Responsive image
博碩士論文 etd-1222103-160305 詳細資訊
Title page for etd-1222103-160305
論文名稱
Title
流量精細之影像壓縮技術及其於無線網際網路之強健式影像傳輸應用
Fine Granularity Video Compression Technique and Its Application to Robust Video Transmission over Wireless Internet
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
139
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-10-15
繳交日期
Date of Submission
2003-12-22
關鍵字
Keywords
強健式影像傳輸應用、子波、流量精細之影像壓縮、運動預估、嵌入式編碼器
motion estimation, Gilbert Channel, MPEG-4, FPGA, Fine Granularity Scalability, Forward Error Correction, embeded coder, wavelet
統計
Statistics
本論文已被瀏覽 5791 次,被下載 1880
The thesis/dissertation has been browsed 5791 times, has been downloaded 1880 times.
中文摘要
本論文主要研究目標為(a)具備精細流量控制能力(Fine Granularity Scalability,FGS)之影像壓縮技術(b)前者於Burst-Error Channel(如無線網際網路)中作為強健式影像傳輸之應用。
首先,兩項於子波領域中進行運動預估之演算法,HMRME (Half-pixel Multi-Resolution Motion Estimation)及HSDD (Hierarchical Sum of Double Difference Metric)將被提出。整合HMRME或HSDD技術所構成具FGS能力之子波影像編碼器,分別額外具備低複雜度或高壓縮效能等特性。
其次,一種特別易於以VLSI技術實現之高效能嵌入式編碼器,ABEC (Array-Based Embedded Coder),會在本論文中被提及。ABEC嵌入式編碼器可將影像運動補償剩餘之殘量編碼成具備FGS特性之串流。
Gilbert Channel當其存在或不存在漏失率迴授路徑時,其各別之封包漏失預測機率會在接下來的章節中被仔細分析。同時FGS影像串流在Gilbert Channel中傳遞時之期望影像畫質評估公式也會被深入探討。針對FSG影像串流之若干最佳化之FEC累贅分配機制最終將被提出。
在前述相關理論研究成果之外,一個作為未來MPEG-4 FGS影像壓縮嵌入式系統發展基礎之FPGA雛形系統,亦將在本論文中被發表。
Abstract
This dissertation deals with (a) fine granularity video compression technique and (b) its application to robust video transmission over wireless Internet. First, two wavelet-domain motion estimation algorithms, HMRME (Half-pixel Multi-Resolution Motion Estimation) and HSDD (Hierarchical Sum of Double Difference Metric), have been proposed to give wavelet-based FGS (Fine Granularity Scalability) video encoder with either low-complexity or high-performance features. Second, a VLSI-friendly high-performance embedded coder ABEC (Array-Based Embedded Coder) has been built to encode motion compensation residue as bitstream with fine granularity scalability. Third, the analysis of loss-rate prediction over Gilbert channel with loss-rate feedback, and several optimal FEC (Forward Error Correction) assignment schemes applicable for any real-time FGS video transmission system will be presented in this dissertation.
In addition to those theoretical works mentioned above, for future study on embedded systems for wireless FGS video transmission, an initiative FPGA-based MPEG-4 video encoder has also been implemented in this work.
目次 Table of Contents
LIST OF FIGURES III
LIST OF TABLES V
CHAPTER 1 INTRODUCTION 1
1.1 THE MERITS OF FGS VIDEO STREAMING 1
1.2 THE CONTRIBUTIONS OF THIS DISSERTATION 3
CHAPTER 2 BACKGROUND 7
2.1 WAVELET TRANSFORM AND ALIASING EFFECTS 7
2.2 MULTIRESOLUTION MOTION ESTIMATION AND ZEROTREE CODING 8
2.3 VLSI-FRIENDLY ARCHITECTURE FOR ZEROTREE CODING 9
2.4 GILBERT CHANNEL WITH LOSS-RATE FEEDBACK 10
2.5 OPTIMAL FEC ASSIGNMENT FOR SCALABLE VIDEO TRANSMISSION 12
2.6 HARDWARE IMPLEMENTATION OF MPEG-4 VIDEO ENCODER 13
CHAPTER 3 HALF-PIXEL MULTI-RESOLUTION MOTION ESTIMATION 14
3.1 INTRODUCTION 14
3.2 THE H-TRANSFORM 16
3.3 ALIASING 18
3.4 WAVELET DOMAIN MOTION ESTIMATION 21
3.5 HALF PIXEL INTERPOLATION ALGORITHM 22
3.6 EXPERIMENTAL RESULTS 26
CHAPTER 4 HIERARCHICAL SUM OF DOUBLE DIFFERENCE METRIC 28
4.1 INTRODUCTION 28
4.2 SAD METRIC 30
4.3 HSDD METRIC 31
4.4 EXPERIMENTAL RESULTS 36
CHAPTER 5 ARRAY-BASED EMBEDDED CODER 39
5.1 INTRODUCTION 39
5.2 PROGRESSIVE TRANSMISSION 41
5.3 HIERARCHICAL TREES 42
5.4 ABEC ALGORITHM 43
5.5 BIT BUDGET CONTROL 48
5.6 EXPERIMENTAL RESULTS 50
CHAPTER 6 GILBERT CHANNEL MODEL 52
6.1 INTRODUCTION 52
6.2 RENEWAL ERROR PROCESS 54
6.3 GILBERT-MODEL WITH LOSS RATE FEEDBACK 58
6.4 PERFORMANCE EVALUATION 62
CHAPTER 7 OPTIMAL FEC ASSIGNMENT FOR SCALABLE VIDEO TRANSMISSION 66
7.1 INTRODUCTION 66
7.2 PACKETIZATION SCHEME 68
7.3 OPTIMAL FEC ASSIGNMENT 71
7.4 EXPERIMENTAL RESULTS 78
CHAPTER 8 HARDWARE IMPLEMENTATION OF MPEG-4 VIDEO ENCODER 84
8.1 INTRODUCTION 84
8.2 DEVELOPMENT ENVIRONMENT 86
8.3 THE ARCHITECTURE 87
8.4 MOTION ESTIMATION 94
8.5 PREDICTION 100
8.6 DCT TRANSFORM 104
8.7 ENTROPY CODING 107
8.8 FGS ENHANCEMENT LAYER CODING 111
8.9 EXPERIMENTAL RESULTS 113
CHAPTER 9 SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 115
BIBLIOGRAPHY 118
參考文獻 References
[1] D. Taubman and A.Zakhor, “Multirate 3-D subband coding of video,” IEEE Transactions on Image Processing, vol. 3, pp. 572-584, 1994.
[2] B.-J. Kim, Z. Xiong, and W. A. Pearlman, “Low bit-rate scalable video coding with 3D set partitioning in hierarchical trees (3D SPIHT),” IEEE Transactions on Circuits and Systems for Video Techn., December 2000.
[3] S.-T. Hsiang and J. W. Woods, “Embedded video coding using motion compensated 3-D subband/wavelet filter bank,” in Proceedings Packet Video Workshop, Sardinia, Italy, May 2000.
[4] S. McCanne, M. Vetterli, and V. Jacobson, “Low-complexity video coding for receiver-driven layered multicast,” IEEE Journal on Selected Areas in Communication, vol. 15, pp. 983-1001, August 1997.
[5] W. Li, “Overview of fine granularity scalability in mpeg-4 video standard,” IEEE Transactions on Circuits and Systems in Video Technology, vol. 11, no. 3, pp. 385-398, March 2001.
[6] C. Buchner, T. Stockhammer, D. Marpe and G. Heising, “Efficient fine granularity scalable video coding,” ICIP2001.
[7] A.E. Mohr, E.A. Riskin, and R.E. Ladner, “Unequal loss protection: Graceful degradation of image quality over packet erasure channels through forward error correction,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 819-828, June 2000.
[8] U. Horn, K. Stuhlmüller, M. Link, and B. Girod, “Robust internet video transmission based on scalable coding and unequal error protection,” IEEE Transactions on Image Processing, vol. 15, no. 1-2, pp. 77-94, September 1999.
[9] C. Buchner and T. Stockhammer, “Progressive texture video streaming for lossy packet networks,” in Proc. Packet VideoWorkshop 2001, Kyongju, Korea, May 2001.
[10] Y.C. Su, C.S. Yang, C.W. Lee, C.W. Tseng, and Y.J. Zheng, "Wavelet Domain Half-Pixel Motion Compensation Using H-Transform," IEICE Transactions on Information and Systems, vol. E86-D, no. 7, pp. 1314-1317, July 2003.
[11] Y.C. Su, C.S. Yang, C.W. Lee, and C.S. Hsu, "Multiresolution Motion Estimation with Zerotree Coding Aware Metric," IEICE Transactions on Communications, vol. E86-B, no. 10, pp. 3152-3155, Oct. 2003.
[12] C.S. Yang, Y.C. Su, C.W. Tseng and K.M. Hung, "An Array-Based Embedded Image Coder", Proceedings of the 4th International Conference on Electronic Measurement and Instruments (ICEMI'99), pp.812-816, Harbin China, Aug. 18~21, 1999.
[13] C.S. Yang, Y.C. Su, “Array-Based Embedded Image Coding”, R.O.C. pattern no. 141267.
[14] C.S. Yang, Y.C. Su and C.W. Lee, "The Analysis of Packet Loss Prediction for Gilbert-Model with Loss Rate Uplink," MNSA'2003, USA.
[15] Y.C. Su, C.S. Yang and C.W. Lee, "Optimal FEC Assignment for Scalable Video Transmission over Burst Error Channel with Loss Rate Uplink," Packet Video 2003, France.
[16] Y.C. Su, C.S. Yang, and C.W. Lee, "Optimal FEC Assignment for Scalable Video Transmission over Burst Error Channel with Loss Rate Feedback," Signal Processing: Image Communication, vol. 18, pp. 537-547, 2003.
[17] H-W Park and H-S Kim, “Motion Estimation Using Low-Band-Shift Method for Wavelet-Based Moving-Picture Coding,” IEEE Trans. on Image Processing, Vol. 9 No.4 , p577 –587, Apr. 2000.
[18] Francois G. Meyer, Amir Averbuch , and Ronald R. Coifman, “Motion compensation of wavelet coefficients for very low bit rate video coding,” International Conference on Image Processing, ICIP'97, Santa Barbara, Oct. 1997.
[19] M. Louys, J.-L. Starck, S. Mei, F. Bonnarel, and F. Murtagh. “Astronomical image compression,” Astronomy and Astrophysics, Suppl. Ser., 136:579-590, 1999.
[20] Cohen, I. Daubechies, and J.C. Feauveau, “Biorthogonal bases of compactly supported wavelets,” Comm. Pure & Appl. Math 45, pp. 485--560, 1992.
[21] Y. Q. Zhang, S. Zafar, “Motion-Compensated Wavelet Transform Coding for Color Video Compression,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 2, No. 3, pp. 285-296, September 1992.
[22] S. Zafar, Y-Q. Zhang, and B. Jabbari, “Block-Classified Motion Compensation Scheme for Digital Video,” Preprint MCS-P525-0695, November 1995.
[23] M. K. Mandal, E. Chan, X. Wang and S. Panchanathan, “Multiresolution Motion Estimation Techniques for Video Compression,” Optical Engineering, Vol. 35, No. 1, pp. 128-136, Jan. 1996.
[24] X. Yang and K. Ramachandran, “Hierarchical backward motion compensation for wavelet video coding using optimized interpolation filters,” International Conference on Image Processing, vol. 1, pp. 85--88, Oct. 1997.
[25] MPEG-4 Video Verification Model version 18.0 (2001)
[26] J. M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet Coefficients,” IEEE Trans. Signal Processing, Vol. 41, No. 12, pp. 3445-3462, Dec. 1993.
[27] Amir Said and William A. Pearlman, “A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 6, pp. 243-250, Jun. 1996.
[28] Joonas Lehtinen, "Limiting Distortion of a Wavelet Image Codec," Acta Cybernetica 14, 1999.
[29] T. Naveen and J. W. Woods, "Motion Compensated Multiresolution Transmission of High Definition Video," IEEE Trans. Circuits and Systems for Video Technology, Vol. 4, No. 1, pp. 29-41, Feb. 1994.
[30] T. Naveen and J. W. Woods, "Rate Constrained Multiresolution Transmission of Video," IEEE Trans. Circuits and Systems for Video Technology, Vol. 5, No. 3, pp. 193-206, Jun. 1995.
[31] Gregory J. Conklin, Sheila S. Hemami, "Multi-Resolution Motion Estimation," ICASSP, 1997.
[32] Amir Said and William A. Pearlman, “An Image Multiresolution Image Representation for Lossless and Lossy Compression,” SPIE Symposium on Visual Communication and Image Processing,” Nov. 1993.
[33] Wallice GK., “The JPEG still image compression standard,” Aommun. ACM, 34(4):30-44, 1991
[34] Alexandros Eleftheriadis, Carsten Herpel, Ganesh Rajan, and Liam Ward (Editors), “MPEG-4 Systems,” ISO / IEC JTC1 / SC29 / WG11 N2201, May 1998.
[35] Christopher M. B, “Fingerprint Go Digital,” The American Mathematical Society, vol. 24, no. 11, pp. 1278-1283, Nov. 1995.
[36] Ahmad Zandi James D. Allen Edward L. Schwartz Martin Boliek, “CREW: Compression with Reversible Embedded Wavelets,” RICOH California Research Center, 1995.
[37] Michael L. Hilton et al. “Compressing Still and Moving Images with Wavelets,” Multimedia Systems, Vol. 2, No. 3, April 1994.
[38] Marc Antonini, Michel Barlaud, Pierre Mathieu, and Ingred Daubechies, “Image Coding Using Wavelet Transform,” IEEE Trans. Image Processing, vol. 1, No.2, April 1992.
[39] M. Yajnik, S. Moon, J. Kursoe, and D. Towsley, "Measurement and modelling of the temporal dependence in packet loss," Proc. IEEE INFOCOM'99, New York, NY, pp.345-352, March 1999.
[40] R. Singh and A. Ortega, "Modeling of temporal dependence in packet loss using universal modeling concepts," Proc. 12th Packet Video Workshop, Pittsburgh, PA, Apr. 2002.
[41] E. N. Gilbert, "Capacity of a burst-noise channel," Bell Syst. Tech. J., vol.39, pp.1253-1265, Sept. 1960.
[42] E. O. Elliott, "A model of the switched telephone network for data communications," Bell Syst. Tech. J., vol.44, no.1, pp.89-109, Jan. 1965.
[43] C. C. Tan, N. C. Beaulieu, "On first-order Markov modeling for the rayleigh fading channel," IEEE Trans. Commun., vol.48, no.12, pp.2032-2040, Dec. 2000
[44] C. Hsu and A. Ortega, "A lagrangian optimization approach to rate control for delay-constrained video transmission over burst-error channels," Proc. ICASSP’98, vol.5, pp.2989-2992, Seattle, WA, May 1998.
[45] H. S. Wang and N. Moayeri, "Finite-state Markov channel: a useful model for radio communication channel," IEEE Trans. Veh. Technol., vol.44, pp.163-171, Feb. 1995.
[46] E. O. Elliott, "Estimates of error rates for codes on burst-noise channels," Bell Syst. Tech. J., vol.42, pp.1977-1997, Sept. 1963.
[47] B. Hong and A. Nostratinia, "Rate-constrained scalable video transmission over the internet," Proc. 12th Packet Video Workshop, Pittsburgh, PA, Apr. 2002.
[48] G. Wang, Q. Zhang, W. Zhu and Y. Zhang, "Channel-adaptive unequal error protection for scalable video transmission over wireless channel," Proc. SPIE VCIP’01, vol.4310, San Jose, CA, pp.648-655, Jan. 2001.
[49] U. Hong, K. Stuhlmüller, M. Link and B. Girod, "Robust internet video transmission based on scalable coding and unequal error protection," Image Communication, vol. 15(1-2), pp.77-94, Sep. 1999.
[50] W. Li, “Overview of Fine Granularity Scalability in MPEG-4 Video Standard,” IEEE Trans. on Circuit and System for Video Technology, vol. 11, no. 3, pp. 301-317, Mar. 2001.
[51] F. Wu, S. Li, and Y. Chang, “A framework for Efficient Progressive Fine Granularity Scalable Video Coding,” IEEE Trans. on Circuit and System for Video Technology, vol. 11, no. 3, pp. 332-344, Mar. 2001.
[52] B. Kim, Z. Xiong, and W. Pearlman, “Low bit-rate scalable video coding with 3D set partitioning in hierarchical trees (3D SPIHT),” IEEE Trans. on Circuit and Systems for Video Technology, vol. 10, pp. 1374-1387, Dec. 2000.
[53] T. Stockhammer, “Progressive Video Transmission for Packet-Lossy Channels exploiting Feedback and Unequal Erasure Protection,” IEEE International Conference on Image Processing 2002 (ICIP 2002), Rochester, NY, Sept. 2002
[54] J. Vass and X. Zhuang, “Adaptive and Integrated Video Communication System Utilizing Novel Compression, Error Control, and Packetization Strategies for Mobile Wireless Environments,” Packet Video 2000.
[55] M. van der Schaar and H. Radha, “Packet-loss resilient internet video using MPEG-4 Fine-granularity Scalability”, Proc. of ICIP, Vancouver, Sept. 2000.
[56] K. Stuhlmüller, M. Link, B. Girod and U. Horn, “Scalable Internet Video Streaming With Unequal Error Protection,” Packet Video Workshop, New York, Apr. 1999.
[57] ISO/IEC 14496-2:2001/Amd 2:2002 (Streaming video profile)
[58] D. P. Bertsekas, Dynamic Programming. Prentice-Hall, 1987.
[59] ISO/IEC 14496-2:1999, “Information technology – Coding of audio-visual objects – Part2: Visual,” Dec. 1999.
[60] 3GPP - Third Gereration Partnership Project, http://www.3gpp.org/
[61] Michel Harrand, Jose Sanches, Alain Bellon, Joseph Bulone, Alain Tournier, Olivier Deygas, Jean-Claude Herluison, David Doise, and Elisabeth Berrebi, “A Single-Chip CIF 30-Hz, H261, H263, and H263+ Video Encoder/Decoder with Embedded Display Controller,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 11, Nov. 1999.
[62] Eiji Ogura, Masatoshi Takashima, Daisuke Hiranaka, Toshiro Ishikawa1,Yukio Yanagita1, Shuji Suzuki1, Tokuya Fukuda1, Toshiyuki Ishii, “A 1.2W Single-Chip MPEG2 MP@ML Video Encoder LSI including Wide Search Range Motion Estimation and 81MOPS Controller,” IEEE ISSCC 1998.
[63] Govind Kizhepat, Kenneth Choy, Ronald Hinchley, Phillip Lowe, Roger Yip, “A Single-Chip MPEG-2 Video Audio and System Encoder,” IEEE ISSCC 1999.
[64] Thou-Ho Chen, “A Cost-Effective Three-Step Hierarchical Search Block-Matching Chip for Motion Estimation,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 8, Aug. 1998.
[65] Somnath Ghosh, “An Efficient VLSI Architecture for Real-time Motion Estimation,” VLSI Array Processors Course Report, Jan. 1995.
[66] S. Ramachandran S. Srinivasan, “FPGA Implementation of a Novel, Fast Motion Estimation Algorithm for Real-Time Video Compression,” FPGA2001
[67] Seongsoo Lee, Jeong-Min Kim, and Soo-Ik Chae, “New Motion Estimation Algorithm Using Adaptively Quantized Low Bit-Resolution Image and Its VLSI Architecture for MPEG2 Video Encoding,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 8, No 6, Oct. 1998.
[68] Alexis Michael Tourapis, Oscar C. Au, and Ming Lei Liou, “Predictive Motion Vector Field Adaptive Search Technique (PMVAST) Enhancing Block Based Motion Estimation,” Proceedings of Visual Communications and Image Processing 2001 (VCIP'01)
[69] Alexis M. Tourapis, Oscar C. Au, Ming L. Liou, Guobin Shen, and Ishfaq Ahmad, “Optimizing the MPEG-4 Encoder Advanced Diamond Zonal Search,” Proceedings of 2000 International Symposium on Circuits and Systems (ISCAS-2000)
[70] ISO/IEC JTC1/SC29/WG11 N3675, “Optimization Model Version 2.0,” Oct. 2000.
[71] ITU-T Q6/16, VCEG, “ITU-T H.26L Standardisation.”
[72] Touradj Ebrahimi and Caspar Horne, “MPEG-4 Natural Video Coding – An overview,” http://www.cselt.it/leonardo/icjfiles/mpeg-4_si/7-natural_video_dissertation/7-natural_video_dissertation.htm
[73] K. Chaudhary, H. Verma and S. Nag, “An Inverse Discrete Cosine Transform (IDCT) Implementation in Virtex for MPEG Video Applications,” Xilinx Application Note 208 Dec. 1999.
[74] “The Role of Distributed Arithmetic in FPGA-based Signal Processing,” Xilinx Application Note.
[75] Jae Ho Jeon, Young Seo Park, and Hyun Wook Park, “A Fast Variable-Length Decoder Using Plane Separation,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 10, No 5, Aug. 2000.
[76] Hao-Chieh Chang, Liang-Gee Chen, Yung-Chi Chang and Sheng-Chieh Huang, “A VLSI Architecture Design of VLC Encoder for High Data Rate Video/Image Coding,” ISCAS 1999.
[77] Shaw-Min Lei and Ming-Ting Sun, “An Entropy Coding System for Digital HDTV Applications,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 1, No 1, Mar. 1991.
[78] Y.C. Chang, C.W. Hsu, W.M. Chao, and L.G. Chen, “Architecture design of MPEG-4 FGS encoder,” in Proc. of the 13th VLSI/CAD Symposium, August 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code