Responsive image
博碩士論文 etd-1223103-043114 詳細資訊
Title page for etd-1223103-043114
論文名稱
Title
Ti3Al基合金之低溫超塑性與應變誘發相變化研究
Low Temperature Superplasticity and Strain Induced Phase Transformation in Ti3Al Based Alloy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
182
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-12-18
繳交日期
Date of Submission
2003-12-23
關鍵字
Keywords
非等向性、鈦合金、相變化、織構、超塑性
Anisotropy, Superplasticity, Texture, Titanium alloys, Phase transformation
統計
Statistics
本論文已被瀏覽 5665 次,被下載 380
The thesis/dissertation has been browsed 5665 times, has been downloaded 380 times.
中文摘要
Ti3Al基介金屬合金因其具有優異的高溫性質,因此是目前航太工業上倍受矚目的材料。本Ti-25Al-10Nb-3V-1Mo合金在高溫950-1000oC及低應變速率10-4-10-5 s-1下具有相當卓越之高溫超塑性,伸長率高達1000%以上,低溫則在850oC (0.57 Tm) 及5x10-4 s-1的應變速率下可獲得330%的低溫超塑性。本研究係探討Ti3Al合金之低溫超塑性質,並針對本研究中之重要發現,超塑性應變所誘發的相變化行為,做一整合性之分析及探討,進而建立低溫超塑性之變形機制,此發現將有助於Ti3Al合金低溫超塑性之開發。

本合金乃經由熱機處理所製成具有雙相(
Abstract
Ti3Al based intermetallic alloys are attractive for aerospace and aircraft applications due to their superior high temperature properties. Excellent high temperature superplasticity in the Ti3Al-Nb based alloy has been widely published. However, the alloys become brittle and hard to deform at temperatures below 600oC so that low temperature superplasticity is difficult to develop. In the current super
目次 Table of Contents
TABLE OF CONTENTS……..……………………………………………….……………….i
LIST OF TABLES……..……………………………………………….………….………….iv
LIST OF FIGURES……..……………………………………………….……………………vi
ABSTRACT……..……………………………………………….………………………….xiii
中文提要…………………………………………………………………………………….xv
致謝…………………………………………………………………………………………xvi
CHAPTER 1 Background and Research Motive…….....……………………………………1
1.1 Introduction to Ti3Al intermetallic compounds………………………….………...1
1.1.1 The characteristics of Ti3Al………………………….…………….………1
1.1.2 The structures and properties of Ti3Al…………………………….………1
1.2 Processing for producing fine-grained Ti3Al alloys……..……….…………………3
1.3 Introduction to superplasticity and deformation mechanisms..……………………..6
1.3.1 Introduction to superplasticity……………………….…………….………6
1.3.2 Deformation mechanisms………………………………………….……11
1.4 Superplastic behavior in Ti3Al alloys……………………………………….……13
1.4.1 HTSP in Ti3Al alloys………………………………………...…….……..13
1.4.2 LTSP in Ti3Al alloys……………………………………………….……17
1.4.3 LTSP and HSRSP in other Ti based alloys……………………….………19
1.5 Phase transformation phenomena…………………………………………...……21
1.6 Anisotropy during superplastic deformation………………………………………23
1.7 The texture analyses on Ti3Al alloys………………………………………..……24
1.8 Introduction to electron back scatterred diffraction (EBSD) ……………..………28
1.8.1 Advantages of EBSD……………………………………………...……28
1.8.2 The basic principles and set-up of a typical EBSD system………………29
1.9 Motive of the research………………………….……………………………...…31
CHAPTER 2 Experimental Methods…….....…………………………………………..…33
2.1 Materials………………………….……….. ……………………………….……33
2.2 Mechanical tests….…………………………………………………….…….……33
2.3 Anisotropic tests…..………………………………………………………….……34
2.4 Retention of microstructure for tensile specimens………………………….……35
2.5 Microstructure characteristics……………………………………………………35
2.5.1 OM and SEM observations………………………………………..……35
2.5.2 TEM observations………………………….………………………...…36
2.6 Volume fraction determinations………………………….………………………36
2.7 Texture analyses………………………….………………………………………37
CHAPTER 3 Experimental Results…….....………………………………………….……39
3.1 Microstructure characterization of the as-received materials……………………39
3.2 Mechanical tests…..………………………….……………………………………40
3.2.1 Room temperature properties…………………………………….………40
3.2.2 Elevated temperature properties…………………………….….………...40
3.3 Anisotropic tests…………………………………………………………………41
3.4 Microstructure evolutions………………………….……………………………42
3.4.1 Static annealing………………………………………………….……….42
3.4.2 The crystal relationship between
參考文獻 References
1. C. H. Ward, Int. Mater. Rev., 38 (1993) 79.
2. H. Hino, T. Miyashita, and S. Minakata, Light Metals (Japan), 43 (1993) 545 (in Japanese).
3. R. Strychor, J. C. Williams, and W. A. Soffa, Metall. Trans., 19A (1988) 225.
4. K. Muraleedharan, T. K. Nandy, D. Banerjee, and S. Lele, Metall. Trans., 23A (1992) 401.
5. W. A. Baeslack III and T. Broderick, Scripta Metall. Mater., 24 (1990) 319.
6. M. Long. and H. J. Rack, Mater. Sci. Technol., 11 (1995) 150.
7. C. S. Liauo, H. C. Fu, I. C. Hsiao, and J. C. Huang, Mater. Sci. Eng., A271 (1999) 275.
8. D. Banerjee, Prog. Mater. Sci., 42 (1997) 135.
9. D. Banerjee, T. K. Nandy, and A. K. Gogia, Scripta Metall., 21 (1987) 597.
10. D. S. Xu, Y. Song, D. Li, and Z. Q. Hu, Mater. Sci. Eng., A234-236 (1997) 230.
11. D. G. Konitzer, I. P. Jones, and H. L. Fraser, Scripta Metall., 20 (1986) 265.
12. H. A. Lipsitt, D. Shechtman, and R. E. Schafrik, Metall. Trans. A, 11A (1980) 1369.
13. 吳易座,“Ti3Al-Nb鈦鋁介金屬合金之超塑性研究”,國立台灣大學材料科學與工程研究所博士論文,1998。
14. A. Miyazaki, M. Tokizane, and T. Inaba, J. Japan Inst. Metals, 54 (1990) 1279.
15. A. Dutta and D. Banerjee, Scripta Metall. Mater., 24 (1990) 1319.
16. Y. T. Wu and C. H. Koo, Intermetallics, 5 (1997) 29.
17. G. A. Salishchev, R. M. Imayev, O. N. Senkov, V. M. Imayev, N. K. Gabdullin, M. R. Shagiev, A. V. Kuznetsov, and F. H. Froes, Mater. Sci. Eng., A286 (2000) 236.
18. J. H. Kim, C. G. Park, T. K. Ha, and Y. W. Chang, Mater. Sci. Eng., A269 (1999) 197.
19. J. W. Zang, S. Q. Li, D. X. Zou, W. Q. Ma, and Z. Y. Zhong, Intermetallics, 8 (2000) 699.
20. T. G. Langdon, Superplasticity in Advanced Materials, S. Hori, M. Tokizane, and N. Furushiro (eds.), Osaka, JSRS, 1991, p. 3.
21. O. D. Sherby and J. Wadsworth, Prog. Mater. Sci., 33 (1989) 169.
22. N. Ridley, Mater. Sci. Tech., 6 (1990) 1145.
23. A. H. Chokshi, A. K. Mukherjee, and T. G. Langdon, Mater. Sci. Eng., R10 (1993) 1.
24. S. Primdahl, A. Thölén, and T. G. Langdon, Acta Metall. Mater., 43 (1995) 1211.
25. J. W. Edington, Metall. Trans. A. 13A (1982) 703.
26. M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi, Scripta Mater., 36 (1997) 699.
27. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Co., (1988) 289.
28. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, New York, 1997, p. 22.
29. M. Mabuchi, K. Higashi, Y. Okada, S. Tanimura, T. Imai, and K. Kubo, Scripta Metall. Mater., 25 (1991) 2517.
30. T. G. Nieh and J. Wadsworth, Mater. Sci. Eng. A, 147 (1991) 129.
31. S. J. Hales, T. R. McNelley, and H. J. McQueen, Metall. Trans. A, 22A (1991) 1037.
32. M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi, Scripta Metall. Mater., 36 (1997) 681.
33. E. Girault, J. J. Blandin, A. Varloteaux, M. Suery, and Y. Combres, Scripta Metall. Mater., 29 (1993) 503.
34. D. R. Lesuer, C. K. Syn, O. D. Sherby, J. Wadsworth, J. J. Lewandowski, and W. H. Hunt, Inter. Mater. Rev., 41 (1996) 169.
35. T. G. Nieh and J. Wadsworth, Mater. Sci. Eng., A239-240 (1997) 88.
36. S. X. McFadden. R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, and A. K. Muherjee, Nature, 398 (1999) 684.
37. L. Lu, M. L. Sui, and K. Lu, Science, 287 (2000) 1463.
38. Q. Liu, W. Yang, and G. Chen, Acta Metall. Mater., 43 (1995) 3571.
39. D. Lee, Metall. Trans., 1 (1970) 309.
40. K. Holm, J. D. Embury, and G. R. Purdy, Acta Metall., 25 (1977) 1191.
41. M. F. Ashby and R. A. Verrall, Acta Metall., 21 (1973) 149.
42. M. F. Ashby, G. H. Edward, J. Davenport, and R. A. Verrall, Acta Metall., 26 (1978) 1379.
43. T. E. Chung and T. J. Davies, Acta Metall., 27 (1979) 627.
44. D. S. Wilkinson, B. Wilshire and D. R. J. Owen (eds.), Creep and Fracture of Engineering Materials and Structures, Pineridge, Swansea, 1982, p. 223.
45. T. L. Spingarn and W. D. Nix, Acta Metall., 26 (1978) 1389.
46. T. Kamijo, T. Furakama, and H. Fukutori, J. B. BildeSorensen, N. Hansen, D. J. Jensen, et al. (eds.), Materials Architecture, Proc. 10th Riso Int. Symp. on Metallurgy and Materials Science, 1989, p. 429.
47. R. C. Gifkins, Metall. Trans. A., 7 (1976) 1225.
48. R. Z. Valev and T. G. Langdon, Acta Metall., 41 (1993) 949.
49. B. Baudelet, Scripta Metall. Mater., 27 (1992) 745.
50. K. Matsuki, H. Morita, M. Yamada, and Y, Murakami, Met. Sci., 11 (1977) 156.
51. R. C. Gifkins, J. Mater. Sci., 13 (1978) 1926.
52. T. G. Langdon, Met. Forum, 4 (1981) 14.
53. A. E. Geckinli, Met. Sci., 17 (1983) 12.
54. R. C. Gifkins, N. E. paton and C. H. Hamiton (eds.), Superplastic Forming of Structural Alloys, Metallurgical Society of AIME, New York, 1982, p. 3.
55. R. Ray and M. F. Ashby, Metall. Trans. A, 2 (1971) 1113.
56. W. D. Nix, J. C. M. Li and A. K. Mukherjee (eds.), Rate Processes in Plastic Deformation of Materials, Vol. 4, American Society of Metals Park, OH, 1975, p. 384.
57. C. G. Barret, J. G. Rasmussen (ed.), High Temperature Materials Phenomena, Vol. 1, Polytecknisk Forlag, 1973, p. 79.
58. W. R. Cannon and W. D. Nix, Phil. Mag., 27 (1973) 9.
59. I. I. Novikov and V. K. Portnoy, Superplasticity in Alloys with Ultrafine Grain Structure, Metallurgia, Moscow, 1984, (in Russian).
60. P. G. Partridge, D. S. MacDarmaid, and A. W. Bowen, Acta Metall., 33 (1985) 571.
61. P. M. Hazzeldine and D. E. Newbury, Proc. ICSMA3, Cambridge, 1 (1973) 202.
62. J. E. Morral and M. R. Ashby, Acta Metall., 22 (1974) 567.
63. E. Sato, K.Kuribayshi, and R. Horiuchi, M. J. Mayo, M. Kobayashi and Wadsworth (eds.), Superplasticity in Metals, Ceramics, and Intermetallics, Materials Research Society, Pittsburgh, PA, 1990, p. 27.
64. T. Kamijo, T. Furakama, and H. Fukutori, J. B. BildeSorensen, N. Hansen, D. Jucel Jensen, et al. (eds.), Materials Architecture, Proc. 10th Riso Int. Symp. on Metallurgy and Materials Science, 1989, p. 429.
65. H. S. Yang, P. Jin, E. Dalder, and A. K. Mukherjee, Scripta Metall., 25 (1991) 1223.
66. H. S. Yang, M. G. Zelin, R. Z. Valiev, and A. K. Mukherjee, Scripta Metall. Mater., 26 (1992) 1707.
67. H. S. Yang, M. G. Zelin, and A. K. Mukherjee, Proc. Conf. High Temp. Ordered Intermetallic Alloys V, Boston, Mass, USA, 1992, p. 879.
68. A. K. Ghosh and C. H. Cheng, Superplasticity in Advanced Materials, S. Hori, M. Tokizane and N. Furushiro (eds.), Osaka, JSRS, 1991, p. 299.
69. N. Ridley, D. W. Livesey, and M. T. Salehi, Proceedings of the International Conference on High Temperature Intermetalics, London, UK, 1991, p. 198.
70. H. C. Fu, J. C. Huang, T. D. Wang, and C. C. Bampton, Acta Mater., 46 (1998) 465.
71. Y. T. Wu and C. H. Koo, Scripta Mater., 38 (1998) 267.
72. H. Zhu, Z. Li, B. Shang, W. Mao, and C. Wang, J. Mater. Sci. Technol., 17 (2001) 119.
73. R. Imayev, N. Gabdullin, and G. A. Salishchev, Intermetallics, 5 (1997) 229.
74. O. A. Kaibyshev, Superplasticity of Commercial Alloys, Moscow, Russian, 1984, p. 263.
75. R. M. Imayev, N. K. Gabdullin, G. A. Salishchev, O. N. Senkov, V. M. Imayev, and F. H. Froes, Acta Mater., 47 (1999) 1809.
76. R. M. Imayev, V. M. Imayev, and G. A. Salishchev, J. Mater. Sci., 27 (1992) 4465.
77. T. G. Nieh, J. N. Wang, L. M. Hsiung, J. Wadsworth, and V. Sikka, Scripta Metall., 37 (1997) 773
78. B. Huang, Z. Deng, Y. Liu, X. Qu, and Y. He, Intermetallics, 8 (2000) 559.
79. H.Hofmann, G. Frommeyer, and W. Herzog, Mater. Sci. Eng., A203 (1995) 128.
80. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, Scripta Mater., 43 (2000) 819.
81. T. Ahmed and H. J. Rack, Mater. Sci. Eng., A243 (1998) 206.
82. M. Grujicic and P. Dang, Mater. Sci. Eng., A224 (1997) 187.
83. X. Ren and M. Hagiwara, Acta Mater., 49 (2001) 3971.
84. J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, and K. Maruyama, Acta Mater., 28 (2000) 2059.
85. K. Mualeedharan, T. K. Nandy, and D. Banerjee, Intermetallics, 3 (1995) 187.
86. L. M. Hsiung and H. N. G. Wadley, Mater. Sci. Eng., A192/193 (1995) 908
87. D. S. McDarmaid, A. W. Bowen, and P. G. Partridge, J. Mater. Sci., 19 (1984) 2378.
88. W. P. Hon, S. K. Wu, and C. H. Koo, Mater. Sci. Eng., A131 (1991) 85.
89. D. B. Knorr and N. S. Stoloff, Mater. Sci. Eng., A123 (1990) 81.
90. S. Suwas, A. K. Singh, R. K. Ray, and S. Bhargava, Scripta Mater., 35 (1996) 897.
91. S. Suwas and R. K. Ray, Acta Mater., 47 (1999) 4599.
92. S. Suwas and R. K. Ray, Metall. Trans., 31A (2000) 2339.
93. O. A. Kaibyshev, I. V. Kazachkov, and R. M. Galeev, J. Mater. Sci., 16 (1981) 2501.
94. 廖忠賢,黃志青,科儀新知,第十九卷,第五期,1998,43頁。
95. Link Opal Operater’s Guide, Opalman 3.0, Issue 1, Oxford Instruments plc, Buckinghamshire, UK, 1997.
96. V. Randle, Oxford Guide Book Series, Electron Backscatter Diffraction, 1996, p. 3.
97. V. Randle, Microtexture Determination and Its Applications, Institute of Materials, London, 1992, p. 20.
98. CaRIne Crystallography version 3.1, 17 rue du Moulin du Roy F-60300 SENLIS FRANCE, (c) 1989-1998 C. Boudias & D. Monceau.
99. OPTIMAS version 6.1, Copyright (c) 1995 - 1999 Media Cybernetics Inc. 8484 Georgia Avenue, Silver Spring, MD 20910, USA.
100. 伏和中,“Ti3Al基介金屬合金超塑性薄板之顯微組織變化與變形機構分析”,國 立中山大學材料科學研究所博士論文,1998。
101. A. K. Gogia, D. Banerjee, and T. K. Nandy, Metall. Trans. A, 21A (1990) 609.
102. R. J. Roe, J. Appl. Phy., 36 (1965) 2024.
103. H. J. Bunge, Texture Analysis in Material Science, Butterworths, London, Boston, 1982, p. 22.
104. G. Garces, M. C. Cristina, M. Torralba, and P. Adeva, Journal of Alloys and Compounds 309 (2000) 229
105. J. Wheeler, D. J. Prior, Z. Jiang, R. Spiess, P. W. Trimby, Contribution to Mineralogy and Petrology, 141 (2001) 109.
106. N.Gey and M. Humbert, Acta Mater., 50 (2002) 227.
107. K. T. Park and F. A. Mohamed, Metall. Mater. Trans., 26A (1995) 3119.
108. T. K. Nandy and D. Banerjee, Intermetallics, 8 (2000) 915.
109. H. Nakajima, W. Sprengel, and K. Nonaka, Intermetallics, 4 (1996) s17.
110. J. Rusing and Chr. Herzig, Intermetallics, 4 (1996) 647.
111. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, New York, 1997, p. 223.
112. A. M. Brown and M. F. Ashby, Acta Metal., 28 (1980) 1085.
113. V. M. Imayev, G. A. Salishev, M. R. Shagiev, A. V. Kuznetsov, R. M. Imayev, O. N. Senkov, and F. H. Foes, Scripta Mater., 40 (1999) 183.
114. J. W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, New York, 1975. p. 489.
115. R. S. Mishra and D. Banerjee, Mater. Sci. Eng. A, 130 (1991) 151.
116. C. Huang and M. H. Lorretto, Mater. Sci. Eng. A, 192 (1995) 722.
117. T. B. Massalski, Metall. Trans., 33A (2002) 2277.
118. P. Wang, D. Veeraraghavan, M. Kumar, and V. K. Vasudevan, Metall. Trans., 33A (2002) 2353.
119. J. M. Howe, W. T. Reynolds, and V. K. Vasudevan, Metall. Trans., 33A (2002) 2391.
120. D. Banerjee, J. H. Wetbrook and R. L. Fleischer (eds.), Intermetallic Compounds, Vol. 2, John Wiley, New York, 1994, p. 91.
121. B. Bai, H. S. Yang, N. Chen, and A. K. Mukherjee, Scrip. Mater., 40 (1999) 1079.
122. D. R. Thornburg and H. R. Piehler, R. I. Jaffee and H. M. Burte (eds.), Titanium Science and Technology, Plenum Press, New York, 1973, p. 1187.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code