[32] S. Dag, Y. Ozturk, S. Ciraci, T. Yildirim, "Adsorption and dissocation of hydrogen molecules on bare functionalized carbon nanotubes", Physical Review B, Vol. 72, p.155404, 2005.
[33] X. J. Wu, Y. Gao, X. C. Zeng, "Hydrogen storage in pillared Li-dispersed boron carbide nanotubes", J. Phys. Chem. C., Vol. 112, p. 8458-8463, 2008.
[34] S. K. Bhatia, A. L. Myers, "Optimum conditions for adsorptive storage", Langmuir, Vol. 22, p. 1688-1700, 2006
[35] Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, "Potential of AlN Nanostructures as Hydrogen Storage Materials", .ACS Nano, Vol. 3, p. 621-626, 2009.
[36] C. I. Weng, S. P. Ju, K. C. Fang, F. P. Chang, "Atomistic study of the influences of size, VDW distance and arrangement of carbon nanotubes on hydrogen storage", Comput Mater Sci., Vol. 40, p. 300-308, 2007.
[37] D. J. Wales, J. P. K. Doye, "Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms", J. Phys. Chem. A, Vol. 101, p.5111-5116, 1997.
[38] K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, A. A. Shvartsburg, "Unraveling the shape transformation in silicon clusters", Phys Rev Lett. , Vol.93, p.4, 2004.
[39] 江元生. 結構化學. 五南圖書出版. 1998;台北
[40] S. S. Tripathi, K. S. Narendra, "Optimization using conjugate gradient methods", IEEE Trans Autom Control, Vol.15, p.268, 1970.
[41] D. C. Liu, J. Nocedal, "On the limited memory BFGS method for large-scale optimization", Math Program, Vol.45, p. 503-528, 1989.
[42] S. Hamad, C. R. A. Catlow, S. M. Woodley, S. Lago, J. A. Mejias, "Structure and stability of small TiO2 nanoparticles", J Phys Chem B, Vol.109, p.15741-15748, 2005.
[43] V. Rosato, M. Guillope, B. Legrand, "Thwemodynamical and structural-properties of FCC transition-metals using a simple tight-binding model", Philos Mag A-Phys Condens Matter Struct Defect Mech Prop, Vol.59, p.321-336, 1989.
[44] F. Y.Chen, R. L. Johnston, "Energetic, electronic, and thermal effects on structural properties of Ag - Au nanoalloys", ACS Nano, Vol.2, p.165-175, 2008.
[45] F. Ercolessi, J. B. Adams, "Interations potentials from 1 St-Principles calculations - The Force-Matching Method", Europhys Lett, Vol.26, p. 583-588, 1994.
[46] M. A. Karolewski, "Tight-binding potentials for sputtering simulations with fcc and bcc metals", Radiation Effects and Defects in Solids, Vol. 153, p. 239-255, 2001.
[47] J. C. Slater and G. F. Koster, "Simplified lcao method for the periodic potential problem", Physical Review, Vol. 94, p. 1498, 1954.
[48] C. Kittle, "Introduction to solid state physics", 1996.
[49] L. Colombo, "A source code for tight-binding molecular dynamics simulations", Computational Materials Science, Vol. 12, p. 278-287, 1998.
[50] L. Chen, D. S. Sholl and J. K. Johnson, "First principles study of adsorption and dissociation of co on w(111)", Journal of Physical Chemistry B, Vol. 110, p. 1344-1349, 2006.
[51] J. Z. H. Zhang, "Theory and application of quantum molecular dynamics", 1999.
[52] R. P. Gupta, "Lattice relaxation at a metal surface", Physical Review B, Vol. 23, p. 6265, 1981.
[53] M. Meyer, "Computer simulation in material science", Series E: Applied Sciences, Vol. 205, 1991.
[54] D. Tomanek, S. Mukherjee and K. H. Bennemann, "Simple theory for the electronic and atomic-structure of small clusters", Physical Review B, Vol. 28, p. 665-673, 1983.
[55] D. Tomanek, A. A. Aligia and C. A. Balseiro, "Calculation of elastic strain and electronic effects on surface segregation", Physical Review B, Vol. 32, p. 5051-5056, 1985.
[56] W. Zhong, Y. S. Li and D. Tomanek, "Effect of adsorbates on surface phonon modes - h on pd(001) and pd(110)", Physical Review B, Vol. 44, p. 13053-13062, 1991.
[57] M. M. Sigalas and D. A. Papaconstantopoulos, "Transferable total-energy parametrizations for metals: Applications to elastic-constant determination", Physical Review B, Vol. 49, p. 1574, 1994.
[58] G. C. Kallinteris, N. I. Papanicolaou, G. A. Evangelakis and D. A. Papaconstantopoulos, "Tight-binding interatomic potentials based on total-energy calculation: Application to noble metals using molecular-dynamics simulation", Physical Review B, Vol. 55, p. 2150-2156, 1997.
[59] V. Rosato, M. Guillope and B. Legrand, "Thermodynamical and structural-properties of fcc transition-metals using a simple tight-binding model", Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, Vol. 59, p. 321-336, 1989.
[60] F. Cleri and V. Rosato, "Tight-binding potentials for transition-metals and alloys", Physical Review B, Vol. 48, p. 22-33, 1993.
[61] F. Ercolessi and J. B. Adams, "Interatomic potentials from 1st-principles calculations - the force-matching method", Europhysics Letters, Vol. 26, p. 583-588, 1994.
[62] M. S. Daw and M. I. Baskes, "Embedded-atom method - derivation and application to impurities, surfaces, and other defects in metals", Physical Review B, Vol. 29, p. 6443-6453, 1984.
[63] S. M. Foiles, M. I. Baskes and M. S. Daw, "Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys", Physical Review B, Vol. 33, p. 7983-7991, 1986.
[64] P. M. Morse, "Diatomic molecules according to the wave mechanics. II. Vibrational levels", Phys. Rev, Vol. 34, p.57-64, 1929.
[65] J. E. Jones, "On the Determination of Molecular Fields", P463-477,1924.
[66] A. Peter, P. D. Julio, "Atkins' Physical Chemistry", p.673
[67] R. A. Buckingham, "The Classical Equation of State of Gaseous Helium, Neon and Argon, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences", Vol. 168, p. 264-283, 1938.
[68] F. Jensen, "Introduction to Computational Chemistry", 2007.
[69] H. Su, " COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationssOverview with Details on Alkane and Benzene Compounds", J. Phys. Chem. B, Vol. 102, p.7338-7364, 1998.
[70] J. Yang, Y. Ren, A. Tia, " COMPASS Force Field for 14 Inorganic Molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in Liquid Phases", J. Phys. Chem. B, Vol. 104, p.4951-4957, 2000.
[71] J. C. Slater, "A simplification of the hartree-fock method", Physical Review, Vol. 81, p. 385, 1951.
[72] 物理雙月刊 23卷5期 2001年10月
[73] P. Hohenberg, W. Kohn, "Inhomogeneous electron GAS", Phys. Rev. B, Vol.136, p. 864, 1964.
[74] W. Kohn, L. J. Sham, "Self-consistent equations including exchange and correlation efects", Physical Review, Vol.140, p. 1133, 1965.
[75] D. M. Ceperley, B. J. Alder, "Ground-State of the Electron-Gas by a stochastic method", Phys Rev Lett, Vol. 45, p. 566-569, 1980.
[76] The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. Chem Phys, Vol.8, p.817, 1950.
[77] J. Haile, "Dynamics simulation: elementary methods", John Wiley & Sons, 1997.
[78] A. MacKerell, J. D. Bashford, M Bellott, R. Dunbrack, J. J. Evanseck, M Field, et al, "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins", J Phys Chem B, Vol.102, p. 3589, 1998.
[79] O. J. Teleman, S. Engstrom, "A molecular dynamics simulation of a water model with intramolecular degrees of freedom", Mol Phys, Vol. 60, p. 193, 1987.
[80] A. R. Leach, "Molecular Modelling: principles and applications", Longman. 1996.
[81] S. Nose, "A unified formulation of the constant temperature molecular-dynamics method", J Chem. Phys., Vol. 81, p. 511-519, 1984.
[82] W. G. Hoover, "Canonical dynamics - equilibrium phase distribution", Phys .Rev. A, Vol. 31, p. 1695-1697, 1985.
[83] D. C. Rapaport, "The Art of Molecular Dynamics Simulation", 1997.
[84] J. Haile, "Dynamics simulation: Elementary Methods", John Wiley &Sons, Inc: New York, 1997.
[85] M. E. Tuckerman, Y. Liu, " Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble", J. Chem. Phys, Vol. 112, p.1685, 2000.
[86] T. Ziegler, "Approximate density functional theory as a practical tool in molecular energetics and dynamics", Chem. Rev, Vol. 91, p.651, 1991.
[87] H. Yoshida, " Construction of higher order symplectic integrators ", Phys. Lett. A, Vol.150,p. 262, 1990.
[88] E. Runge, " Density-Functional Theory for Time-Dependent Systems", Phys. Rev. Lett., Vol.52, p.12, 1984.
[89] M. E. Tuckerman, Y. Liu, G. Ciccotti, G. J. Martyna, "Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems", J. Chem. Phys. , Vol.115, p.1678-1702, 2001.
[90] W. Rene, D. Bernard, Massive thermostatting in isothermal density functional molecular dynamics simulations", J. Chem. Phys., Vol.119, p.2481, 2003.
[91] G. Henkelman, H. Jonsson, " Improved tangent estimate in the nudged elastic band method for finding energy paths and saddle points", J. Chem. Phys., Vol.113, p. 9978 , 2000.
[92] Y. C. Liu, J. D. Moore, T. J. Roussel, K. E. Gubbins, "Dual diffusion mechanism of argon confined in single – walled carbon nanotube bundles", Phys. Chem. Chem Phys., Vol.12, p.6632-6640, 2010.
[93] L. Xiao, L. Wang, "Structure of Platinum Clusters: Planar or Spherical", J. Phys. Chem A, Vol.108, p.8605-8614, 2004.
[94] L. Chen, Y. M. Zhang, N. Koratkar, P. Jena, S. K. Nayak, "Firstprinciples study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures", Phys Rev B, Vol.77, p033405-033405, 2008.
[95] F. L. Darkrima, P. Malbrunota, G. P. Tartagliab, " Review of hydrogen storage by adsorption in carbon nanotubes", International Journal of Hydrogen Energy, Vol.27, p193-202, 2002.
[96] C. I. Weng, S. P. Ju, K. C. Fang, F. P. Chang, "Atomistic study of the influences of size, VDW distance and arrangement of carbon nanotubes on hydrogen storage", Computational Materials Science, Vol.40, p300-308, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code