Responsive image
博碩士論文 etd-1227104-163332 詳細資訊
Title page for etd-1227104-163332
論文名稱
Title
類鑽碳材料之特性與應用
Characterization and application of diamond-like carbon materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
321
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-12-24
繳交日期
Date of Submission
2004-12-27
關鍵字
Keywords
類鑽碳、拉曼光譜
DLC, raman spectroscopy
統計
Statistics
本論文已被瀏覽 5705 次,被下載 0
The thesis/dissertation has been browsed 5705 times, has been downloaded 0 times.
中文摘要
類鑽碳膜具有許多的優異性質,如:高硬度、高化學抵抗性、良好的熱傳導性,且絕緣性高,並具有可見光到紅外光波段的光穿透性及極佳的生物相容性,被應用在耐磨耗、耐熱、電子、光學與生醫材料等方面,是一種泛用度極高的一種材料。
為符合環保問題,兩層或多層膜為最近一代保護膜的新趨勢。本論文發展出HBS900真空鍍膜系統,結合陰極電弧沉積法及濺鍍法來鍍硬質多層膜氮化鈦與碳氮化鈦,隨後以電子迴旋共振法之高度的電解離性質和較高的離子密度優點成長優質的類鑽碳薄膜,外層潤滑層類鑽碳膜,使工件更具有更長之壽命。內層多層膜具有高阻抗及耐磨耗外,亦增加類鑽碳膜之附著力。
類鑽薄膜特性分析藉由拉曼光譜儀、刮痕測試、摩擦係數及微硬度測試來完成。基板偏壓越高,成長功率越大,成長壓力越低,其薄膜越趨近石墨化,導致機械性質如硬度及光能矽越小。
在光碟母版(stamper)背面鍍上類鑽碳膜,其硬度增加5倍,表面粗糙度(Rms)降至4 nm以下,摩擦係數降至0.15,絕佳的附著性( 臨界荷重達65牛頓),實際測試壽命增加至原來1.7倍。在微鑚針表面鍍上類鑽碳膜,其鑽孔壽命由原來2500孔增加至7000孔,為原來未鍍膜2.5倍以上。
利用電漿輔助化學氣相沉積法,於聚酸碳酯基板上沉積類鑽碳膜,以期應用在光學塑膠作為耐磨耗保護膜。在氧電漿內的前處理下,類鑽碳薄膜中添加矽原子(Si-DLC),及控制實驗成長參數,經酒精擦拭法、膠帶測試法及熱震測試法三種測試法,證明在聚碳酸酯之類鑽碳薄膜有良好之附著性。
反應氣體甲烷濃度(30 sccm),基板偏壓(- 100V),功率為300W,以及矽摻雜濃度越大時,其薄膜具有較佳之特性,較低之表面粗操度,較高之硬度與附著力。
最後,我們將探討類鑽碳膜鍍應用在相變化光碟上的特性,針對類鑽碳膜的機械、光學和結構上的性質如何影響本實驗光碟片的表面、拉曼光譜、電氣訊號,利用原子力顯微鏡、UV-Vis光譜儀、商用燒錄機、碟片測試機來探討此微結構。實驗結果顯示非常適合在相變化光碟的表面鍍上類鑽碳膜以保護資料儲存。
Abstract
Diamond-Like carbon (DLC)films have received a considerable amount ofwear resistant overcoat and biocompatible coatings. attention recently due to their chemical stability, high optical transparency and hardness. These properties make the films suitable for a number of applications such as protective and anti-reflection coating.
Due to environmental pollution, double or multilayered coatings were recently developed as a new generation of protective coating. The present development hybrid coating system HBS900,is combination of hard coatings titanium nitride (TiN) and titanium carbonitride (TiCN) as multilayer are generated by cathode arc vaporization and magnetron sputtering, then on it following is high quality of diamond-like carbon film deposited by high degree of ionization, high densities of ions of electron cyclotron resonance plasma in the same recipient. It made the tools longer lifetime combination of outer lubrication layer. Not only using the high resistance and wear out of the inter multilayer, but also increasing the adhesion of DLC.
The structural characteristics of DLC films were investigated by Raman spectroscopy, standard scratch, pin-on-disk test and microhardness. It made the film more graphite-like by higher substrate bias, higher process pressure, and higher ECR power
The characteristics of the back stamper surface coated by DLC film were improved, and the productivity of an optical disk per stamper was estimated at about 1.7 times more than obtained. The properties of DLC films coating on the tamper were obtained and summarized as follows: excellent adhesion 65N, and coefficients of friction less than 0.15. As a result of adapting a microdrill coated with DLC film, the drilling lifetime was significantly improved to reach about 2.5 times than that of the uncoated one.
The purpose of this research was to deposit the protective diamond-like carbon (DLC) films on polycarbonate substrates for optical applications. The oxygen plasma pretreatment of the substrate surface, silicon-incorporated diamond-like carbon films (DLC-Si), and the coating deposition conditions can enhance the adhesion of the DLC film. The coated DLC film showed better adhesion on the PC substrate surface under three tests as the alcohol rub test, a tape pull test, and a thermal shock test.
The reactive CH4 (30sccm), the substrate bias (-100 V), the RF power (300 W), and In experiments, it is preceded being focus on the analysis of Raman spectrum for the films grown at various CH4 gas fluxes, substrates bias voltages, and higher si-doping concentrations made the film the better characteristics, the lower surface roughness, and higher hardness and adhesion.
At least, the properties of diamond-like carbon (DLC) film coatings on phase-change recording media were characterized by Raman spectroscopy, atomic force microscope (AFM), UV-visible spectrometer and disc testers. The dependence of mechanical, optical and structural properties of DLC films included the characteristics of surface roughness, hardness, transmittance and electrical signals of discs on serveral DLC film thicknesses were investigated. Our experimental results indicate that DLC films provide a suitable coating to protect PC substrate and make it no difference for data stored on phase-change optical discs.
目次 Table of Contents
目 錄
授權書
中文審定書
英文審定書
中文摘要................................................. I
英文摘要................................................III
誌謝.................................. ..................VI
目錄....................................................VII
表目錄.................................................XIII
圖目錄...................................................XV

第一章 序論...............................................1
1-1 前言..................................................1
1-2 研究目的..............................................4
1-2-1 在母板(stamper)上鍍類鑽碳薄膜之研究.................6
1-2-2 微鑚針上鍍類鑽碳薄膜之研究..........................7
1-2-3. PECVD成長類鑽碳薄膜在聚碳酸酯(Polycarbonate, PC)
上之研究..........................................7
1-3 論文架構.............................................12
第二章 理 論 基 礎.......................................13
2-1 文獻回顧.............................................13
2-2 類鑽碳材料...........................................13
2-2-1 類鑽碳膜的組成.....................................13
2-2-2 類鑽碳膜的結構.....................................16
2-3 DLC鍍膜製備方法......................................17
2-3-1 物理氣相沈積(物理蒸鍍)(PVD)....................18
2-3-1-1 蒸鍍(Evaporation)................................19
2-3-1-2 濺鍍(sputter)....................................19
2-3-1-2-1 直流濺鍍(DC sputtering)........................20
2-3-1-2-2 射頻濺鍍(RF sputtering)........................21
2-3-1-2-3 磁控濺鍍(Magnetron sputtering).................21
2-3-1-2-4 偏壓法臨場改質.................................23
2-3-1-3 射鍍電弧蒸鍍法(Arc Evaporation)..................25
2-3-2 化學氣相沈積(化學蒸鍍)(CVD)....................27
2-3-2-1 大氣壓化學氣相沈積系統(APCVD)....................28
2-3-2-2 低壓化學氣相沈積系統(LPCVD)......................29
2-3-2-3 電漿輔助化學氣相沈積系統(PECVD)..................30
2-3-2-4 微波電子迴旋共振化學氣相沈積法(ECRCVD)...........32
2-3-2-3-1 微波電子迴旋共振之原理.........................33
2-4 類鑽碳膜的成長機制...................................35
2-4-1 a-C之成長機制......................................35
2-4-2 a-C:H之成長機制....................................38
2-5 類鑽碳鍍層之限制及其附著力之改善方法.................40
2-5-1 被覆金屬中介層.....................................41
2-5-2 添加金屬於鍍膜內...................................41
2-5-3 適當熱處理.........................................42
2-5-4 漸進被覆...........................................42
2-5-5 離子轟擊法.........................................43
第三章 實 驗 方 法 與 步 驟..............................44
3-1系統介紹.......................................................44
3-1-1 HBS 900 system.....................................44
3-1-2 PECVD..............................................45
3-2 基板準備.............................................46
3-2-1 母版(stamper)準備..................................46
3-2-1-1 R.M.P.製程.......................................46
3-2-1-2 L.B.R.製程.......................................47
3-2-1-2-1 刻版...........................................47
3-2-1-2-2 顯影化.........................................47
3-2-1-2-3 金屬化.........................................48
3-2-1-3 電鍍GAL.(Galvanic)...............................48
3-2-1-3-1 電鑄成型.......................................49
3-2-1-3-2 Family製程.....................................49
3-2-1-3-3 背磨及沖孔.....................................50
3-2-2 光碟片準備.........................................50
3-3 實驗流程.............................................50
3-3-1 HBS900實驗流程.....................................51
3-3-1-1 母版(stamper)及微鑚針(microdrills)清洗流程.......51
3-3-1-2 HBS900沈積步驟...................................51
3-3-2 PECVD實驗流程......................................53
3-4 測試設備.............................................55
3-4-1 拉曼測試...........................................55
3-4-2 光碟片附著力測試...................................55
3-4-3 原子力顯微鏡與UV/Vis光譜儀.........................56
3-4-4 碟片測試機.........................................56
3-4-5 母版及微鑚針附著力測試.............................56
3-4-6 pin-on disk(摩擦係數)測試..........................58
3-4-7 微硬度量測.........................................58
3-4-8 鑽孔測試...........................................59
第四章 類鑽碳薄膜之特性分析..............................60
4-1 拉曼光譜.............................................60
4-1-1 拉曼光譜學簡介.....................................60
4-1-2 散射光種類.........................................60
4-1-3 拉曼光譜的量子模型與實驗裝置.......................61
4-1-4 拉曼散射的古典波動模型.............................62
4-1-5 類鑽碳膜之拉曼光譜量測.............................64
4-2 電子迴旋共振(ECR)成長類鑽碳薄膜特性..................68
4-2-1 電子迴旋共振特性分析...............................69
4-2-2 電子迴旋共振參數與類鑽碳薄膜特性分析...............69
4-2-2-1 基板偏壓對類鑽碳薄膜特性的影響...................69
4-2-2-2 ECR功率對類鑽碳薄膜特性的影響....................71
4-2-2-3 成長壓力對類鑽碳薄膜特性的影響...................73
4-2-2-4 原子力顯微鏡分析鍍膜的表面型態...................74
4-3 化學汽相沉積(PECVD)成長類鑽碳薄膜特性................75
4-3-1 甲烷流量對鍍層之影響...............................75
4-3-2 RF功率對鍍層之影響.................................76
4-3-3 基板偏壓對鍍層之影響...............................76
4-3-4 鍍層之附著性分析...................................77
4-3-5 矽摻雜濃度對鍍層之影響.............................77
第五章 類鑚碳薄膜在光碟母版上以增加產能之應用............79
5-1光碟片演進歷史及市場..................................79
5-2 母版(stamper)........................................83
5-3 結果與討論...........................................86
5-3-1 拉曼光譜...........................................86
5-3-2 DLC機械性質量測與實際運用..........................87
5-4 結論.................................................89
第六章 應用類鑽石薄膜至相變化光碟之......................90
6-1 前言.................................................90
6-1-1 PC在光學零組件的用途展開...........................91
6-2 電漿對表面的效應.....................................94
6-2-1 物理效應...........................................94
6-2-2 化學效應...........................................95
6-3 電漿和PC(polycarbonate)表面的作用....................97
6-3-1 表面清潔(surface cleaning).........................98
6-3-2 剝離或蝕刻(ablation or etching)....................99
6-3-3 架橋(crosslinking)或表面分子的接枝................100
6-3-4 表面化學結構改質(chemical modification)...........100
6-4 結果與討論..........................................101
6-4-1 DLC之拉曼測試.....................................101
6-4-2 附著性之分析......................................101
6-4-3 表面粗糙度與類鑽石薄膜厚度的關係..................103
6-4-4 光學穿透率與類鑽石薄膜厚度的關係..................103
6-4-5 一次寫錄電氣訊號與實驗光碟片的關係................104
6-4-6 多次寫錄電氣訊號與實驗光碟片的關係................104
6-5 結論................................................105
第七章 以HBS900系統成長類鑽碳薄膜在微鑚之應用...........107
7-1 前言................................................107
7-2 微 鑽 針............................................111
7-2-1 鑽針簡介..........................................111
7-2-2 鑽針磨耗..........................................112
7-3 印刷電路板..........................................113
7-4 鑽孔品質之界定......................................115
7-5 結果與討論..........................................116
7-5-1 拉曼光譜分析......................................116
7-5-2 鍍膜附著性的改善..................................116
7-5-3 鑽孔測試..........................................117
7-6 結 論..............................................120
第八章 總結.............................................122
參考文獻................................................127
附錄....................................................298
表 目 錄
表 1-1 為鑽石之特性及應用...............................154
表1-2 類鑽碳膜的一般應用................................155
表1-3 為鏡片與傳統玻璃鏡片及樹酯鏡片的比較..............156
表2-1 三種鍵結型態......................................156
表 2-2 為鑽石、石墨與類鑽碳膜之性質比較.................157
表 2-3 各種不同結構之類鑽碳膜特性比較...................158
表 2-4 ECR電漿與RF電漿之比較............................159
表 3-1 HBS900 system各種通入氣體種類與流量..............159
表 3-2 HBS 900系統成長微鑚針(microdrill)詳細相關流程....160
表 3-3 HBS 900系統成長母版(stamper)之參數...............161
表 3-4 類鑽石薄膜於圖3-22(a)之L及圖3-22(b)之D的厚度與樣品
編號。..................................................161
表 3-5 附著力試驗參數表.................................162
表 3-6 摩擦係數試驗參數表...............................162
表 3-7 微硬度量測試驗參數表.............................163
表 3-8 微鑚針鑽孔參數...................................163
表 4-1 靜電探針所量得之電漿特性表.......................164
表 5-1 CD光碟片產品演進歷程與規範.......................165
表 5-2 CD標準規格整理表.................................166
表 5-3 CD標準規格整理表(續).............................167
表 5-4 為目前市上之DVD家族產品整理表....................168
表 5-5 為DVD光碟片產品演進歷程與規範....................169
表 5-6 CD及CD-RW母版(stamper)之規格表...................170
表 5-7 母版未鍍膜與鍍類鑽碳薄膜硬度之比較...............170
表 5-8 有無使用中間界層(Ti/TiN/TiCN)之類鑽碳特性表......171
表 6-1 世界主要地區PC樹脂產能及需求統計.................172
表 6-2 最近1998 ~ 2002年台灣PC樹脂進出口統計............173
表 6-3 光學零組件用塑膠材料的物性.......................174
表 6-4 樣品在類鑽石薄膜於不同種類碟片的讀取波長之
穿透率(%.)。............................................175
表 6-5 實驗多層膜結構經過一般商用燒錄機記錄前及記錄後一
次由CD-CATS所測得的訊號。...............................176
表 7-1 印刷電路板製作流程...............................177
表7-2 不同基板偏壓下對G peak位置及積分強度比ID/IG的對照
..................................................180
表7-3 微鑽針在不同鍍膜下之鑽孔測試結果..................180
圖 目 錄
圖 1-1 在高速鋼上鑽孔之各種硬膜(TiN, TiAlN)和硬膜加潤滑層
之鑽孔數比較............................................181
圖 2-1 碳之(a)sp3, (b)sp2, (c)sp1 混合生成鍵結..........182
圖 2-2 (a)鑽石膜、(b)石墨結晶態.........................183
圖 2-3 DLC性質的界定....................................184
圖 2-4 非晶質含氫類鑽碳膜的三元相圖.....................185
圖 2-5 RCN結構..........................................186
圖 2-6 類鑽碳薄膜的DG模型結構,圖中共有91個芳香環(陰影區域)和7個缺陷區,白色圓圈為和碳形成sp3鍵的氫原子............187
圖 2-7薄膜沈積機制的說明圖..............................188
圖 2-8輝光放電..........................................189
圖 2-9物理氣相沈積法蒸鍍、濺鍍、射鍍之比較圖............190
圖 2-10利用直流偏壓產生濺鍍環境的示意圖.................191
圖 2-11 射頻濺鍍系統會在靶電極上串聯一匹配網路..........192
圖 2-12為平面靶和磁鐵的概略圖...........................193
圖 2-13磁控濺鍍示意圖...................................194
圖 2-14 封閉非平衡式濺鍍系統示意圖(英國DG Teer製造).....195
圖 2-15 高離子化濺鍍系統示意圖(H. I. S. 德國CemeCon 製造,
2為陽極,3為靶材).......................................196
圖 2-16 電弧離子鍍膜系統................................197
圖 2-17 陰極弧點產生坑洞之過程..........................198
圖 2-18 陰極弧點處靶材離子和原子釋放、解離之示意圖......199
圖 2-19過濾式陰極電弧沈積系統...........................200
圖 2-20以氣體離子槍直接射鍍靶材沉積類鑽碳鍍膜之示意圖...201
圖 2-21以Ar離子槍濺射石墨靶材沉積類鑽碳鍍膜之示意圖 (上圖),以Ar離子槍濺射石墨靶材形成類鑽碳膜,再以另一Ar離子轟擊已鍍之類鑽碳膜表面,使表面更致密(下圖)..................202
圖 2-22以雷射濺鍍碳靶生長類鑽碳膜的示意圖...............203
圖 2-23 化學氣相沉積的五個主要機制......................204
圖 2-24大氣壓化學氣相沈積(APCVD)系統結構示意圖..........205
圖 2-25低壓化學氣相沈積(LPCVD)系統結構示意圖..........206
圖 2-26電漿輔助化學氣相沈積系統的結構示意圖.............207
圖 2-27 微波電子迴旋共振化學氣相沈積法示意圖............208
圖 2-28 (a)右旋偏振(b)左旋偏振..........................209
圖2-29 電子再磁場中運動的示意圖(a)電場=0,(b). .........210
圖 2-30電漿中反應成介穩態物質的活化能示意圖.............211
圖 2-31在不同離子能量下其離子範圍與分布之關係圖.........212
圖 2-32 碳離子進入非晶質類鑽碳膜的表面穿透機制示意圖
(a)直接穿透(b)Knock-on 穿透.........................213
圖 2-33 非晶質類鑽碳膜的成長機制示意圖 (a)入射離子能量小(0-0.1eV),成長機制主要是藉由表面擴散與聚集(b)適
當的入射離子能量(1-100eV),使離子可以到達鍍膜的次表
面(c) 入射離子能量過大(>100eV),離子可穿透鍍膜表面而
進入內部................................................214
圖 2-34 成長的吸附層模型................................215
圖 2-35 含氫類鑽碳膜成膜反應示意圖......................216
圖 2-36為利用Ti/TiN/TiCN多層膜來消除裂紋的成長..........217
圖 2-37 利用Ti/TiN/TiCN多層膜可以增加其附著力...........218
圖 2-38多層膜的使用,更增加其硬度與抗磨耗能力...........219
圖 3-1 HBS 900 hybrid系統外觀圖.........................220
圖 3-2 HBS 900 hybrid 結構示意圖(上圖) ARC模式(TiN, TICN鍍膜),(下圖) ECR模式(DLC鍍膜)............................221
圖 3-3 Z5馬達帶動基材承接座.............................222
圖 3-4 基材承接座.......................................222
圖 3-5 高純度鈦靶陰極電弧蒸鍍器.........................223
圖 3-6 電子迴旋共振(ECR),(a)外觀圖,(b)電漿源 (c)示意圖223
圖 3-7 加熱系統.........................................225
圖 3-8 電漿輔助化學沉積法...............................225
圖 3-9 RMP製作流程圖....................................226
圖 3-10玻璃基版回收流程圖...............................227
圖 3-11 刻版作業流程圖..................................228
圖 3-12 顯影化作業流程圖................................229
圖 3-13玻璃基版金屬化濺鍍作業流程圖.....................230
圖 3-14濺鍍機的示意圖與其工作原理.......................231
圖 3-15電鑄製程作業流程圖...............................232
圖 3-16爸爸版電鑄衍生媽媽版之作業流程圖.................233
圖 3-17媽媽版電鑄衍生子版之作業流程圖...................234
圖 3-18母版製作與翻製流程示意圖.........................235
圖 3-19相變化光碟之結構圖...............................236
圖 3-20光碟片製作流程圖.................................237
圖 3-21多層膜鍍膜(Ti/TiN/TiCN/DLC)結構圖................238
圖 3-22 實驗光碟片的橫截面 (a)由濺鍍及電漿輔助化學氣相
沈積法成長在直徑120㎜、厚度1.2㎜及軌距1.6μm
預先壓刻好溝軌的塑膠基板上之多膜層結構 (b)同樣
的條件下,我們成長與圖(a)相同的類鑽石薄膜的厚度
D在沒有壓刻溝軌的塑膠基板上.............................239
圖 3-23 鍍層的破壞模式示意圖(a)剝裂破壞(b)翹曲破壞
(c)崩離破壞(d)弧形破壞(e)拉伸破壞.................240
圖 3-24 刮痕試驗機......................................241
圖 3-25 摩擦係數測試圖..................................242
圖 3-26 (a) NEC之超動態微小硬度計(DUH-200)
(b) 三角錐形壓痕圖.....................................243
圖 3-27 微硬度量測示意圖................................244
圖 3-28 PCB 立式三軸工具機..............................245
圖 3-29 FR4 雙面板的構造組合圖..........................246
圖 3-30 鑽削配置及鑽削力量測流程圖......................247
圖 3-31 鑽削路徑及鑽削位置配置圖........................248
圖 4-1 三種不同級之光散射頻譜...........................249
圖 4-2 拉曼系統方塊圖...................................250
圖 4-3 拉曼散射分光儀光路圖.............................251
圖 4-4 四氯化碳的拉曼光譜,被
參考文獻 References
參考資料 (Reference)
第一章
1. F.P. Bundy, H.T. Hall, H.M. Strong, and R.H. Wentorf, Nature 176 (1955) 51.
2. Z. Ring and T.D. Mantei, J. Vac. Sci. Technol., A13 (1995) 1617.
3. Z. Ring and T.D. Mantei, Appl. Phys. Lett., 66 (1995) 3380.
4. C.R. Eddy, Jr., D.L. Youchison and B.D. Sartwell, Diamond Relat. Mater., 3 (1993) 105.
5. R.K. Singh, D. Gilbert, R. Tellshow, P. H. Holloway, R. Ochoa, and J.H. Simmons, Appl. Phys. Lett., 61 (1992) 2863.
6. T. Yara, M. Yuasa, M. Shimizu and H. Makita, Jpn. J. Appl. Phys., 33 (1994) 4404.
7. M. Ihara, H. Maeno, K. Miyamoto and H. Komiyama, Diamond Relat. Mater., 1 (1992) 187.
8. S.H. Kim, Y.S. Park and S.K. Jung, J. Vac. Sci. Technol., A13 (1995) 1619.
9. I. Watanabe, T. Matsushita and K. Sasahara, Jpn. J. Appl. Phys., 31 (1992) 1428.
10. W. Zhu, G. P. Kochanski, S. Jin and L. Seibles, Vacuum MicroelectronicsConference., 35 (1995) 300.
11. P. Ruffieux, O. Groening, P. Groening, L.Diederich, O.Kuettel and L. Schlapbach, Electron Device, IEEE Transactions, 488 (1997) 1295.
12. J. Robertson, Vacuum microelectronics Conference., 34 (1998) 162.
13. S. Aisenberg, and R. Chabot, J. Appl. Phys. 42 (1971) 2953.
14. J. Seth, M.I. Chaudhry and S.V. Babu, J. Vac. Sci. Technol.,10 (1992) 3125.
15. G.F. Zhang and X. Zheng, Surf. Coatings. Technol., 82 (1996) 110.
16. Diamond Relat. Mater., 3 (1994) 732.
17. J. Robertson, Diamond Relat. Mater., 1 (1992) 397.
18. S. Aiesenberg and F.M. Kimock, Mater. Sci. Forum., 52 & 53 (1989) 1.
19. I.R. McColl and T.L. Parker and A.A. Goruppa, Diamond Relat. Mater., 3 (1993) 83.
20. K. Zolynski, P. Witkowski, A. Kaluzny, Z. Has, P.Niedzielski and S. Mitura, J. Chem. Vapor Deposit., 4(1996) 232.
21. V.L. Arbuzov, A.B. Vladmirov, V.B. Vykhodets, A.E. Davletshin, S.HA. Plotnikov, I.Sh. Trakhtenberg, A.P.Rubshtein, S.D. Gorpinchenko and E.V. Kuzmina, Diamond. Relat. Mater., 3 (1994) 775
22. J. Robertson, Surf.Coat.Technol., 50 (1992) 185.
23. W. Hockauf, H. Pro¨ ll, R. Ba¨uerle, G. Eisenbla¨tter, W. Rehbein, VDI Berichte 1375 (1998) 135.
24. A.Grill, IBM journal, 168 (1993)143.
25. C. Y. Hsu, L. Y. Chen and F. C. N. Hong, Diamond Relat.Mater., 8 (1999) 1315.
26. J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle and K. L. Saenger, J. Appl. Phys., 70 (1991) 1706.
27. S. S. Camargo, Jr. A. L. BaiaNeto, R. A. Santos, F. L. Freire, Jr, R. Carius, F. Finger, Diamond Relat. Mater., 7 (1998) 1155.
28. W.-J. Wu, and M. -H. Hon, Surf. Coatings. Technol., 111 (1999) 134.
29. H. L. Bai, and E. Y. Jiang, Thin Solid Films, 353 (1999) 157.
30. D. R. Tallant, J. E. Parmeter, M. P. Siegal, and R. L. Sompson, Diamond Relat. Mater., 4 (1995)191
31. C. M. Chan, T. M. Ko and H. Hiraoka, Surf. Sci. Rep., 24 (1996) 241.
32. M. Berger, Schweizer Maschinenmarkt, Goldach, Nr. 20 (1991).
33. V. Derflinger, H. Brandle, H. Zimmermann, Surf. Coat. Technol. 113 (1999) 286.
34. M. Hans , R. Bu¨ chel, M. Grischke, R. Hobi, and M. Za¨ch, Surf. Coatings. Technol., 123 (2000) 128.
35. T. Sato, K. Sugai, S. Ueda, K. Matsunami, and M. Yasuoka, Surf. Coatings. Technol., 169-170 (2003) 45.
36. Frnak Loffler, Surf. Coatings. Technol., 107 (1998) 191-196.
37. K. Ogawa, E. Anyama, H. Inoue, T. Hirogaki, H. Nobe, Y.Kitahara, T. Katayama, and M. Gunjima, Composite Structure, 38 (1997) 343.
38. H. Inoue, E. Aoyama, T. Hirogaki, K. Ogawa, H. Matushita, Y. Kitahara, and Tsutao Katayama , Composite Structures, 39 (1997) 55.
39. F. Samson, Surf. Coatings. Technol., 81(1996) 79.
40. A.Colonna de Lega,Optics News (1989) 16.
41. Christian Wohlrab,Optical Engineering, 34 (1995) 2712.
42. 曹義昌,以電漿化學氣相沉積法在光學塑膠上成長多功能光學薄膜,國立成 大學, 1997.
43. J. Feinleib, J. de Neufuille, S. C. Moss, S. R. Ovshinsky, Appl. Phys. Let., 18 (1971) 254.
44. T. Ohta, K. Inoue, T. Ishida, Y. Gotoh, I. Satoh, Jpn. J. Appl. Phys., 32 (1993) 5214.
45. T. Sugaya, T. Taguchi, K. Shimura, K. Taira, Y. Honguh, H. Satoh, Jpn. J. Appl. Phys., 32 (1993) 5402.
46. K. Nagata, N. Yamada, K. Nishiuchi, S. Furukawa, and N. Akahira, Jpn. J. Appl. Phys., 38 (1999) 1679.
47. M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Tanoguchi, and A. Inoue, Jpn. J. Appl. Phys. 38 (1999) 1806.
48. A. R. McCabe, A. M.Jones, S. J. Bull, Diamond Relat. Mater., 3, (1994) 205.
49. B. R. Mehta, E. A. Ogryzlo, Diamond Relat. Mater., 3 (1994) 10.
50. J. Koskinen, R. Lappalainene, A. Anttial, J. P. Hirvonen, Diamond Relat. Mater., 3 (1994) 52.
51. D. Korzec, D. Theirich, F. Werner, K. Traub, J. Engemann, Surf. Coatings. Technol., 74-75 (1995) 67.
52. M. Eckel, G. Kampschulte, P. Markschlager, Surf. Coatings. Technol., 74-75 (1995) 827.
53. D.Korzec, and K. Traub, Thin solid film 281-282 (1996) 143.
54. W. Petasch, K. Baumgartner, E.Rauchle and M. Walker, Surf. Coatings. Technol., 59 (1993) 301.
55. N. Sprang, D. Theirich, J. Engemann, Su rf. Coat. Technol., 74-75 (1995) 689.
56. J. C. Damasceno, S. S. Camargo, and M. Cremona, Thin Sold Films 420-421 (2002) 195.

第二章
1. R. W. G. Wyckoff, Crystal Structures, Interscience, New York (1964).
2. J. C. Angus, F. A. Buck, M. Sunkara, T. F. Gorth, C. C. Hayman and R.Gat, MRS Bull, XIV, 10 (1989.
3. B. T. Kelly, Physics of Graphite, Applied Science, London (1981).
4. 于樹貞,晶體之結構與性質,第十二章,渤海堂文化公司,台灣台北,1993.
5. W. D. Kingerv, H. K. Bowen, and D. R. Hhlmann, Introduction to Ceramics, Ch. 2, John Wiley & Sons, Canada, 1991.
6. C. Z. Wang, and K. M. Ho, Physical Review, B71 (1993) 1148.
7. J. Robertson, Surf. Coatings Technol., 50 (1992) 185.
8. C.D. Martino, F. Demichelis and A. Tagliaferro, Diamond Relat. Mater., 4 (1995) 1210
9. A.Grill,Diam. Relat. Mater., 8 (1999) 428.
10. J. Robertson, Diamond Relat. Mater., 2 (1993) 984.
11. J. W. Zou, K. Schmidt, K. Reichelt, and B. Dischler, J. Appl. Phys., 67 (1990) 487.
12. J. C. Phillips, Phys. Rev. Lett., 51 (1979) 1355.
13. J. C. Angus, and F. Jansen, J. Vac. Sci. Technol., A6 (1988) 1778.
14. P. Reinke, W. Jacob and W. Moller,J. Appl. Phys., 74 (1993) 1354.
15. A. Grill, B. Meyerson, K. E. Spear, and J. P. Dismukes (Eds.), Synthetic Diamond:Emerging CVD Science and Technology, Wiley, New York, 1994, p.121.
16. M. A. Tamor, and J. B. Wu, J. Appl. Phys., 67 (1990a) 1007.
17. C. F. Chen and S. H. Chen, Diamond Relat. Mater., 3 (1994) 443.
18. J. –M. Ting, and H. Lee, Diamond Relat. Mater., 11 (2002) 1119–1123.
19. F. Jansen, M. Mackonkin, S. Kaplan and S. Hark, J. Vac. Sci. Technol., A 3 (1985) 605.
20. N. Savvides. J. Appl. Phys., 55 (1984) 4232.
21. N.H. Cho, K.M. Krishnan, D.K. Vries, M.D. Rubin, C.B. Hopper, B. Brushan and D.B. Bogy, J. Mater. Res., 5 (1990) 2543.
22. S.M. Rossnagel, M.A. Russak and J.J. Cuomo, J. Vac. Sci. Technol., A 5 (1987), p. 2150.
23. 〝真空濺鍍薄膜〞,誠真有限公司
24. J. L. Vossen and W. Kern, “Thin Film Processes II”, Academic Press, New York (1991).
25. Rebert Parsons, “Thin Film Process II”, Chap. II-4, John L. Vossen and W. Kern.,Academic press. (1991).
26. F. Shinoki and A. Itoh, J. Appl. Phys., 46 (1975) 3381.
27. S. Berg. H. O. Blom, T. Larsson, and C. Nender, J. Vac. Sci. Technol. A5 (1987) 202.
28. Milton Ohring, “The Materials Science if Thin Films”, Chap. 3, Academic Press, (1992) 129-131.
29. D. P. Monaghan, D. G. Teer, P. A. Logan, I. Efeoglu, and R. D. Arnell, Surf. Coatings Technol., 60 (1993) 525.
30. CemeCon AG, Germany.US pattent 6352627 B2.
31. X. Shi, Y.Q. Tu and H.S. Tan, IEEE Trans. Plasma Sci., 24 (1996) 1309.
32. B.K. Tay, G.F. You, S.P. Lau and X. Shi. Surf. Coatings Technol., 133 (2000) 593.
33. M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva and G.A.J. Amaratunga, J. Appl. Phys., 81 (1997) 139.
34. X. Shi, D. Flynn, B.K. Tay, S. Prawer, K.W. Nugent, S.R.P. Silva, Y. Lifshitz and W.I. Milne. Philos, Mag, B 76 (1997) 351.
35. X. Shi, B.K. Tay and S.P. Lau, Int. J. Mod. Phys., 14 (2000) 154.
36. S. Anders, A. Anders, M.R. Dickinson, R.A. MacGill and I.G. Brown, IEEE Trans. Plasma Sci., 25 (1997) 670.
37. A. Anders. Surf. Coatings Technol., 121 (1999) 319.
38. A. Anders and A.V. Kulkarni, Mater. Res. Soc. Symp. Proc., 675 (2001) W11.1.
39. M.C. Polo, J.L. Andujar, J. Robertson and W.I. Milne, Diamond Relat. Mater., 9 (2000) 663.
40. B.F. Coll, in: S.R.P. Silva, et al. (Eds.), Amorphous Carbon, Worid Scientific, Singapore, 1998.
41. John L.Vossen and Werner Rern, ” Thin Film Process II”, Academic Press,(1991) 209.
42. A.E.Guile and B.Juttner , IEEE Trans.On Plasma Science PS-8 (1980) 259.
43. N. Akita,, Y. Konishi, S. Ogura, M. Imamura, Y.H. Hu, and X. Shi, Diamond Relat. Mater.,10 (2001) 1017.
44. FRANC_OIS ROSSI Chaos, Solitons & Fractals, 10 (1999) 2019.
45. D. Kim, and S. Kim, Surf. Coatings Technol.,157 (2002) 66.
46. A. Stanishevsky, Diamond Relat. Mater., 8 (1999) 1246.
47. A. A. Voevodin, M. S. Donley, and J. S. Zabinski, Diamond Relat. Mater., 92 (1997) 42.
48. 莊達人,VLSI 製造技術,高立圖書有限公司,p183~185,87 年。
49. T. Otani, M. Hirata, Thin Solid Films, 442 (2003) 44.
50. M. Modream, M. Bercu, and C. Cobiaru, Thin solid Films, 383 (2001) 212.
51. L. Holland and S.M. Ohja, Thin Solid Films, 38 (1976) L17.
52. Y. Catherine, Diamond and diamond-like carbon thin films. NATO ASI 266 (1991) 193.
53. Y. Catherine and C. Couderc, Thin Solid Films 144 (1986) 265.
54. A. Bubenzer, B. Dischler, G. Brandt and P. Koidl, J. Appl. Phys., 54 (1983) 4590.
55. C. Wild and P. Koidl, Appl. Phys. Lett., 54 (1989) 505.
56. C. Wild and P. Koidl, J. Appl. Phys., 69 (1991) 2909.
57. J.W. Zou, K. Reichelt, K. Schmidt and B. Dischler, J. Appl. Phys., 65 (1989) 3914.
58. J. W. Zou, K. Schmidt, K. Reichelt and D. Dischler, J. Appl. Phys., 67 (1989) 487.
59. M. A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, NewYork, 1994.
60. L. Martinu, A. Raveh, D. Boutard, S. Houle and M. Wertheimer, Diamond Relat. Mater., 2 (1993) 673.
61. M. Zarrabian, N. Fourches-Coulon and G. Turban, Appl. Phys. Lett., 70 (1997), p. 2535.
62. X.M. He, S.T. Lee, L. Bello, A. Cheung and C.S. Lee. J. Mater. Res., 14 (1999) 1055.
63. M. Weiler, S. Sattel, T. Giessen, K. Jung, H. Ehrhardt, V.S. Veerasamy and J. Robertson, Phys. Rev., B 53 (1996) 1594.
64. M. Weiler, K. Lang, E. Li and J. Robertson, Appl. Phys. Lett., 72 (1998) 1314.
65. L. Martinu, A. Raveh, D. Boutard, S. Houle and M. Wertheimer, Diamond Relat. Mater., 2 (1993) 673.
66. M. Zarrabian, N. Fourches-Coulon and G. Turban, Appl. Phys. Lett., 70 (1997) 2535.
67. X.M. He, S.T. Lee, L. Bello, A. Cheung and C.S. Lee, J. Mater. Res., 14 (1999) 1055.
68. S. Muhl, E. Camps, L. Escobar-Alarcón, O. Olea, M. Miki, and N. A. Morrison, Diamond Relat. Mater., 10 (2001) 915.
69. S. K. Patra and G. Mohan Rao, Vacuum, 74 (2004) 93.
70. E. Kamijo, T. Nakamura and Y. Tani, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 121 (1997) 110.
71. Sheng-Rui Jian, Te-Hua Fang, and Der-San Chuu, Journal of Non-Crystalline Solids, 333 (2004) 291.
72. K. Y. Li, Z. F. Zhou, C. Y. Chan, I. Bello, C. S. Lee, and S. T. Lee, Diamond Relat. Mater.,10 (2001) 1855.
73. S. F. Yoon, H. Yang, Rusli. J. Ahn and Q. Zhang, Vacuum 49 (1998) 67.
74. S. F. Yoon, H. Yang, Rusli. J. Ahn and Q. Zhang, Diamond Relat. Mater., 7 (1998) 70.
75. X. T. Zhou, S. T. Lee, I. Bello, A. C. Cheung, D. S. Chiu, Y. W. Lam, C. S. Lee, K. M. Leung and X. M. He, Surf. Coatings Technol.,123 (2000) 273.
76.宁兆元、任兆杏,”電子迴旋共振等離子體技術及其應用”,
物理學進展,第12 卷第1 期(1992)。
77. Maurice H.Francombe, Phsics of Thin Films 18(1994).
78. J. Asmussen,J. Vac. Sci. Technol., A73 (1989) 883.
79. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S.R.P. Silva, J. Appl. Phys., 80 (1996) 440.
80. D.R. McKenzie. Rep. Prog. Phys., 59 (1996) 1611.
81. Y. Lifshitz. Diamond Relat. Mater., 5 (1996) 388.
82. Y. Lifshitz. Diamond Relat. Mater., 8 (1999) 1659.
83. P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne and J. Koskinen, Phys. Rev., B 48 (1993) 4777.
84. J. Robertson. Pure Appl. Chem., 66 (1994) 1789.
85. J. Robertson. Philos. Trans. R. Soc., A 342 (1993) 277.
86. Y. Lifshitz, S.R. Kasi, J.W. Rabalais and W. Eckstein, Phys. Rev., B 41 (1990) 10468.
87. J.J. Cuomo, D.L. Pappas, J.Bruley, J.P. Doyle and K.L. Saenger, J. Appl. Phys., 70(1991) 1706.
88. C. Weissmantel, Thin Solid Films, 92 (1982) 55.
89. W. Moller. Appl. Phys. Lett., 59 (1991) 2391.
90. D.R. McKenzie. J. Vac. Sci. Technol., B 11 (1993) 1928.
91. C.A. Davis. Thin Solid Films 226 (1993) 30.
92. J. Robertson. Diamond Relat. Mater., 2 (1993) 984.
93. J. Robertson. Diamond Relat. Mater., 3 (1994) 361.
94. J. Robertson. Radiat. Effect 142 (1997) 63.
95. J. Robertson, in: S.R.P. Silva, et al. (Eds.), Amorphous Carbon: State of the Art, World Scientific, Singapore, 1998, p. 32.
96. H.P. Kaukonen and R.M. Nieminen, Phys. Rev. Lett., 68 (1992) 620.
97. H.P. Kaukonen and R.M. Nieminen, Phys. Rev., B 61 (2000) 2806.
98. S. Uhlmann, T. Frauenheim and Y. Lifshitz, Phys. Rev. Lett., 81 (1998), p. 641.
99. N.A. Marks. Phys. Rev., B 56 (1997) 2441.
100. K.J. Boyd, D. Marton, I.W. Rabalais and Y. Lifshitz. J. Vac. Sci. Technol., A 16 (1998) 455.
101. K. Kohary and S. Kugler. Phys. Rev., B 63 (2001) 193404.
102. B. A. Pailthorpe, J. Appl. Phys., 70 (1991) 543.
103. H. P. Kaukonen and R. M. Nieminen, Phys. Rev. Lett.,68 (1992) 620.
104. J. Robertson, Diamond Relat. Mater., 3 (1994) 361.
105. J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle and K. L. Saenger, J. Appl. Phys., 70 (1991) 1706.
106. J. Robertson, Diamond Relat. Mater., 3 (1994) 361.
107. J. Robertson, J. Non-Cryst. Solids., 164/166 (1993) 1115.
108. J. Robertson, Surf. Coatings Technol., 50 (1992) 185.
109. W. Moller, Appl. Phys., A 56 (1993) 527.
110. W. Moller, Jpn. Appl. Phys., 34 (1995) 2163.
111. W. Jacob, Thin Solid Films 326 (1998) 1.
112. A. Von Keudell, and W. Jacob, J. Appl. Phys., 81 (1997) 1531.
113. J. Robertson, Diamond Relat. Mater., 3 (1994) 361.
114. Y. Catherine, in R.E. Clausing (ed.) Diamond and
Diamond-like Carbon, Plenum, New York, (1991) 193.
115. A. Von Keudell, W. Moller and R. Hytry, Appl. Phys. Rev., 62 (1993) 937.
116. J. Robertson, Diamond Relat. Mater., 5 (1996) 519.
117. B. B Pate, M. H. Hecht, and C. Binns, J. Vac. Sci. Technol., 21 (1981) 364.
118. A. Ravch, L. Martinu, H. M. Hawthorne, and M.R. Wertheimer, Surf. Coatings Technol., 58 (1993) 45.
119. A. A Minevich, Surf. Coatings Technol., 53 (1992) 161.
120. S. Yang, D. Camino, A. H. S. Jones , and D.G. Teer, Surf. Coatings Technol., 124 (2000) 110.
121. J. C. Sanchez-Lopez, C. Donnet, and J. Fontaine, Diamond Relat. Mater., 9 (2000) 638.
122. Ronkainen, S. Varjus, J. Koskinen, and K. Holmberg, Wear, 249 (2001) 260.
123.卓廷彬, "物理蒸鍍技術在3C 產業工模具的應用", 金屬工業35卷3 期, 中華民國90年5 月。
124. Ronkainen, J. Likonen, J. Koskinen, and S. Varjus, Surf. Coatings Technol., 79 (1996) 87.
125. B. Rother, J. Siegel and J. Vetter, Thin Solid Films 188 (1990) 293.
126. D.R. McKenzie, Y. Yin, and N.A. Marks, Diamond Relat. Mater., 3 (1994) 353.
127. V. Kulikovsky, P. Bohac, F. Franc, A. Deineka, V. Vorlicek, and L. Jastrabik, Diamond Relat. Mater., 10 (2001) 1076.
128. H. Dimigen, and C. P. Klages, Surf. Coatings Technol.,49 (1991) 543.
129. Y. L. Su, and W. H. Kao, Wear 236 (1999) 221.
130. K. Bewilogua, and H. Dimigen, Surf. Coatings Technol.,61 (1993) 144.
131. L. Feng,J. Tang, and Jeffrey S. Zabinski, Materials Science and Engineering A257 (1998) 240.
132. H. Holleck, M. Lahres, and P. Woll, Surf. Coatings Technol.,41 (1990) 179.
133. J. Tang, J. S. Zabinski, and J. E. Bultman, Surf. Coatings Technol., 91 (1997) 69.
134. V. Fox, A. Jones, N. M. Renevier, and D. G. Teer, Surf. Coatings Technol., 125 (2000) 347.
135. C. L. Chang, and D. Y. Wang, Diamond Relat. Mater., 10 (2001) 1528.
136. Y. L. Su, and W. H. Kao, J. Mater.Eng. Performance 9 (2000) 38.
137. U. Wiklund, and M. Larsson, Wear 241 (2000) 234.
138. V. Kulikovsky, A. Tarasenko, and F. Fendrych, Diamond Relat. Mater., 7 (1998) 774.
139. V. V. Lyubimov, A. A. Voevodin, and S. E. Spassky, Thin Solid Films 207 (1992) 117.
140. B. Bhushan, and B. K. Gupta, Handbook of Tribology, 2nd edition, Mcgraw-Hill,New York,1997.
141. Y. L. Su, and W. H. Kao, Wear 223 (1998) 119.
142. A. A. Voevodin, R. Bantle, and A. Matthews, Wear 185 (1995) 151.
143. D. Y. Wang, and C.L. Chang, Thin Solid Films 392 (2000) 11.
144. A. Matthews, and A. Leyland, Surf. Coatings Technol., 100-101 (1998) 1.
145. Y. L. Su, and W. H. Kao, Surf. Coatings Technol., 37 (2001) 293.
146. C. Donne, J. Fontaine, and T.L. Mogne, Surf. Coatings Technol., 120-121 (1998) 548.
147. D. E. Wolfe, and J. Singh, Surf. Coatings Technol., 124 (2000)142.
148. P. Couderc, and Y. Catherine, Thin Solid Films 146 (1987) 93.
149. P. Villiger, C. Sprecher, and J. A. Peters Surf. Coatings Technol., 116-119 (1999) 585.
150. Y. L. Su, and W. H. Kao, Journal of Materials Science 36 (2001) 189.
151. Y. L. Su, and W. H. Kao, Journal of Materials Processing Technology 108 (2000) 30.
152. N. E. Lobiodo, R. R. Aharronov, and R. P. Fontana, Surf. Coatings Technol., 94-95 (1997) 652.

第四章
1. A. Smekal, Naturwiss.,Vol. 11, p.873
2. Z. C. Feng, A. A. Allerman, P. A. Barnes and S. Perkowitz, Appl. Phys. Lett., 60 (1992) 1848.
3. J. P. Estrera, P. D. Stevens, R. Glosser, W. M. Duncan, Y. C. Kao,Y. H.Liu and E. A. Beam, Appl. Phys. Lett., 61 (1992) 1927.
4. G. Lucovsky, M. H. Brodsky, M. F. Chen, R. J. Chicotka and A. T. Ward, Phys. Rev., B4 (1971) 1945.
5. K. Yano, and T. Katoda, J. Appl. Phys., 70 (1991) 7036.
6. D. P. Bour, J. R. Shealy, A. Ksendzov and Fred Pollak, J. Appl. Phys., 64 (1988) 6456.
7. J.W. Ager Ⅲ, S. Anders, and A. Anders, Appl. Phys. Lett., 66 (1995) 3444.
8. D. Beeman, J. Silverman, and R. Lynds, Phys. Rev. B30 (1984) 870.
9. A. Richter, H.J. Scheibe, and W. Pompe, J. Non-cryst. Solid., 88 (1986) 131.
10. K. W. R. Gilkes, S. Prawer, and K.W. Nugent, J. Appl. Phys., 87 (2000) 7283.
11. S. F. Yoon, H. Yang, A. Rusli, J. Ahn, and Q. Zhang, Diamond Relat. Mater., 7 (1998) 70.
12. T. Sharda, T. Soga, T. Jimbo, and M. Umeno, Diamond Relat. Mater. 9 (2000) 1331.
13. S. F. Yoon, Rusli. J. Ahn, Q. Zhang, Y. S. Wu, and H. Yang, Diamond Relat. Mater. 7 (1998) 1213.
14. M. Yoshikawa, Mater. Sci. Forum., 5253 (1989) 365.
15. D. Beeman, J. Silverman, R. Lynds, and M. R. Anderson, Phys. Rev., B30 (1984) 870.
16. F. Tuinstra and J. L. Koenig, J. Chem. Phys., 53 (1970) 1126.
17. S. A. Solin Physica B 99 (1980) 443.
18. M. A. Tamor and W. C. Vassel, J. Appl. Phys., 76 (1994) 3823.
19. K. Capano, N. T. McDeutt, R. K. Singh and F. Qian, J. Vac. Sci. Technol., A14 (1996) 431.
20. D. S. Knight, and W. B. White, J. Mater. Res., 4 (1989) 385.
21. 何主亮,常挽瀾,陳育智,電漿化學氣相沉積氮化碳薄膜的微觀結構與機械性質,真空科技,第9 卷,第2 期,34-35,(1996)。
22. H. C. Tsai, D. B. Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton and S. T. Mayer, J. Vac. Sci. Technol., A6 (1998) 2307.
23. A. K .Gangopadhyay, P. A . Willement, M. A. Tamor, and W. C. Vassel, Tribology International, 30 (1997) 9.
24. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S. R. P. Silva, J. Appl. Phys., 80 (1996) 440.
25. R. Vuppuladium, H. E. Jackson and R. L. C, J. Appl. Pphys., 77 (1994) 2714.
26. A. C. Ferrari and J. Robertson, Phys. Rev., B 62 (2000) 11089.
27. F. Tuinstra, and J. L. Koening, J. Vhem. Phys., 53 (1970) 1126.
28. A. C. Ferrari and J. Robertson, Phys. Rev., B 62 (2000) 14095.
29. M. Chhowalla, A. C. Ferrari, J. Robertson, G. A. J. Amaratunga, Appl. Phys. Lett., 76(2000) 1419.
30. Product Information of the Roth & Rau AG Wüstenbrand, Saxony, Germany.
31. Qing Zhang,S. F. Yoon, Rusli, J. Ahn, and H. Yang, J. Appl. Phys., 84 (1998) 5277.
32. S. F. Yoon, Rusli, J. Ahn, Q. Zhang, Y. S. Wu, and H. Yang, Diamond Relat. Mater., 7(1998) 1213.
33. M. A. Tamor, W. C. Vassell, and K. R. Carduner, Appl. Phys. Lett., 58 (1991) 592.
34. S. F. Yoon, H. Yang, Rusli, J. Ahn, and Q. Zhang, Diamond Relat. Mater. 6 (1997) 1683.
35. Y. Lifshitz, S. R. Kasi, and J. W. Rabalais, Phys. Rev. Lett. 62 (1989) 1290.
36. Y. Lifshitz, S. R. Kasi, J. W. Rabalais, and W. Eckstein, Phys. Rev., B 41 (1990) 10468.
37. D. R. McKenzie, D. Muller, and B. A. Pailthorpe, Phys. Rev. Lett., 67 (1991) 773.
38. C. A. Davis, Thin Solid Films 226 (1993) 30.
39. S. R. P. Silva, G. A. J. Amaratunga, J. Appl. Phys., 72 (1992) 1149.
40. J. Robertson, E. P. O’Reilly, Phys. Rev., B35 (1987) 2946.
41. M. Yoshikawa, G. Katagiri, H. Ishida, and A. Ishitani, J. Appl. Phys., 64 (1988) 6464.
42. S. F. Yoon, K. H. Tan, Rusli, J. Ahn, and Q. F. Huang, Diamond Relat. Mater., 9 (2000) 2024.
43. SmartProbe Technical Note, Scientific System Ltd. 1999.
44. D. Beeman, J. Silverman, R. Lynds, and M. R. Anderson, Phys. Rev., B 5 (1972) 4951.
45. B. Dischler, A. Bubenzer, P. Koidl, Solid State Commun. 48 (1983) 103.
46. H. Tsai, Mater. Sci. Forum 52&53 (1989) 71.
47. Rusli, S. F. Yoon, H. Yang, J. Ahn, Q. Zhang, Y. S. Wu, and W. L. New, J. Appl. Phys., 84 (1998) 5277.
48. P. Koidl, Ch. Wild, B. Dischler, J. Wagner, and M. Ramsteiner, Mater. Sci. Forum., 52&53 (1989) 41.
49. Rusli, G. A. J. Amaratunga, and S. R. P. Silva, Thin Solid Films 270, (1995) 160.
50. A. von Keudell, W. Jacob, and W. Fukarek, Appl. Phys. Lett., 66 (1995) 1322.
51. N. V. Mantzaris, E. Gogolides, A. G. Boudouvis, A. Rhallabi, and G. Turban, J. Appl. Phys., 79, (1996) 3718.
52. M. K. Fung, K. H. Lai, C. Y. Chan, I. Bello, C. S. Lee, S. T. Lee, and D. S. Mao, X. Wang, Thin Solid Films 368 (2000) 198.

第五章
1.梁鉅銘,”CD系列的光碟簡介”,工業材料,第99期,第50頁,83年。
2.工研院經資中心,ITIS2000年6月。
3. http://www.ritek.com.tw/ritekc.tech/tech.htm
4.財團法人光電科技工業協進會(PIDA)之我國與全球光電產業及技 術動態,2004年2月。
5.吳汀淏,“添加Ag對GeSbTe薄膜光學性質及微結構之影響”,國立台灣大學材料科學與工程研究所碩士論文,第25頁,民國八十九年。
7.工研院經資中心,ITIS2002年11月。
7. http://hn84126757.myweb.hinet.net/a7.htm
8. Franky, K.L. Fan, Tape/Disc Business, February 1997, p20~27.
9. S. F. Yoon, Rusli. J. Ahn, Q. Zhang, Y. S. Wu, and H. Yang, Diamond Relat. Mater., 7 (1998) 1213.
10. A. Tamor, and W. C. Vassel, J. Appl. Phys., 76 (1994) 3823.
11. A. C. Ferrari, Diamond Relat. Mater., 11 (2002) 1053.
12. M. Yoshikawa, Materials science Forum., 52 (1989) 365.
13. K. Murayama, T. Inoue, M. Yamamoto, T. Morinaga, H. Saitoh, and K. Kamata, J. Mater. Sci. Lett., 13 (1994) 1793.
14. A. C. Ferrari and J. Robertson, Phys. Rev., B 61 (2000) 14095.
15. J. Robertson, E.P. O’Reilly, Phys. Rev., B 35 (1987) 2946.
16. K. L. Choy, and E. Felix, Materials Science and Engineering. A278 (2000) 162.
17. M. Wang, K. Schmidt, K. Reichelt, H. Dimigen, and H.Hubsch, J. Mater. Res., 7 (1992) 667.
18. A. H. Deutchman, and R. J. partyka, Adv. Mater. Proc., 6 (1989) 29.
19. C. Dumkum, D. M. Grant, and I. R. McColl, Diamond Relat. Mater., 6 (1997) 802.
20. M. Stu¨ber , S. Ulrich, H. Leiste, A. Kratzsch, and H. Holleck, Surf. Coat. Technol., 116-119 (1999) 591.
21. K. C. Walter, M. Nastasi, and C. Munson, Surf. Coat. Technol., 93 (1997) 287.

第六章
1. Chemical Economics Hanbook-SRI Interation (Oct. 2001).
2.工研院經貿中心IT IS計畫.
3. 2002年海關進出口統計月表.
4.安田高分子研究資料.
5. L. Jiang, X. Chen, X. Wang, L. Xu, F. Stubhan and K.-H. Merkel. Thin Solid Films 352 (1999) 97.
6. H. J. Borg, and R. V. Woudenberg, J. Mag. and Mag. Mat. 193, (1999) 519.
7. G. F. Zhou and B.A.J. Jacobs, Jpn. J. Appl. Phys., 38 (1999) 1625.
8. G. F. Zhou, Material Science and Engineering, A304-306. (2001) 73.
9. A.K. Gangopadhyay, P.A. Willermet, M.A. Tamor and W.C. Vassell. Tribol. Int. 30 (1997) 9.
10. M. Horie, T. Ohno, Thin Solid Films, 278 (1996) 74.
11. J. Tominaga, T. Nakano and N. Atoda, Jpn. J. Appl. Phys. 37 (1998) 1852.
12. M. Terada, K. Furuya, T. Okamura, I. Morimoto and M. Nakao,
Jpn. J. Appl. Phys., 32 (1993) 5219.
13. Y. Kageyama, H. Iwasaki, M. Harigaya, and Y. Ide, J.Appl. Phys., 35 (1996) 500.
14. S. Ohkubo, M. Okada, M. Murahata, T. Ide and T. Iwanaga,
J. Appl. Phys., 32 (1993) 5230.
15. A.L. Baia Neto, R.A. Santos, F.L. Freire, Thin Solid Films 293 (1997) 206.
16. M. Chen, K. A. Rubin, V. Marrello, U. G. Gerber, V. B. Jipson, Appl. Phys. Lett., 46 (1985) 734.
17. M. Okada, S. Ohkubo, T. Ide, M. Murahata, H. Honda and T. Matsui, Proc. SPIE., 2514 (1995) 329.
18. S. R. Ovshinsky, Phy. Review Letters., 21 (1968) 1450.
19.蔡岍權,『DVD 數位影碟技術入門』,全華科技圖書股份有限公司,1999.5).
20. K. Nagata, N. Yamada, K. Nishiuchi, S. Furukawa, and N. Akahira, Jpn. J. Appl. Phys., 38(1999) 1679.
21. M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Tanoguchi, and A. Inoue, Jpn. J. Appl. Phys., 38(1999) 1806.
22. A. Grill and B. Meyerson: Synthetic Diamond: Emerging CVD Science and Technology, eds. K. E. Spear and J. P. Dismukes ( John Wiley & Sons, Inc., New York , 1994 ) p. 91.
23. A. Grill, Surf. Coat. Technol., 507 (1997) 94.
24. B.Chapman, Glow Discharge processes-Sputtering and Plasma Etching, John Wiley & Sons, Canada,1980.
25. G.R. Rao, E.H. Lee, L.K. Mansur, Wear 174 (1994) 103.
26. E.H. Lee, Gopal R. Rao, L.K. Mansur, J. Mater. Res., 7, (1992) 1900.
27. F. S. Ohuchi, Thin Solid Films 245 (1994) 10.
28. R. Cueff, G. Baud, M. Benmalek, J.P. Besse, J.R. Butruille, H.M. Dunlop, M. Jacquet, Thin Solid Films 270 (1995) 230.
29. Gopal R. Rao, Peter J. Blau, Eal H. Lee, Wear 184 (1995) 213.
30. A. R. MacCabe, A. M. Johnes, S. J. Bull and C. Johnston, Diamond Relat. Mater., 3 (1994) 1265.
31. X. Jiang, J. W. Zou, K. Reichelt, P. Grunber, J. Appl. Phys., 66 (1989) 15.
32. H. Yasuda, Plasma Polymerization, 1985.
33. R. Chen and M.S. Silverstein, J. of Polymer Science, A34 (1996) 207.
34. David R. Harding, James K. Sutter, Marla A. Schuerman, Elizabeth A. Grane, J. Mater. Res., 9 (1994) 1583.
35. J. F. Friedrich, Sh. Geng, W. Unger, A. Lippitz, J. Erdmann, H.-V. Gorsler, C. H. Woll, A.Schertel, and K. B.ierbaum, Surf. Coatings Technol., 74 (1995) 664.
36. A. J. Ward & R. D. Short, Polymer Degradation and stability, 43 (1993) 385.
37. W. Kulisch, Surf. Coatings Technol., 59 (1993) 193.
38. C. Meunier, R. Berjoan, A. Benhassaine, and J. Durand, Applied surface science 72 (1993) 393.
39. Wang, and J. Chen, J. of Polymer Science 42, (1991) 233.
40. M. Strobel, C. Lyons and K. L. Mittal, Plasma Surface Modification of Polymers 54 (1994) 3.
41. D. M. Brewis, and D. Briggs, polymer 22 (1981) 7.
42. John Wiley & Sons, Inc.,Principle of Polymerization, (1991) pp.24-25.
43. T. Kasemura, S. Ozawa, and K. Hattori, J .Adhesion 33 (1990) 33.
44. M. Morra, E. Occhiello and F. Garbassi, Surface Interface Anal., 16 (1990) 412.
45. R. H. Hansen, and H. Schonhorn, J. Polym. Sci., B4 (1996) 203.
46. H. Yasuda, J. Macromol. Sci. Chem., 10 (1976) 383.
47. Y. B. Guo, and F. C. N. Hong, Diamond Relat. Mater., 12 (2003) 946.
48. R. Foerch, N. S. Mcintyre, and R. N. S. Sodhi, J. App. Polymer Science 40 (1990) 1903.
49. J. -R. Chen, and T. Wakida, J. App. Polymer Science 37 (1990) 204.
50. A. F. Whitaker, and B. Z. Jang, J. App. Polymer Science 48 (1993) 1341.
51. 陳克紹,大同學報 第十五期 127-131 (1985).
52. Y. M. Lian, K. W. Leu, S. L. Liao, W. H. Tsai, Surf. Coatings Technol., 71, (1995) 142.
53. M. Kusabiraki, and M. Aozasa, Jpn. J. Appl. Phys., 34 (1995) 4924.
54. K. L. Mittal, Physicochemical Aspects of Polymer Surfaces, V.1 & V.2, Plenum, New York, (1983).
55. P. H. Duchatelard, G. Baud, J. P. Besse, and M. Jacquet, Thin Solid Films 250 (1994) 142.
56. E.-M. Ko, and S. L. Cooper, J. App. Polymer Science 47 (1993) 1601.
57. A. C. Ferrari and J. Robertson, Phys. Rev., B 61 (2000) 14095.
58. J. C. Damasceno, S. S. Camargo Jr, F. L. Freire Jr, and R. Carius, Surf. Coat. Technol., 133-134 (2000) 247.
59. M. -G. Kim, K. -R. Lee, and K. Y. Eun, Surf. Coat. Technol.,112 (1999) 204.
60. T. I. T. Okpalugo, A. A. Ogwu, P. D. Maguire, and J. A. D. McLaughlin, Biomaterials 25 (2004) 239.
61. K. Oguri and T. Arai, Surf. Coat. Technol., 47 (1991) 710.
62. T. Hioki, Y. Itoh, A. Itoh, S. Hibi and J. Kawamoto, Surf. Coat. Technol., 46 (1991) 233.
63. S. Miyake, T. Miyamoto and R. Kaneko, Wear, 168 (1993) 155.
64. J. Meneve, E. Dekempeneer and J. Smeets, Diamond Films Technology, 4 (1994) 23.
65. K. K. Hirakuri, T. Minorikawa, G. Friedbacher, and M. Grasserbauer: Thin Solid Films 302 (1997) 5.
66. F. Demichelis, C. F. Pirri and A. Tagliaferro, Materials Science and Engineering 11 (1992) 313.
67. L. C. Chen, H. Y. Lin, C. S. Wong, K. H. Chen, S. T. Lin, Y. C. Yu, C. W. Wang, E. K. Lin, and K. C. Ling, Diamond Relat. Mater., 8 (1999) 618.
68. H. W. Chen, T. E. Hsieh, J. R. Liu and H. P. D. Shieh, Jpn. J. Appl. Phys., 38 (1999) 1691.
69. M. Yamaguchi, T. Togashi, S. Jinno, and H. Kudo, Jpn. J. Appl. Phys., 38 (1999) 1806.
70. J. Tominaga, T. Kikukawa, M. Takahashi, T. Kato and T. Aoi, Jpn. J. Appl. Phys., 36 (1997) 3598.

第七章
1. L. Frank, Surf. Coat. Technol., 107 (1998) 191.
2. H. Inoue, E. Aoyama, T. Hirogaki, K. Ogawa, H. Matushita, Y. Kitahara, and T. Katayama, Composite Structures 39 (1997) 55.
3. E. Aoyama, H. Inoue, T. Hirogaki, H. Nobe, Y. Kitahara, and T. Katayama, Composite Structures 32 (1995) 567.
4. G. Caprino , V. Tagliaferri, International journal of Machine Tools & Manufacture 35 (1995) 817.
5. K. Ogawa, E. Anyama, H. Inoue, T. Hirogaki, H. Nobe, Y. Kitahara, T. Katayama, and M. Gunjima, Composite Structure 38 ( 1997) 343.
6.宋健民,"電路板鑽孔的再突破--鑽石膜鑽針的新應用",工業材料122 (1997) 72.
7. S. C. Lin, and I. K. Chen, Wear 194 (1996) 156.
8. E. Morin, J. Masounave, and E. E. Laufer, Wear 184 (1995) 11.
9.藍玉錦,"印刷電路板業之鑽孔與孔壁品質檢測(下) ",電子檢測與品管,Vol. 32,pp. 44-50.
10.陳宗興編,"印刷電路板技術與品質管理",大行出版社印行,1988.
11. S. Miyake, and R. Kaneko, Thin Solid Films 212 (1992) 256.
12. B. K. Gupta, and B. Bhushan, Wear 109 (1995) 110.
13. 施士塵,"碳化鎢微鑽針鑽削印刷電路板之膜潤性質研究",90年,國立成功大學碩士論文。
14. M. A. Lieberman, "Design of high-density plasma sources for materials processing", in Physics of thin films, edited by M. H. Francombe and J. L. Vossen(Academic Press, New York, 1994) pp.2-34
15. 李鎮日,"影響鑽頭之乾切削壽命探討",69 年,成功大學碩士論文。
16. 朱惠民,"固質潤滑劑應用於微孔鑽製特徵研究",70 年,國立成功大學碩士論文。
17. M. N. Srinivasan, C. L. Hough, R. W. Bolton, and F. M. Davis, J. Eng. Industry, 117 (1995) 248.
18. E. Aoyama, H. Inoue, T. Hirogaki, H. Nobe, Y. Kitahara, and T.Katayama, composition structure 32 (1995) 567.
19. S. F. Yoon, Rusli. J. Ahn, Q. Zhang, Y. S. Wu, and H. Yang, Diamond Relat. Mater., 7 (1998) 1213.
20. A. Tamor, and W. C. Vassel, J. Appl. Phys., 76 (1994) 3823.
21. A. C. Ferrari, Diamond Relat. Mater., 11 (2002) 1053.
22. M. Yoshikawa, Materials science Forum., 52 (1989) 365.
23. K. Murayama, T. Inoue, M. Yamamoto, T. Morinaga, H. Saitoh, and K. Kamata, J. Mater. Sci. Lett., 13 (1994) 1793.
24. A. C. Ferrari and J. Robertson, Phys. Rev., B 61 (2000) 14095.
25. K. L. Choy, and E. Felix, Materials Science and Engineering. A278 (2000) 162.
26. C. Dumkum, D. M. Grant, and I. R. McColl, Diamond Relat. Mater., 6 (1997) 802.
27. M. Stu¨ber , S. Ulrich, H. Leiste, A. Kratzsch, and H. Holleck, Surf. Coatings Technol., 116-119 (1999) 591.
28. K. C. Walter, M. Nastasi, and C. Munson, Surf. Coat. Technol., 93 (1997) 287.
29. E. O. Ezugwu, and C. I. Okeke, J. Mater. Pro. Technol. 116 (2001) 10.
30. J. Nickel, a. N. Shuaib, B. S. Yibas, and S. M. Nizam, Wear 239 (2000) 155.
31. V. Derflinger, H. Brandle, H. Zimmermann, Surf. Coat. Technol., 113 (1999) 286.
32. W. Hockauf, H. Proll, R. bauerle, G. Eisenblatter, W. Rehbein, VDI berichte 1375 (1998) 135.
33. U. Helmersson, S. Todorova, L.C. Markert, S.A. Barnett, J.E. Sundgern, and J.E. Geene, J. Appl. Phys., 62 (1987) 481.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.227.48.131
論文開放下載的時間是 校外不公開

Your IP address is 18.227.48.131
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code